NetBSD/sys/arch/sparc/sbus/if_le.c
1994-07-04 21:37:20 +00:00

977 lines
24 KiB
C

/*-
* Copyright (c) 1982, 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Header: if_le.c,v 1.25 93/10/31 04:47:50 leres Locked
* from: @(#)if_le.c 8.2 (Berkeley) 10/30/93
* $Id: if_le.c,v 1.10 1994/07/04 21:37:27 deraadt Exp $
*/
#include "bpfilter.h"
/*
* AMD 7990 LANCE
*/
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/buf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <vm/vm.h>
#include <net/if.h>
#include <net/netisr.h>
#include <net/route.h>
#if NBPFILTER > 0
#include <sys/select.h>
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#ifdef APPLETALK
#include <netddp/atalk.h>
#endif
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <machine/pmap.h>
#include <sparc/sbus/if_lereg.h>
#include <sparc/sbus/sbusvar.h>
/* DVMA address to LANCE address -- the Sbus/MMU will resupply the 0xff */
#define LANCE_ADDR(x) ((int)(x) & ~0xff000000)
int ledebug = 0; /* console error messages */
#ifdef PACKETSTATS
long lexpacketsizes[LEMTU+1];
long lerpacketsizes[LEMTU+1];
#endif
/* Per interface statistics */
/* XXX this should go in something like if_levar.h */
struct lestats {
long lexints; /* transmitter interrupts */
long lerints; /* receiver interrupts */
long lerbufs; /* total buffers received during interrupts */
long lerhits; /* times current rbuf was full */
long lerscans; /* rbufs scanned before finding first full */
};
/*
* Ethernet software status per interface.
*
* Each interface is referenced by a network interface structure,
* le_if, which the routing code uses to locate the interface.
* This structure contains the output queue for the interface, its address, ...
*/
struct le_softc {
struct device sc_dev; /* base device */
struct sbusdev sc_sd; /* sbus device */
struct intrhand sc_ih; /* interrupt vectoring */
struct evcnt sc_intrcnt; /* # of interrupts, per le */
struct evcnt sc_errcnt; /* # of errors, per le */
struct arpcom sc_ac; /* common Ethernet structures */
#define sc_if sc_ac.ac_if /* network-visible interface */
#define sc_addr sc_ac.ac_enaddr /* hardware Ethernet address */
volatile struct lereg1 *sc_r1; /* LANCE registers */
volatile struct lereg2 *sc_r2; /* dual-port RAM */
int sc_rmd; /* predicted next rmd to process */
int sc_runt;
int sc_jab;
int sc_merr;
int sc_babl;
int sc_cerr;
int sc_miss;
int sc_xint;
int sc_xown;
int sc_uflo;
int sc_rxlen;
int sc_rxoff;
int sc_txoff;
int sc_busy;
short sc_iflags;
struct lestats sc_lestats; /* per interface statistics */
};
/* autoconfiguration driver */
void leattach(struct device *, struct device *, void *);
struct cfdriver lecd =
{ NULL, "le", matchbyname, leattach, DV_IFNET, sizeof(struct le_softc) };
/* Forwards */
void leattach(struct device *, struct device *, void *);
void lesetladrf(struct le_softc *);
void lereset(struct device *);
int leinit(int);
int lestart(struct ifnet *);
int leintr(void *);
void lexint(struct le_softc *);
void lerint(struct le_softc *);
void leread(struct le_softc *, char *, int);
int leput(char *, struct mbuf *);
struct mbuf *leget(char *, int, int, struct ifnet *);
int leioctl(struct ifnet *, int, caddr_t);
void leerror(struct le_softc *, int);
void lererror(struct le_softc *, char *);
void lexerror(struct le_softc *);
/*
* Interface exists: make available by filling in network interface
* record. System will initialize the interface when it is ready
* to accept packets.
*/
void
leattach(parent, self, args)
struct device *parent;
struct device *self;
void *args;
{
register struct le_softc *sc = (struct le_softc *)self;
register struct sbus_attach_args *sa = args;
register volatile struct lereg2 *ler2;
struct ifnet *ifp = &sc->sc_if;
register struct bootpath *bp;
register int a, pri;
/* XXX the following declarations should be elsewhere */
extern void myetheraddr(u_char *);
extern caddr_t dvma_malloc(size_t);
if (sa->sa_ra.ra_nintr != 1) {
printf(": expected 1 interrupt, got %d\n", sa->sa_ra.ra_nintr);
return;
}
pri = sa->sa_ra.ra_intr[0].int_pri;
printf(" pri %d", pri);
sc->sc_r1 = (volatile struct lereg1 *)
mapiodev(sa->sa_ra.ra_paddr, sizeof(struct lereg1));
ler2 = sc->sc_r2 = (volatile struct lereg2 *)
dvma_malloc(sizeof(struct lereg2));
myetheraddr(sc->sc_addr);
printf(": hardware address %s\n", ether_sprintf(sc->sc_addr));
/*
* Setup for transmit/receive
*
* According to Van, some versions of the Lance only use this
* address to receive packets; it doesn't put them in
* output packets. We'll want to make sure that lestart()
* installs the address.
