NetBSD/sys/dev/usb/ubt.c
2016-07-14 04:19:26 +00:00

1850 lines
41 KiB
C

/* $NetBSD: ubt.c,v 1.56 2016/07/14 04:19:27 msaitoh Exp $ */
/*-
* Copyright (c) 2006 Itronix Inc.
* All rights reserved.
*
* Written by Iain Hibbert for Itronix Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of Itronix Inc. may not be used to endorse
* or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) and
* David Sainty (David.Sainty@dtsp.co.nz).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This driver originally written by Lennart Augustsson and David Sainty,
* but was mostly rewritten for the NetBSD Bluetooth protocol stack by
* Iain Hibbert for Itronix, Inc using the FreeBSD ng_ubt.c driver as a
* reference.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ubt.c,v 1.56 2016/07/14 04:19:27 msaitoh Exp $");
#include <sys/param.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <netbt/bluetooth.h>
#include <netbt/hci.h>
/*******************************************************************************
*
* debugging stuff
*/
#undef DPRINTF
#undef DPRINTFN
#ifdef UBT_DEBUG
int ubt_debug = 0;
#define DPRINTF(...) do { \
if (ubt_debug) { \
printf("%s: ", __func__); \
printf(__VA_ARGS__); \
} \
} while (/* CONSTCOND */0)
#define DPRINTFN(n, ...) do { \
if (ubt_debug > (n)) { \
printf("%s: ", __func__); \
printf(__VA_ARGS__); \
} \
} while (/* CONSTCOND */0)
SYSCTL_SETUP(sysctl_hw_ubt_debug_setup, "sysctl hw.ubt_debug setup")
{
sysctl_createv(NULL, 0, NULL, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "ubt_debug",
SYSCTL_DESCR("ubt debug level"),
NULL, 0,
&ubt_debug, sizeof(ubt_debug),
CTL_HW, CTL_CREATE, CTL_EOL);
}
#else
#define DPRINTF(...)
#define DPRINTFN(...)
#endif
/*******************************************************************************
*
* ubt softc structure
*
*/
/* buffer sizes */
/*
* NB: although ACL packets can extend to 65535 bytes, most devices
* have max_acl_size at much less (largest I have seen is 384)
*/
#define UBT_BUFSIZ_CMD (HCI_CMD_PKT_SIZE - 1)
#define UBT_BUFSIZ_ACL (2048 - 1)
#define UBT_BUFSIZ_EVENT (HCI_EVENT_PKT_SIZE - 1)
/* Transmit timeouts */
#define UBT_CMD_TIMEOUT USBD_DEFAULT_TIMEOUT
#define UBT_ACL_TIMEOUT USBD_DEFAULT_TIMEOUT
/*
* ISOC transfers
*
* xfer buffer size depends on the frame size, and the number
* of frames per transfer is fixed, as each frame should be
* 1ms worth of data. This keeps the rate that xfers complete
* fairly constant. We use multiple xfers to keep the hardware
* busy
*/
#define UBT_NXFERS 3 /* max xfers to queue */
#define UBT_NFRAMES 10 /* frames per xfer */
struct ubt_isoc_xfer {
struct ubt_softc *softc;
struct usbd_xfer *xfer;
uint8_t *buf;
uint16_t size[UBT_NFRAMES];
int busy;
};
struct ubt_softc {
device_t sc_dev;
struct usbd_device *sc_udev;
int sc_refcnt;
int sc_dying;
int sc_enabled;
/* Control Interface */
struct usbd_interface * sc_iface0;
/* Commands (control) */
struct usbd_xfer *sc_cmd_xfer;
uint8_t *sc_cmd_buf;
int sc_cmd_busy; /* write active */
MBUFQ_HEAD() sc_cmd_queue; /* output queue */
/* Events (interrupt) */
int sc_evt_addr; /* endpoint address */
struct usbd_pipe *sc_evt_pipe;
uint8_t *sc_evt_buf;
/* ACL data (in) */
int sc_aclrd_addr; /* endpoint address */
struct usbd_pipe *sc_aclrd_pipe; /* read pipe */
struct usbd_xfer *sc_aclrd_xfer; /* read xfer */
uint8_t *sc_aclrd_buf; /* read buffer */
int sc_aclrd_busy; /* reading */
/* ACL data (out) */
int sc_aclwr_addr; /* endpoint address */
struct usbd_pipe *sc_aclwr_pipe; /* write pipe */
struct usbd_xfer *sc_aclwr_xfer; /* write xfer */
uint8_t *sc_aclwr_buf; /* write buffer */
int sc_aclwr_busy; /* write active */
MBUFQ_HEAD() sc_aclwr_queue;/* output queue */
/* ISOC interface */
struct usbd_interface *sc_iface1; /* ISOC interface */
struct sysctllog *sc_log; /* sysctl log */
int sc_config; /* current config no */
int sc_alt_config; /* no of alternates */
/* SCO data (in) */
int sc_scord_addr; /* endpoint address */
struct usbd_pipe *sc_scord_pipe; /* read pipe */
int sc_scord_size; /* frame length */
struct ubt_isoc_xfer sc_scord[UBT_NXFERS];
struct mbuf *sc_scord_mbuf; /* current packet */
/* SCO data (out) */
int sc_scowr_addr; /* endpoint address */
struct usbd_pipe *sc_scowr_pipe; /* write pipe */
int sc_scowr_size; /* frame length */
struct ubt_isoc_xfer sc_scowr[UBT_NXFERS];
struct mbuf *sc_scowr_mbuf; /* current packet */
int sc_scowr_busy; /* write active */
MBUFQ_HEAD() sc_scowr_queue;/* output queue */
/* Protocol structure */
struct hci_unit *sc_unit;
struct bt_stats sc_stats;
/* Successfully attached */
int sc_ok;
};
/*******************************************************************************
*
* Bluetooth unit/USB callback routines
*
*/
static int ubt_enable(device_t);
static void ubt_disable(device_t);
static void ubt_xmit_cmd(device_t, struct mbuf *);
static void ubt_xmit_cmd_start(struct ubt_softc *);
static void ubt_xmit_cmd_complete(struct usbd_xfer *,
void *, usbd_status);
static void ubt_xmit_acl(device_t, struct mbuf *);
static void ubt_xmit_acl_start(struct ubt_softc *);
static void ubt_xmit_acl_complete(struct usbd_xfer *,
void *, usbd_status);
static void ubt_xmit_sco(device_t, struct mbuf *);
static void ubt_xmit_sco_start(struct ubt_softc *);
static void ubt_xmit_sco_start1(struct ubt_softc *, struct ubt_isoc_xfer *);
static void ubt_xmit_sco_complete(struct usbd_xfer *,
void *, usbd_status);
static void ubt_recv_event(struct usbd_xfer *,
void *, usbd_status);
static void ubt_recv_acl_start(struct ubt_softc *);
static void ubt_recv_acl_complete(struct usbd_xfer *,
void *, usbd_status);
static void ubt_recv_sco_start1(struct ubt_softc *, struct ubt_isoc_xfer *);
static void ubt_recv_sco_complete(struct usbd_xfer *,
void *, usbd_status);
static void ubt_stats(device_t, struct bt_stats *, int);
static const struct hci_if ubt_hci = {
.enable = ubt_enable,
.disable = ubt_disable,
.output_cmd = ubt_xmit_cmd,
.output_acl = ubt_xmit_acl,
.output_sco = ubt_xmit_sco,
.get_stats = ubt_stats,
.ipl = IPL_SOFTUSB,
};
/*******************************************************************************
*
* USB Autoconfig stuff
*
*/
int ubt_match(device_t, cfdata_t, void *);
void ubt_attach(device_t, device_t, void *);
int ubt_detach(device_t, int);
int ubt_activate(device_t, enum devact);
extern struct cfdriver ubt_cd;
CFATTACH_DECL_NEW(ubt, sizeof(struct ubt_softc), ubt_match, ubt_attach,
ubt_detach, ubt_activate);
static int ubt_set_isoc_config(struct ubt_softc *);
static int ubt_sysctl_config(SYSCTLFN_PROTO);
static void ubt_abortdealloc(struct ubt_softc *);
/*
* To match or ignore, add details to the ubt_dev list.
* Use value of -1 to indicate a wildcard
* To override another entry, add details earlier
*/
const struct ubt_devno {
int vendor;
int product;
int class;
int subclass;
int proto;
int match;
} ubt_dev[] = {
{ /* ignore Broadcom 2033 without firmware */
USB_VENDOR_BROADCOM,
USB_PRODUCT_BROADCOM_BCM2033NF,
-1,
-1,
-1,
UMATCH_NONE
},
{ /* Apple Bluetooth Host Controller MacbookPro 7,1 */
USB_VENDOR_APPLE,
USB_PRODUCT_APPLE_BLUETOOTH_HOST_1,
-1,
-1,
-1,
UMATCH_VENDOR_PRODUCT
},
{ /* Apple Bluetooth Host Controller iMac 11,1 */
USB_VENDOR_APPLE,
USB_PRODUCT_APPLE_BLUETOOTH_HOST_2,
-1,
-1,
-1,
UMATCH_VENDOR_PRODUCT
},
{ /* Apple Bluetooth Host Controller MacBookPro 8,2 */
USB_VENDOR_APPLE,
USB_PRODUCT_APPLE_BLUETOOTH_HOST_3,
-1,
-1,
-1,
UMATCH_VENDOR_PRODUCT
},
{ /* Apple Bluetooth Host Controller MacBookAir 3,1 3,2*/
USB_VENDOR_APPLE,
USB_PRODUCT_APPLE_BLUETOOTH_HOST_4,
-1,
-1,
-1,
UMATCH_VENDOR_PRODUCT
},
{ /* Apple Bluetooth Host Controller MacBookAir 4,1 */
USB_VENDOR_APPLE,
USB_PRODUCT_APPLE_BLUETOOTH_HOST_5,
-1,
-1,
-1,
UMATCH_VENDOR_PRODUCT
},
{ /* Apple Bluetooth Host Controller MacMini 5,1 */
USB_VENDOR_APPLE,
USB_PRODUCT_APPLE_BLUETOOTH_HOST_6,
-1,
-1,
-1,
UMATCH_VENDOR_PRODUCT
},
{ /* Apple Bluetooth Host Controller MacBookAir 6,1 */
USB_VENDOR_APPLE,
USB_PRODUCT_APPLE_BLUETOOTH_HOST_7,
-1,
-1,
-1,
UMATCH_VENDOR_PRODUCT
},
{ /* Broadcom chips with PatchRAM support */
USB_VENDOR_BROADCOM,
-1,
UDCLASS_VENDOR,
UDSUBCLASS_RF,
UDPROTO_BLUETOOTH,
UMATCH_VENDOR_DEVCLASS_DEVPROTO
},
{ /* Broadcom based device with PatchRAM support */
USB_VENDOR_FOXCONN,
-1,
UDCLASS_VENDOR,
UDSUBCLASS_RF,
UDPROTO_BLUETOOTH,
UMATCH_VENDOR_DEVCLASS_DEVPROTO
},
{ /* Broadcom based device with PatchRAM support */
USB_VENDOR_LITEON,
-1,
UDCLASS_VENDOR,
UDSUBCLASS_RF,
UDPROTO_BLUETOOTH,
UMATCH_VENDOR_DEVCLASS_DEVPROTO
},
{ /* Broadcom based device with PatchRAM support */
USB_VENDOR_BELKIN,
-1,
UDCLASS_VENDOR,
UDSUBCLASS_RF,
UDPROTO_BLUETOOTH,
UMATCH_VENDOR_DEVCLASS_DEVPROTO
},
{ /* Broadcom based device with PatchRAM support */
USB_VENDOR_TOSHIBA,
-1,
UDCLASS_VENDOR,
UDSUBCLASS_RF,
UDPROTO_BLUETOOTH,
UMATCH_VENDOR_DEVCLASS_DEVPROTO
},
{ /* Broadcom based device with PatchRAM support */
USB_VENDOR_ASUSTEK,
-1,
UDCLASS_VENDOR,
UDSUBCLASS_RF,
UDPROTO_BLUETOOTH,
UMATCH_VENDOR_DEVCLASS_DEVPROTO
},
{ /* Generic Bluetooth SIG compliant devices */
-1,
-1,
UDCLASS_WIRELESS,
UDSUBCLASS_RF,
UDPROTO_BLUETOOTH,
UMATCH_DEVCLASS_DEVSUBCLASS_DEVPROTO
},
};
int
ubt_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
size_t i;
DPRINTFN(50, "ubt_match\n");
for (i = 0; i < __arraycount(ubt_dev); i++) {
if (ubt_dev[i].vendor != -1
&& ubt_dev[i].vendor != (int)uaa->uaa_vendor)
continue;
if (ubt_dev[i].product != -1
&& ubt_dev[i].product != (int)uaa->uaa_product)
continue;
if (ubt_dev[i].class != -1
&& ubt_dev[i].class != uaa->uaa_class)
continue;
if (ubt_dev[i].subclass != -1
&& ubt_dev[i].subclass != uaa->uaa_subclass)
continue;
if (ubt_dev[i].proto != -1
&& ubt_dev[i].proto != uaa->uaa_proto)
continue;
return ubt_dev[i].match;
}
return UMATCH_NONE;
}
void
ubt_attach(device_t parent, device_t self, void *aux)
{
struct ubt_softc *sc = device_private(self);
struct usb_attach_arg *uaa = aux;
usb_config_descriptor_t *cd;
usb_endpoint_descriptor_t *ed;
const struct sysctlnode *node;
char *devinfop;
int err;
uint8_t count, i;
DPRINTFN(50, "ubt_attach: sc=%p\n", sc);
sc->sc_dev = self;
sc->sc_udev = uaa->uaa_device;
MBUFQ_INIT(&sc->sc_cmd_queue);
MBUFQ_INIT(&sc->sc_aclwr_queue);
MBUFQ_INIT(&sc->sc_scowr_queue);
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
/*
* Move the device into the configured state
*/
err = usbd_set_config_index(sc->sc_udev, 0, 1);
if (err) {
aprint_error_dev(self,
"failed to set configuration idx 0: %s\n",
usbd_errstr(err));
return;
}
/*
* Interface 0 must have 3 endpoints
* 1) Interrupt endpoint to receive HCI events