*/
ler2->ler2_padr[0] = sc->sc_addr[1];
ler2->ler2_padr[1] = sc->sc_addr[0];
ler2->ler2_padr[2] = sc->sc_addr[3];
ler2->ler2_padr[3] = sc->sc_addr[2];
ler2->ler2_padr[4] = sc->sc_addr[5];
ler2->ler2_padr[5] = sc->sc_addr[4];
a = LANCE_ADDR(&ler2->ler2_rmd);
ler2->ler2_rlen = LE_RLEN | (a >> 16);
ler2->ler2_rdra = a;
a = LANCE_ADDR(&ler2->ler2_tmd);
ler2->ler2_tlen = LE_TLEN | (a >> 16);
ler2->ler2_tdra = a;
/*
* Link into sbus, and establish interrupt handler.
*/
sc->sc_sd.sd_reset = lereset;
sbus_establish(&sc->sc_sd, &sc->sc_dev);
sc->sc_ih.ih_fun = leintr;
sc->sc_ih.ih_arg = sc;
intr_establish(pri, &sc->sc_ih);
/*
* Set up event counters.
*/
evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt);
evcnt_attach(&sc->sc_dev, "errs", &sc->sc_errcnt);
ifp->if_unit = sc->sc_dev.dv_unit;
ifp->if_name = "le";
ifp->if_ioctl = leioctl;
ifp->if_output = ether_output;
ifp->if_start = lestart;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
#ifdef IFF_NOTRAILERS
/* XXX still compile when the blasted things are gone... */
ifp->if_flags |= IFF_NOTRAILERS;
#endif
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
if_attach(ifp);
ether_ifattach(ifp);
#define SAME_LANCE(bp, sa) \
((bp->val[0] == sa->sa_slot && bp->val[1] == sa->sa_offset) || \
(bp->val[0] == -1 && bp->val[1] == sc->sc_dev.dv_unit))
bp = sa->sa_ra.ra_bp;
if (bp != NULL && strcmp(bp->name, "le") == 0 && SAME_LANCE(bp, sa))
bootdv = &sc->sc_dev;
}
/*
* Setup the logical address filter
*/
void
lesetladrf(sc)
register struct le_softc *sc;
{
register volatile struct lereg2 *ler2 = sc->sc_r2;
register struct ifnet *ifp = &sc->sc_if;
register struct ether_multi *enm;
register u_char *cp, c;
register u_long crc;
register int i, len;
struct ether_multistep step;
/*
* Set up multicast address filter by passing all multicast
* addresses through a crc generator, and then using the high
* order 6 bits as a index into the 64 bit logical address
* filter. The high order two bits select the word, while the
* rest of the bits select the bit within the word.
*/
ler2->ler2_ladrf[0] = 0;
ler2->ler2_ladrf[1] = 0;
ler2->ler2_ladrf[2] = 0;
ler2->ler2_ladrf[3] = 0;
ifp->if_flags &= ~IFF_ALLMULTI;
ETHER_FIRST_MULTI(step, &sc->sc_ac, enm);
while (enm != NULL) {
if (bcmp((caddr_t)&enm->enm_addrlo,
(caddr_t)&enm->enm_addrhi, sizeof(enm->enm_addrlo)) != 0) {
/*
* We must listen to a range of multicast
* addresses. For now, just accept all
* multicasts, rather than trying to set only
* those filter bits needed to match the range.
* (At this time, the only use of address
* ranges is for IP multicast routing, for
* which the range is big enough to require all
* bits set.)
*/
ler2->ler2_ladrf[0] = 0xffff;
ler2->ler2_ladrf[1] = 0xffff;
ler2->ler2_ladrf[2] = 0xffff;
ler2->ler2_ladrf[3] = 0xffff;
ifp->if_flags |= IFF_ALLMULTI;
return;
}
/*
* One would think, given the AM7990 document's polynomial
* of 0x04c11db6, that this should be 0x6db88320 (the bit
* reversal of the AMD value), but that is not right. See
* the BASIC listing: bit 0 (our bit 31) must then be set.