* 2) Bulk IN endpoint to receive ACL data
* 3) Bulk OUT endpoint to send ACL data
*/
err = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface0);
if (err) {
aprint_error_dev(self,
"Could not get interface 0 handle %s (%d)\n",
usbd_errstr(err), err);
return;
}
sc->sc_evt_addr = -1;
sc->sc_aclrd_addr = -1;
sc->sc_aclwr_addr = -1;
count = 0;
(void)usbd_endpoint_count(sc->sc_iface0, &count);
for (i = 0 ; i < count ; i++) {
int dir, type;
ed = usbd_interface2endpoint_descriptor(sc->sc_iface0, i);
if (ed == NULL) {
aprint_error_dev(self,
"could not read endpoint descriptor %d\n", i);
return;
}
dir = UE_GET_DIR(ed->bEndpointAddress);
type = UE_GET_XFERTYPE(ed->bmAttributes);
if (dir == UE_DIR_IN && type == UE_INTERRUPT)
sc->sc_evt_addr = ed->bEndpointAddress;
else if (dir == UE_DIR_IN && type == UE_BULK)
sc->sc_aclrd_addr = ed->bEndpointAddress;
else if (dir == UE_DIR_OUT && type == UE_BULK)
sc->sc_aclwr_addr = ed->bEndpointAddress;
}
if (sc->sc_evt_addr == -1) {
aprint_error_dev(self,
"missing INTERRUPT endpoint on interface 0\n");
return;
}
if (sc->sc_aclrd_addr == -1) {
aprint_error_dev(self,
"missing BULK IN endpoint on interface 0\n");
return;
}
if (sc->sc_aclwr_addr == -1) {
aprint_error_dev(self,
"missing BULK OUT endpoint on interface 0\n");
return;
}
/*
* Interface 1 must have 2 endpoints
* 1) Isochronous IN endpoint to receive SCO data
* 2) Isochronous OUT endpoint to send SCO data
*
* and will have several configurations, which can be selected
* via a sysctl variable. We select config 0 to start, which
* means that no SCO data will be available.
*/
err = usbd_device2interface_handle(sc->sc_udev, 1, &sc->sc_iface1);
if (err) {
aprint_error_dev(self,
"Could not get interface 1 handle %s (%d)\n",
usbd_errstr(err), err);
return;
}
cd = usbd_get_config_descriptor(sc->sc_udev);
if (cd == NULL) {
aprint_error_dev(self, "could not get config descriptor\n");
return;
}
sc->sc_alt_config = usbd_get_no_alts(cd, 1);
/* set initial config */
err = ubt_set_isoc_config(sc);
if (err) {
aprint_error_dev(self, "ISOC config failed\n");
return;
}
/* Attach HCI */
sc->sc_unit = hci_attach_pcb(&ubt_hci, sc->sc_dev, 0);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
/* sysctl set-up for alternate configs */
sysctl_createv(&sc->sc_log, 0, NULL, &node,
0,
CTLTYPE_NODE, device_xname(sc->sc_dev),
SYSCTL_DESCR("ubt driver information"),
NULL, 0,
NULL, 0,
CTL_HW,
CTL_CREATE, CTL_EOL);
if (node != NULL) {
sysctl_createv(&sc->sc_log, 0, NULL, NULL,
CTLFLAG_READWRITE,
CTLTYPE_INT, "config",
SYSCTL_DESCR("configuration number"),
ubt_sysctl_config, 0,
(void *)sc, 0,
CTL_HW, node->sysctl_num,
CTL_CREATE, CTL_EOL);
sysctl_createv(&sc->sc_log, 0, NULL, NULL,
CTLFLAG_READONLY,
CTLTYPE_INT, "alt_config",
SYSCTL_DESCR("number of alternate configurations"),
NULL, 0,
&sc->sc_alt_config, sizeof(sc->sc_alt_config),
CTL_HW, node->sysctl_num,
CTL_CREATE, CTL_EOL);
sysctl_createv(&sc->sc_log, 0, NULL, NULL,
CTLFLAG_READONLY,
CTLTYPE_INT, "sco_rxsize",
SYSCTL_DESCR("max SCO receive size"),
NULL, 0,
&sc->sc_scord_size, sizeof(sc->sc_scord_size),
CTL_HW, node->sysctl_num,
CTL_CREATE, CTL_EOL);
sysctl_createv(&sc->sc_log, 0, NULL, NULL,
CTLFLAG_READONLY,
CTLTYPE_INT, "sco_txsize",
SYSCTL_DESCR("max SCO transmit size"),
NULL, 0,
&sc->sc_scowr_size, sizeof(sc->sc_scowr_size),
CTL_HW, node->sysctl_num,
CTL_CREATE, CTL_EOL);
}
sc->sc_ok = 1;
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
return;
}
int
ubt_detach(device_t self, int flags)
{
struct ubt_softc *sc = device_private(self);
int s;
DPRINTF("sc=%p flags=%d\n", sc, flags);
pmf_device_deregister(self);
sc->sc_dying = 1;
if (!sc->sc_ok)
return 0;
/* delete sysctl nodes */
sysctl_teardown(&sc->sc_log);
/* Detach HCI interface */
if (sc->sc_unit) {
hci_detach_pcb(sc->sc_unit);
sc->sc_unit = NULL;
}
/*
* Abort all pipes. Causes processes waiting for transfer to wake.