*/
cp = (unsigned char *)&enm->enm_addrlo;
crc = 0xffffffff;
for (len = 6; --len >= 0;) {
c = *cp++;
for (i = 0; i < 8; i++) {
if ((c & 0x01) ^ (crc & 0x01)) {
crc >>= 1;
crc = crc ^ 0xedb88320;
} else
crc >>= 1;
c >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc = crc >> 26;
/* Turn on the corresponding bit in the filter. */
ler2->ler2_ladrf[crc >> 4] |= 1 << (crc & 0xf);
ETHER_NEXT_MULTI(step, enm);
}
}
void
lereset(dev)
struct device *dev;
{
register struct le_softc *sc = (struct le_softc *)dev;
register volatile struct lereg1 *ler1 = sc->sc_r1;
register volatile struct lereg2 *ler2 = sc->sc_r2;
register int i, a, timo, stat;
#if NBPFILTER > 0
if (sc->sc_if.if_flags & IFF_PROMISC)
ler2->ler2_mode = LE_MODE_NORMAL | LE_MODE_PROM;
else
#endif
ler2->ler2_mode = LE_MODE_NORMAL;
ler1->ler1_rap = LE_CSR0;
ler1->ler1_rdp = LE_C0_STOP;
/* Setup the logical address filter */
lesetladrf(sc);
/* init receive and transmit rings */
for (i = 0; i < LERBUF; i++) {
a = LANCE_ADDR(&ler2->ler2_rbuf[i][0]);
ler2->ler2_rmd[i].rmd0 = a;
ler2->ler2_rmd[i].rmd1_hadr = a >> 16;
ler2->ler2_rmd[i].rmd1_bits = LE_R1_OWN;
ler2->ler2_rmd[i].rmd2 = -LEMTU | LE_XMD2_ONES;
ler2->ler2_rmd[i].rmd3 = 0;
}
for (i = 0; i < LETBUF; i++) {
a = LANCE_ADDR(&ler2->ler2_tbuf[i][0]);
ler2->ler2_tmd[i].tmd0 = a;
ler2->ler2_tmd[i].tmd1_hadr = a >> 16;
ler2->ler2_tmd[i].tmd1_bits = 0;
ler2->ler2_tmd[i].tmd2 = LE_XMD2_ONES;
ler2->ler2_tmd[i].tmd3 = 0;
}
bzero(&ler2->ler2_rbuf[0][0], (LERBUF + LETBUF) * LEMTU);
/* lance will stuff packet into receive buffer 0 next */
sc->sc_rmd = 0;
/* tell the chip where to find the initialization block */
a = LANCE_ADDR(&ler2->ler2_mode);
ler1->ler1_rap = LE_CSR1;
ler1->ler1_rdp = a;
ler1->ler1_rap = LE_CSR2;
ler1->ler1_rdp = a >> 16;
ler1->ler1_rap = LE_CSR3;
ler1->ler1_rdp = LE_C3_BSWP | LE_C3_ACON | LE_C3_BCON;
ler1->ler1_rap = LE_CSR0;
ler1->ler1_rdp = LE_C0_INIT;
timo = 100000;
while (((stat = ler1->ler1_rdp) & (LE_C0_ERR | LE_C0_IDON)) == 0) {
if (--timo == 0) {
printf("%s: init timeout, stat=%b\n",
sc->sc_dev.dv_xname, stat, LE_C0_BITS);
break;
}
}
if (stat & LE_C0_ERR)
printf("%s: init failed, stat=%b\n",
sc->sc_dev.dv_xname, stat, LE_C0_BITS);
else
ler1->ler1_rdp = LE_C0_IDON; /* clear IDON */
ler1->ler1_rdp = LE_C0_STRT | LE_C0_INEA;
sc->sc_if.if_flags &= ~IFF_OACTIVE;
}
/*
* Initialization of interface
*/
int
leinit(unit)
int unit;
{
register struct le_softc *sc = lecd.cd_devs[unit];
register struct ifnet *ifp = &sc->sc_if;
register int s;
/* not yet, if address still unknown */
if (ifp->if_addrlist == (struct ifaddr *)0)
return (0);
if ((ifp->if_flags & IFF_RUNNING) == 0) {
s = splimp();
ifp->if_flags |= IFF_RUNNING;
lereset(&sc->sc_dev);
lestart(ifp);
splx(s);
}
return (0);
}
/*
* Start output on interface. Get another datagram to send
* off of the interface queue, and copy it to the interface
* before starting the output.