*
* Actually, hci_detach_pcb() above will call ubt_disable() which
* may call ubt_abortdealloc(), but lets be sure since doing it
* twice wont cause an error.
*/
ubt_abortdealloc(sc);
/* wait for all processes to finish */
s = splusb();
if (sc->sc_refcnt-- > 0)
usb_detach_waitold(sc->sc_dev);
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
DPRINTFN(1, "driver detached\n");
return 0;
}
int
ubt_activate(device_t self, enum devact act)
{
struct ubt_softc *sc = device_private(self);
DPRINTFN(1, "sc=%p, act=%d\n", sc, act);
switch (act) {
case DVACT_DEACTIVATE:
sc->sc_dying = 1;
return 0;
default:
return EOPNOTSUPP;
}
}
/* set ISOC configuration */
static int
ubt_set_isoc_config(struct ubt_softc *sc)
{
usb_endpoint_descriptor_t *ed;
int rd_addr, wr_addr, rd_size, wr_size;
uint8_t count, i;
int err;
err = usbd_set_interface(sc->sc_iface1, sc->sc_config);
if (err != USBD_NORMAL_COMPLETION) {
aprint_error_dev(sc->sc_dev,
"Could not set config %d on ISOC interface. %s (%d)\n",
sc->sc_config, usbd_errstr(err), err);
return err == USBD_IN_USE ? EBUSY : EIO;
}
/*
* We wont get past the above if there are any pipes open, so no
* need to worry about buf/xfer/pipe deallocation. If we get an
* error after this, the frame quantities will be 0 and no SCO
* data will be possible.
*/
sc->sc_scord_size = rd_size = 0;
sc->sc_scord_addr = rd_addr = -1;
sc->sc_scowr_size = wr_size = 0;
sc->sc_scowr_addr = wr_addr = -1;
count = 0;
(void)usbd_endpoint_count(sc->sc_iface1, &count);
for (i = 0 ; i < count ; i++) {
ed = usbd_interface2endpoint_descriptor(sc->sc_iface1, i);
if (ed == NULL) {
aprint_error_dev(sc->sc_dev,
"could not read endpoint descriptor %d\n", i);
return EIO;
}
DPRINTFN(5, "%s: endpoint type %02x (%02x) addr %02x (%s)\n",
device_xname(sc->sc_dev),
UE_GET_XFERTYPE(ed->bmAttributes),
UE_GET_ISO_TYPE(ed->bmAttributes),
ed->bEndpointAddress,
UE_GET_DIR(ed->bEndpointAddress) ? "in" : "out");
if (UE_GET_XFERTYPE(ed->bmAttributes) != UE_ISOCHRONOUS)
continue;
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) {
rd_addr = ed->bEndpointAddress;
rd_size = UGETW(ed->wMaxPacketSize);
} else {
wr_addr = ed->bEndpointAddress;
wr_size = UGETW(ed->wMaxPacketSize);
}
}
if (rd_addr == -1) {
aprint_error_dev(sc->sc_dev,
"missing ISOC IN endpoint on interface config %d\n",
sc->sc_config);
return ENOENT;
}
if (wr_addr == -1) {
aprint_error_dev(sc->sc_dev,
"missing ISOC OUT endpoint on interface config %d\n",
sc->sc_config);
return ENOENT;
}
if (rd_size > MLEN) {
aprint_error_dev(sc->sc_dev, "rd_size=%d exceeds MLEN\n",
rd_size);
return EOVERFLOW;
}
if (wr_size > MLEN) {
aprint_error_dev(sc->sc_dev, "wr_size=%d exceeds MLEN\n",
wr_size);
return EOVERFLOW;
}
sc->sc_scord_size = rd_size;
sc->sc_scord_addr = rd_addr;
sc->sc_scowr_size = wr_size;
sc->sc_scowr_addr = wr_addr;
return 0;
}
/* sysctl helper to set alternate configurations */
static int
ubt_sysctl_config(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct ubt_softc *sc;
int t, error;
node = *rnode;
sc = node.sysctl_data;
t = sc->sc_config;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (t < 0 || t >= sc->sc_alt_config)
return EINVAL;
/* This may not change when the unit is enabled */
if (sc->sc_enabled)
return EBUSY;
KERNEL_LOCK(1, curlwp);
sc->sc_config = t;
error = ubt_set_isoc_config(sc);
KERNEL_UNLOCK_ONE(curlwp);
return error;
}
static void
ubt_abortdealloc(struct ubt_softc *sc)
{
int i;
DPRINTFN(1, "sc=%p\n", sc);
/* Abort all pipes */
usbd_abort_default_pipe(sc->sc_udev);
if (sc->sc_evt_pipe != NULL) {
usbd_abort_pipe(sc->sc_evt_pipe);
}
if (sc->sc_aclrd_pipe != NULL) {
usbd_abort_pipe(sc->sc_aclrd_pipe);
}
if (sc->sc_aclwr_pipe != NULL) {
usbd_abort_pipe(sc->sc_aclwr_pipe);
}
if (sc->sc_scord_pipe != NULL) {
usbd_abort_pipe(sc->sc_scord_pipe);
}
if (sc->sc_scowr_pipe != NULL) {
usbd_abort_pipe(sc->sc_scowr_pipe);
}
/* Free event buffer */
if (sc->sc_evt_buf != NULL) {
kmem_free(sc->sc_evt_buf, UBT_BUFSIZ_EVENT);
sc->sc_evt_buf = NULL;
}
/* Free all xfers and xfer buffers (implicit) */
if (sc->sc_cmd_xfer != NULL) {
usbd_destroy_xfer(sc->sc_cmd_xfer);
sc->sc_cmd_xfer = NULL;
sc->sc_cmd_buf = NULL;
}
if (sc->sc_aclrd_xfer != NULL) {
usbd_destroy_xfer(sc->sc_aclrd_xfer);
sc->sc_aclrd_xfer = NULL;
sc->sc_aclrd_buf = NULL;
}
if (sc->sc_aclwr_xfer != NULL) {
usbd_destroy_xfer(sc->sc_aclwr_xfer);
sc->sc_aclwr_xfer = NULL;
sc->sc_aclwr_buf = NULL;
}
for (i = 0 ; i < UBT_NXFERS ; i++) {
if (sc->sc_scord[i].xfer != NULL) {
usbd_destroy_xfer(sc->sc_scord[i].xfer);
sc->sc_scord[i].xfer = NULL;
sc->sc_scord[i].buf = NULL;
}
if (sc->sc_scowr[i].xfer != NULL) {
usbd_destroy_xfer(sc->sc_scowr[i].xfer);
sc->sc_scowr[i].xfer = NULL;
sc->sc_scowr[i].buf = NULL;
}
}
if (sc->sc_evt_pipe != NULL) {
usbd_close_pipe(sc->sc_evt_pipe);
sc->sc_evt_pipe = NULL;
}
if (sc->sc_aclrd_pipe != NULL) {
usbd_close_pipe(sc->sc_aclrd_pipe);
sc->sc_aclrd_pipe = NULL;
}
if (sc->sc_aclwr_pipe != NULL) {
usbd_close_pipe(sc->sc_aclwr_pipe);
sc->sc_aclwr_pipe = NULL;
}
if (sc->sc_scord_pipe != NULL) {
usbd_close_pipe(sc->sc_scord_pipe);
sc->sc_scord_pipe = NULL;
}
if (sc->sc_scowr_pipe != NULL) {
usbd_close_pipe(sc->sc_scowr_pipe);
sc->sc_scowr_pipe = NULL;
}
/* Free partial SCO packets */
if (sc->sc_scord_mbuf != NULL) {
m_freem(sc->sc_scord_mbuf);
sc->sc_scord_mbuf = NULL;
}
if (sc->sc_scowr_mbuf != NULL) {
m_freem(sc->sc_scowr_mbuf);
sc->sc_scowr_mbuf = NULL;
}
/* Empty mbuf queues */
MBUFQ_DRAIN(&sc->sc_cmd_queue);
MBUFQ_DRAIN(&sc->sc_aclwr_queue);
MBUFQ_DRAIN(&sc->sc_scowr_queue);
}
/*******************************************************************************
*
* Bluetooth Unit/USB callbacks
*
*/
static int
ubt_enable(device_t self)
{
struct ubt_softc *sc = device_private(self);
usbd_status err;
int s, i, error;
DPRINTFN(1, "sc=%p\n", sc);
if (sc->sc_enabled)
return 0;
s = splusb();
/* Events */
sc->sc_evt_buf = kmem_alloc(UBT_BUFSIZ_EVENT, KM_SLEEP);
if (sc->sc_evt_buf == NULL) {
error = ENOMEM;
goto bad;
}
err = usbd_open_pipe_intr(sc->sc_iface0,
sc->sc_evt_addr,
USBD_SHORT_XFER_OK,
&sc->sc_evt_pipe,
sc,
sc->sc_evt_buf,
UBT_BUFSIZ_EVENT,
ubt_recv_event,
USBD_DEFAULT_INTERVAL);
if (err != USBD_NORMAL_COMPLETION) {
error = EIO;
goto bad;
}
/* Commands */
struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
error = usbd_create_xfer(pipe0, UBT_BUFSIZ_CMD, 0, 0,
&sc->sc_cmd_xfer);
if (error)
goto bad;
sc->sc_cmd_buf = usbd_get_buffer(sc->sc_cmd_xfer);
sc->sc_cmd_busy = 0;
/* ACL read */
err = usbd_open_pipe(sc->sc_iface0, sc->sc_aclrd_addr,
USBD_EXCLUSIVE_USE, &sc->sc_aclrd_pipe);
if (err != USBD_NORMAL_COMPLETION) {
error = EIO;
goto bad;
}
error = usbd_create_xfer(sc->sc_aclrd_pipe, UBT_BUFSIZ_ACL,
USBD_SHORT_XFER_OK, 0, &sc->sc_aclrd_xfer);
if (error)
goto bad;
sc->sc_aclrd_buf = usbd_get_buffer(sc->sc_aclrd_xfer);
sc->sc_aclrd_busy = 0;
ubt_recv_acl_start(sc);
/* ACL write */
err = usbd_open_pipe(sc->sc_iface0, sc->sc_aclwr_addr,
USBD_EXCLUSIVE_USE, &sc->sc_aclwr_pipe);
if (err != USBD_NORMAL_COMPLETION) {
error = EIO;
goto bad;
}
error = usbd_create_xfer(sc->sc_aclwr_pipe, UBT_BUFSIZ_ACL,
USBD_FORCE_SHORT_XFER, 0, &sc->sc_aclwr_xfer);
if (error)
goto bad;
sc->sc_aclwr_buf = usbd_get_buffer(sc->sc_aclwr_xfer);
sc->sc_aclwr_busy = 0;
/* SCO read */
if (sc->sc_scord_size > 0) {
err = usbd_open_pipe(sc->sc_iface1, sc->sc_scord_addr,
USBD_EXCLUSIVE_USE, &sc->sc_scord_pipe);
if (err != USBD_NORMAL_COMPLETION) {
error = EIO;
goto bad;
}
for (i = 0 ; i < UBT_NXFERS ; i++) {
error = usbd_create_xfer(sc->sc_scord_pipe,
sc->sc_scord_size * UBT_NFRAMES,
USBD_SHORT_XFER_OK, UBT_NFRAMES,
&sc->sc_scord[i].xfer);
if (error)
goto bad;
sc->sc_scord[i].buf =
usbd_get_buffer(sc->sc_scord[i].xfer);
sc->sc_scord[i].softc = sc;
sc->sc_scord[i].busy = 0;
ubt_recv_sco_start1(sc, &sc->sc_scord[i]);
}
}
/* SCO write */
if (sc->sc_scowr_size > 0) {
err = usbd_open_pipe(sc->sc_iface1, sc->sc_scowr_addr,
USBD_EXCLUSIVE_USE, &sc->sc_scowr_pipe);
if (err != USBD_NORMAL_COMPLETION) {
error = EIO;
goto bad;
}
for (i = 0 ; i < UBT_NXFERS ; i++) {
error = usbd_create_xfer(sc->sc_scowr_pipe,
sc->sc_scowr_size * UBT_NFRAMES,
USBD_FORCE_SHORT_XFER, UBT_NFRAMES,
&sc->sc_scowr[i].xfer);
if (error)
goto bad;
sc->sc_scowr[i].buf =
usbd_get_buffer(sc->sc_scowr[i].xfer);
sc->sc_scowr[i].softc = sc;
sc->sc_scowr[i].busy = 0;
}
sc->sc_scowr_busy = 0;
}
sc->sc_enabled = 1;
splx(s);
return 0;
bad:
ubt_abortdealloc(sc);
splx(s);
return error;
}
static void
ubt_disable(device_t self)
{
struct ubt_softc *sc = device_private(self);
int s;
DPRINTFN(1, "sc=%p\n", sc);
if (sc->sc_enabled == 0)
return;
s = splusb();
ubt_abortdealloc(sc);
sc->sc_enabled = 0;
splx(s);
}
static void
ubt_xmit_cmd(device_t self, struct mbuf *m)
{
struct ubt_softc *sc = device_private(self);
int s;
KASSERT(sc->sc_enabled);