*/
int
lestart(ifp)
register struct ifnet *ifp;
{
register struct le_softc *sc = lecd.cd_devs[ifp->if_unit];
register volatile struct letmd *tmd;
register struct mbuf *m;
register int len;
if ((sc->sc_if.if_flags & IFF_RUNNING) == 0)
return (0);
IF_DEQUEUE(&sc->sc_if.if_snd, m);
if (m == 0)
return (0);
len = leput(sc->sc_r2->ler2_tbuf[0], m);
#if NBPFILTER > 0
/*
* If bpf is listening on this interface, let it
* see the packet before we commit it to the wire.
*/
if (sc->sc_if.if_bpf)
bpf_tap(sc->sc_if.if_bpf, sc->sc_r2->ler2_tbuf[0], len);
#endif
#ifdef PACKETSTATS
if (len <= LEMTU)
lexpacketsizes[len]++;
#endif
tmd = sc->sc_r2->ler2_tmd;
tmd->tmd3 = 0;
tmd->tmd2 = -len | LE_XMD2_ONES;
tmd->tmd1_bits = LE_T1_OWN | LE_T1_STP | LE_T1_ENP;
sc->sc_if.if_flags |= IFF_OACTIVE;
return (0);
}
int
leintr(dev)
register void *dev;
{
register struct le_softc *sc = dev;
register volatile struct lereg1 *ler1 = sc->sc_r1;
register int csr0;
csr0 = ler1->ler1_rdp;
if ((csr0 & LE_C0_INTR) == 0)
return (0);
sc->sc_intrcnt.ev_count++;
if (csr0 & LE_C0_ERR) {
sc->sc_errcnt.ev_count++;
leerror(sc, csr0);
if (csr0 & LE_C0_MERR) {
sc->sc_merr++;
lereset(&sc->sc_dev);
return (1);
}
if (csr0 & LE_C0_BABL)
sc->sc_babl++;
if (csr0 & LE_C0_CERR)
sc->sc_cerr++;
if (csr0 & LE_C0_MISS)
sc->sc_miss++;
ler1->ler1_rdp = LE_C0_BABL|LE_C0_CERR|LE_C0_MISS|LE_C0_INEA;
}
if ((csr0 & LE_C0_RXON) == 0) {
sc->sc_rxoff++;
lereset(&sc->sc_dev);
return (1);
}
if ((csr0 & LE_C0_TXON) == 0) {
sc->sc_txoff++;
lereset(&sc->sc_dev);
return (1);
}
if (csr0 & LE_C0_RINT) {
/* interrupt is cleared in lerint */
lerint(sc);
}
if (csr0 & LE_C0_TINT) {
ler1->ler1_rdp = LE_C0_TINT|LE_C0_INEA;
lexint(sc);
}
return (1);
}
/*
* Ethernet interface transmitter interrupt.
* Start another output if more data to send.
*/
void
lexint(sc)
register struct le_softc *sc;
{
register volatile struct letmd *tmd = sc->sc_r2->ler2_tmd;
sc->sc_lestats.lexints++;
if ((sc->sc_if.if_flags & IFF_OACTIVE) == 0) {
sc->sc_xint++;
return;
}
if (tmd->tmd1_bits & LE_T1_OWN) {
sc->sc_xown++;
return;
}
if (tmd->tmd1_bits & LE_T1_ERR) {
err:
lexerror(sc);
sc->sc_if.if_oerrors++;
if (tmd->tmd3 & (LE_T3_BUFF|LE_T3_UFLO)) {
sc->sc_uflo++;
lereset(&sc->sc_dev);
} else if (tmd->tmd3 & LE_T3_LCOL)
sc->sc_if.if_collisions++;
else if (tmd->tmd3 & LE_T3_RTRY)
sc->sc_if.if_collisions += 16;
}
else if (tmd->tmd3 & LE_T3_BUFF)
/* XXX documentation says BUFF not included in ERR */
goto err;
else if (tmd->tmd1_bits & LE_T1_ONE)
sc->sc_if.if_collisions++;
else if (tmd->tmd1_bits & LE_T1_MORE)
/* what is the real number? */
sc->sc_if.if_collisions += 2;
else
sc->sc_if.if_opackets++;
sc->sc_if.if_flags &= ~IFF_OACTIVE;
lestart(&sc->sc_if);
}
#define LENEXTRMP \
if (++bix == LERBUF) bix = 0, rmd = sc->sc_r2->ler2_rmd; else ++rmd
/*
* Ethernet interface receiver interrupt.
* If input error just drop packet.
* Decapsulate packet based on type and pass to type specific
* higher-level input routine.