s = splusb();
MBUFQ_ENQUEUE(&sc->sc_cmd_queue, m);
if (sc->sc_cmd_busy == 0)
ubt_xmit_cmd_start(sc);
splx(s);
}
static void
ubt_xmit_cmd_start(struct ubt_softc *sc)
{
usb_device_request_t req;
usbd_status status;
struct mbuf *m;
int len;
if (sc->sc_dying)
return;
if (MBUFQ_FIRST(&sc->sc_cmd_queue) == NULL)
return;
MBUFQ_DEQUEUE(&sc->sc_cmd_queue, m);
KASSERT(m != NULL);
DPRINTFN(15, "%s: xmit CMD packet (%d bytes)\n",
device_xname(sc->sc_dev), m->m_pkthdr.len);
sc->sc_refcnt++;
sc->sc_cmd_busy = 1;
len = m->m_pkthdr.len - 1;
m_copydata(m, 1, len, sc->sc_cmd_buf);
m_freem(m);
memset(&req, 0, sizeof(req));
req.bmRequestType = UT_WRITE_CLASS_DEVICE;
USETW(req.wLength, len);
usbd_setup_default_xfer(sc->sc_cmd_xfer,
sc->sc_udev,
sc,
UBT_CMD_TIMEOUT,
&req,
sc->sc_cmd_buf,
len,
USBD_FORCE_SHORT_XFER,
ubt_xmit_cmd_complete);
status = usbd_transfer(sc->sc_cmd_xfer);
KASSERT(status != USBD_NORMAL_COMPLETION);
if (status != USBD_IN_PROGRESS) {
DPRINTF("usbd_transfer status=%s (%d)\n",
usbd_errstr(status), status);
sc->sc_refcnt--;
sc->sc_cmd_busy = 0;
}
}
static void
ubt_xmit_cmd_complete(struct usbd_xfer *xfer,
void * h, usbd_status status)
{
struct ubt_softc *sc = h;
uint32_t count;
DPRINTFN(15, "%s: CMD complete status=%s (%d)\n",
device_xname(sc->sc_dev), usbd_errstr(status), status);
sc->sc_cmd_busy = 0;
if (--sc->sc_refcnt < 0) {
DPRINTF("sc_refcnt=%d\n", sc->sc_refcnt);
usb_detach_wakeupold(sc->sc_dev);
return;
}
if (sc->sc_dying) {
DPRINTF("sc_dying\n");
return;
}
if (status != USBD_NORMAL_COMPLETION) {
DPRINTF("status=%s (%d)\n",
usbd_errstr(status), status);
sc->sc_stats.err_tx++;
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
sc->sc_stats.cmd_tx++;
sc->sc_stats.byte_tx += count;
ubt_xmit_cmd_start(sc);
}
static void
ubt_xmit_acl(device_t self, struct mbuf *m)
{
struct ubt_softc *sc = device_private(self);
int s;
KASSERT(sc->sc_enabled);
s = splusb();
MBUFQ_ENQUEUE(&sc->sc_aclwr_queue, m);
if (sc->sc_aclwr_busy == 0)
ubt_xmit_acl_start(sc);
splx(s);
}
static void
ubt_xmit_acl_start(struct ubt_softc *sc)
{
struct mbuf *m;
usbd_status status;
int len;
if (sc->sc_dying)
return;
if (MBUFQ_FIRST(&sc->sc_aclwr_queue) == NULL)
return;
sc->sc_refcnt++;
sc->sc_aclwr_busy = 1;
MBUFQ_DEQUEUE(&sc->sc_aclwr_queue, m);
KASSERT(m != NULL);
DPRINTFN(15, "%s: xmit ACL packet (%d bytes)\n",
device_xname(sc->sc_dev), m->m_pkthdr.len);
len = m->m_pkthdr.len - 1;
if (len > UBT_BUFSIZ_ACL) {
DPRINTF("%s: truncating ACL packet (%d => %d)!\n",
device_xname(sc->sc_dev), len, UBT_BUFSIZ_ACL);
len = UBT_BUFSIZ_ACL;
}
m_copydata(m, 1, len, sc->sc_aclwr_buf);
m_freem(m);
sc->sc_stats.acl_tx++;
sc->sc_stats.byte_tx += len;
usbd_setup_xfer(sc->sc_aclwr_xfer,
sc,
sc->sc_aclwr_buf,
len,
USBD_FORCE_SHORT_XFER,
UBT_ACL_TIMEOUT,
ubt_xmit_acl_complete);
status = usbd_transfer(sc->sc_aclwr_xfer);
KASSERT(status != USBD_NORMAL_COMPLETION);
if (status != USBD_IN_PROGRESS) {
DPRINTF("usbd_transfer status=%s (%d)\n",
usbd_errstr(status), status);
sc->sc_refcnt--;
sc->sc_aclwr_busy = 0;
}
}
static void
ubt_xmit_acl_complete(struct usbd_xfer *xfer,
void * h, usbd_status status)
{
struct ubt_softc *sc = h;
DPRINTFN(15, "%s: ACL complete status=%s (%d)\n",
device_xname(sc->sc_dev), usbd_errstr(status), status);
sc->sc_aclwr_busy = 0;
if (--sc->sc_refcnt < 0) {
usb_detach_wakeupold(sc->sc_dev);
return;
}
if (sc->sc_dying)
return;
if (status != USBD_NORMAL_COMPLETION) {
DPRINTF("status=%s (%d)\n",
usbd_errstr(status), status);
sc->sc_stats.err_tx++;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_aclwr_pipe);
else
return;
}
ubt_xmit_acl_start(sc);
}
static void
ubt_xmit_sco(device_t self, struct mbuf *m)
{
struct ubt_softc *sc = device_private(self);
int s;
KASSERT(sc->sc_enabled);
s = splusb();
MBUFQ_ENQUEUE(&sc->sc_scowr_queue, m);
if (sc->sc_scowr_busy == 0)
ubt_xmit_sco_start(sc);
splx(s);
}
static void
ubt_xmit_sco_start(struct ubt_softc *sc)
{
int i;
if (sc->sc_dying || sc->sc_scowr_size == 0)
return;
for (i = 0 ; i < UBT_NXFERS ; i++) {
if (sc->sc_scowr[i].busy)
continue;
ubt_xmit_sco_start1(sc, &sc->sc_scowr[i]);
}
}
static void
ubt_xmit_sco_start1(struct ubt_softc *sc, struct ubt_isoc_xfer *isoc)
{
struct mbuf *m;
uint8_t *buf;
int num, len, size, space;
space = sc->sc_scowr_size * UBT_NFRAMES;
buf = isoc->buf;
len = 0;
/*
* Fill the request buffer with data from the queue,
* keeping any leftover packet on our private hook.
*
* Complete packets are passed back up to the stack
* for disposal, since we can't rely on the controller
* to tell us when it has finished with them.
*/
m = sc->sc_scowr_mbuf;
while (space > 0) {
if (m == NULL) {
MBUFQ_DEQUEUE(&sc->sc_scowr_queue, m);
if (m == NULL)
break;
m_adj(m, 1); /* packet type */
}
if (m->m_pkthdr.len > 0) {
size = MIN(m->m_pkthdr.len, space);
m_copydata(m, 0, size, buf);
m_adj(m, size);
buf += size;
len += size;
space -= size;
}
if (m->m_pkthdr.len == 0) {
sc->sc_stats.sco_tx++;
if (!hci_complete_sco(sc->sc_unit, m))
sc->sc_stats.err_tx++;
m = NULL;
}
}
sc->sc_scowr_mbuf = m;
DPRINTFN(15, "isoc=%p, len=%d, space=%d\n", isoc, len, space);
if (len == 0) /* nothing to send */
return;
sc->sc_refcnt++;
sc->sc_scowr_busy = 1;
sc->sc_stats.byte_tx += len;
isoc->busy = 1;
/*
* calculate number of isoc frames and sizes
*/
for (num = 0 ; len > 0 ; num++) {
size = MIN(sc->sc_scowr_size, len);
isoc->size[num] = size;
len -= size;
}
usbd_setup_isoc_xfer(isoc->xfer,
isoc,
isoc->size,
num,
USBD_FORCE_SHORT_XFER,
ubt_xmit_sco_complete);
usbd_transfer(isoc->xfer);
}
static void
ubt_xmit_sco_complete(struct usbd_xfer *xfer,
void * h, usbd_status status)
{
struct ubt_isoc_xfer *isoc = h;
struct ubt_softc *sc;
int i;
KASSERT(xfer == isoc->xfer);
sc = isoc->softc;
DPRINTFN(15, "isoc=%p, status=%s (%d)\n",
isoc, usbd_errstr(status), status);
isoc->busy = 0;
for (i = 0 ; ; i++) {
if (i == UBT_NXFERS) {
sc->sc_scowr_busy = 0;
break;
}
if (sc->sc_scowr[i].busy)
break;
}
if (--sc->sc_refcnt < 0) {
usb_detach_wakeupold(sc->sc_dev);
return;
}
if (sc->sc_dying)
return;
if (status != USBD_NORMAL_COMPLETION) {
DPRINTF("status=%s (%d)\n",
usbd_errstr(status), status);
sc->sc_stats.err_tx++;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_scowr_pipe);
else
return;
}
ubt_xmit_sco_start(sc);
}
/*
* load incoming data into an mbuf with
* leading type byte
*/
static struct mbuf *
ubt_mbufload(uint8_t *buf, int count, uint8_t type)
{
struct mbuf *m;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return NULL;
*mtod(m, uint8_t *) = type;
m->m_pkthdr.len = m->m_len = MHLEN;
m_copyback(m, 1, count, buf); // (extends if necessary)
if (m->m_pkthdr.len != MAX(MHLEN, count + 1)) {
m_free(m);
return NULL;
}
m->m_pkthdr.len = count + 1;
m->m_len = MIN(MHLEN, m->m_pkthdr.len);
return m;
}
static void
ubt_recv_event(struct usbd_xfer *xfer, void * h, usbd_status status)
{
struct ubt_softc *sc = h;
struct mbuf *m;
uint32_t count;
void *buf;
DPRINTFN(15, "sc=%p status=%s (%d)\n",
sc, usbd_errstr(status), status);
if (status != USBD_NORMAL_COMPLETION || sc->sc_dying)
return;
usbd_get_xfer_status(xfer, NULL, &buf, &count, NULL);
if (count < sizeof(hci_event_hdr_t) - 1) {
DPRINTF("dumped undersized event (count = %d)\n", count);
sc->sc_stats.err_rx++;
return;
}
sc->sc_stats.evt_rx++;
sc->sc_stats.byte_rx += count;
m = ubt_mbufload(buf, count, HCI_EVENT_PKT);
if (m == NULL || !hci_input_event(sc->sc_unit, m))
sc->sc_stats.err_rx++;
}
static void
ubt_recv_acl_start(struct ubt_softc *sc)
{
usbd_status status;
DPRINTFN(15, "sc=%p\n", sc);
if (sc->sc_aclrd_busy || sc->sc_dying) {
DPRINTF("sc_aclrd_busy=%d, sc_dying=%d\n",
sc->sc_aclrd_busy,
sc->sc_dying);
return;
}
sc->sc_refcnt++;
sc->sc_aclrd_busy = 1;
usbd_setup_xfer(sc->sc_aclrd_xfer,
sc,
sc->sc_aclrd_buf,
UBT_BUFSIZ_ACL,
USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT,
ubt_recv_acl_complete);
status = usbd_transfer(sc->sc_aclrd_xfer);
KASSERT(status != USBD_NORMAL_COMPLETION);
if (status != USBD_IN_PROGRESS) {
DPRINTF("usbd_transfer status=%s (%d)\n",
usbd_errstr(status), status);
sc->sc_refcnt--;
sc->sc_aclrd_busy = 0;
}
}
static void
ubt_recv_acl_complete(struct usbd_xfer *xfer,
void * h, usbd_status status)
{
struct ubt_softc *sc = h;
struct mbuf *m;
uint32_t count;
void *buf;
DPRINTFN(15, "sc=%p status=%s (%d)\n",
sc, usbd_errstr(status), status);
sc->sc_aclrd_busy = 0;
if (--sc->sc_refcnt < 0) {
DPRINTF("refcnt = %d\n", sc->sc_refcnt);
usb_detach_wakeupold(sc->sc_dev);
return;
}
if (sc->sc_dying) {
DPRINTF("sc_dying\n");
return;
}
if (status != USBD_NORMAL_COMPLETION) {
DPRINTF("status=%s (%d)\n",
usbd_errstr(status), status);
sc->sc_stats.err_rx++;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_aclrd_pipe);
else
return;
} else {
usbd_get_xfer_status(xfer, NULL, &buf, &count, NULL);
if (count < sizeof(hci_acldata_hdr_t) - 1) {
DPRINTF("dumped undersized packet (%d)\n", count);
sc->sc_stats.err_rx++;
} else {
sc->sc_stats.acl_rx++;
sc->sc_stats.byte_rx += count;
m = ubt_mbufload(buf, count, HCI_ACL_DATA_PKT);
if (m == NULL || !hci_input_acl(sc->sc_unit, m))
sc->sc_stats.err_rx++;
}
}
/* and restart */
ubt_recv_acl_start(sc);
}
static void
ubt_recv_sco_start1(struct ubt_softc *sc, struct ubt_isoc_xfer *isoc)
{
int i;
DPRINTFN(15, "sc=%p, isoc=%p\n", sc, isoc);
if (isoc->busy || sc->sc_dying || sc->sc_scord_size == 0) {
DPRINTF("%s%s%s\n",
isoc->busy ? " busy" : "",
sc->sc_dying ? " dying" : "",
sc->sc_scord_size == 0 ? " size=0" : "");
return;
}
sc->sc_refcnt++;
isoc->busy = 1;
for (i = 0 ; i < UBT_NFRAMES ; i++)
isoc->size[i] = sc->sc_scord_size;
usbd_setup_isoc_xfer(isoc->xfer,
isoc,
isoc->size,
UBT_NFRAMES,
USBD_SHORT_XFER_OK,
ubt_recv_sco_complete);
usbd_transfer(isoc->xfer);
}
static void
ubt_recv_sco_complete(struct usbd_xfer *xfer,
void * h, usbd_status status)
{
struct ubt_isoc_xfer *isoc = h;
struct ubt_softc *sc;
struct mbuf *m;
uint32_t count;
uint8_t *ptr, *frame;
int i, size, got, want;
KASSERT(isoc != NULL);
KASSERT(isoc->xfer == xfer);
sc = isoc->softc;
isoc->busy = 0;
if (--sc->sc_refcnt < 0) {
DPRINTF("refcnt=%d\n", sc->sc_refcnt);
usb_detach_wakeupold(sc->sc_dev);
return;
}
if (sc->sc_dying) {
DPRINTF("sc_dying\n");
return;
}
if (status != USBD_NORMAL_COMPLETION) {
DPRINTF("status=%s (%d)\n",
usbd_errstr(status), status);
sc->sc_stats.err_rx++;
if (status == USBD_STALLED) {
usbd_clear_endpoint_stall_async(sc->sc_scord_pipe);
goto restart;
}
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
if (count == 0)
goto restart;
DPRINTFN(15, "sc=%p, isoc=%p, count=%u\n",
sc, isoc, count);
sc->sc_stats.byte_rx += count;
/*
* Extract SCO packets from ISOC frames. The way we have it,
* no SCO packet can be bigger than MHLEN. This is unlikely
* to actually happen, but if we ran out of mbufs and lost
* sync then we may get spurious data that makes it seem that
* way, so we discard data that wont fit. This doesnt really
* help with the lost sync situation alas.
*/
m = sc->sc_scord_mbuf;
if (m != NULL) {
sc->sc_scord_mbuf = NULL;
ptr = mtod(m, uint8_t *) + m->m_pkthdr.len;
got = m->m_pkthdr.len;
want = sizeof(hci_scodata_hdr_t);
if (got >= want)
want += mtod(m, hci_scodata_hdr_t *)->length ;
} else {
ptr = NULL;
got = 0;
want = 0;
}
for (i = 0 ; i < UBT_NFRAMES ; i++) {
frame = isoc->buf + (i * sc->sc_scord_size);
while (isoc->size[i] > 0) {
size = isoc->size[i];
if (m == NULL) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
aprint_error_dev(sc->sc_dev,
"out of memory (xfer halted)\n");
sc->sc_stats.err_rx++;
return; /* lost sync */
}
ptr = mtod(m, uint8_t *);
*ptr++ = HCI_SCO_DATA_PKT;
got = 1;
want = sizeof(hci_scodata_hdr_t);
}
if (got + size > want)
size = want - got;
memcpy(ptr, frame, size);
ptr += size;
got += size;
frame += size;
if (got == want) {
/*
* If we only got a header, add the packet
* length to our want count. Send complete
* packets up to protocol stack.
*/
if (want == sizeof(hci_scodata_hdr_t)) {
uint32_t len =
mtod(m, hci_scodata_hdr_t *)->length;
want += len;
if (len == 0 || want > MHLEN) {
aprint_error_dev(sc->sc_dev,
"packet too large %u "
"(lost sync)\n", len);
sc->sc_stats.err_rx++;
return;
}
}
if (got == want) {
m->m_pkthdr.len = m->m_len = got;
sc->sc_stats.sco_rx++;
if (!hci_input_sco(sc->sc_unit, m))
sc->sc_stats.err_rx++;
m = NULL;
}
}
isoc->size[i] -= size;
}
}
if (m != NULL) {
m->m_pkthdr.len = m->m_len = got;
sc->sc_scord_mbuf = m;
}
restart: /* and restart */
ubt_recv_sco_start1(sc, isoc);
}
void
ubt_stats(device_t self, struct bt_stats *dest, int flush)
{
struct ubt_softc *sc = device_private(self);
int s;
s = splusb();
memcpy(dest, &sc->sc_stats, sizeof(struct bt_stats));
if (flush)
memset(&sc->sc_stats, 0, sizeof(struct bt_stats));
splx(s);
}