*/
void
lerint(sc)
register struct le_softc *sc;
{
register int bix = sc->sc_rmd;
register volatile struct lermd *rmd = &sc->sc_r2->ler2_rmd[bix];
sc->sc_lestats.lerints++;
/*
* Out of sync with hardware, should never happen?
*/
if (rmd->rmd1_bits & LE_R1_OWN) {
do {
sc->sc_lestats.lerscans++;
LENEXTRMP;
} while ((rmd->rmd1_bits & LE_R1_OWN) && bix != sc->sc_rmd);
if (bix == sc->sc_rmd)
printf("%s: RINT with no buffer\n",
sc->sc_dev.dv_xname);
} else
sc->sc_lestats.lerhits++;
/*
* Process all buffers with valid data
*/
while ((rmd->rmd1_bits & LE_R1_OWN) == 0) {
int len = rmd->rmd3;
/* Clear interrupt to avoid race condition */
sc->sc_r1->ler1_rdp = LE_C0_RINT|LE_C0_INEA;
if (rmd->rmd1_bits & LE_R1_ERR) {
sc->sc_rmd = bix;
lererror(sc, "bad packet");
sc->sc_if.if_ierrors++;
} else if ((rmd->rmd1_bits & (LE_R1_STP|LE_R1_ENP)) !=
(LE_R1_STP|LE_R1_ENP)) {
/* XXX make a define for LE_R1_STP|LE_R1_ENP? */
/*
* Find the end of the packet so we can see how long
* it was. We still throw it away.
*/
do {
sc->sc_r1->ler1_rdp = LE_C0_RINT|LE_C0_INEA;
rmd->rmd3 = 0;
rmd->rmd1_bits = LE_R1_OWN;
LENEXTRMP;
} while (!(rmd->rmd1_bits &
(LE_R1_OWN|LE_R1_ERR|LE_R1_STP|LE_R1_ENP)));
sc->sc_rmd = bix;
lererror(sc, "chained buffer");
sc->sc_rxlen++;
/*
* If search terminated without successful completion
* we reset the hardware (conservative).
*/
if ((rmd->rmd1_bits &
(LE_R1_OWN|LE_R1_ERR|LE_R1_STP|LE_R1_ENP)) !=
LE_R1_ENP) {
lereset(&sc->sc_dev);
return;
}
} else {
leread(sc, sc->sc_r2->ler2_rbuf[bix], len);
#ifdef PACKETSTATS
lerpacketsizes[len]++;
#endif
sc->sc_lestats.lerbufs++;
}
rmd->rmd3 = 0;
rmd->rmd1_bits = LE_R1_OWN;
LENEXTRMP;
}
sc->sc_rmd = bix;
}
void
leread(sc, pkt, len)
register struct le_softc *sc;
char *pkt;
int len;
{
register struct ether_header *et;
register struct ifnet *ifp = &sc->sc_if;
struct mbuf *m;
struct ifqueue *inq;
int flags;
ifp->if_ipackets++;
et = (struct ether_header *)pkt;
et->ether_type = ntohs((u_short)et->ether_type);
/* adjust input length to account for header and CRC */
len -= sizeof(struct ether_header) + 4;
if (len <= 0) {
if (ledebug)
log(LOG_WARNING,
"%s: ierror(runt packet): from %s: len=%d\n",
sc->sc_dev.dv_xname,
ether_sprintf(et->ether_shost), len);
sc->sc_runt++;
ifp->if_ierrors++;
return;
}
/* Setup mbuf flags we'll need later */
flags = 0;
if (bcmp((caddr_t)etherbroadcastaddr,
(caddr_t)et->ether_dhost, sizeof(etherbroadcastaddr)) == 0)
flags |= M_BCAST;
if (et->ether_dhost[0] & 1)
flags |= M_MCAST;
#if NBPFILTER > 0
/*
* Check if there's a bpf filter listening on this interface.
* If so, hand off the raw packet to enet, then discard things
* not destined for us (but be sure to keep broadcast/multicast).
*/
if (sc->sc_if.if_bpf) {
bpf_tap(sc->sc_if.if_bpf, pkt,
len + sizeof(struct ether_header));
if ((flags & (M_BCAST | M_MCAST)) == 0 &&
bcmp(et->ether_dhost, sc->sc_addr,
sizeof(et->ether_dhost)) != 0)
return;
}
#endif
m = leget(pkt, len, 0, ifp);
if (m == 0)
return;
ether_input(ifp, et, m);
}
/*
* Routine to copy from mbuf chain to transmit
* buffer in board local memory.
*
* ### this can be done by remapping in some cases
*/
int
leput(lebuf, m)
register char *lebuf;
register struct mbuf *m;
{
register struct mbuf *mp;
register int len, tlen = 0;
for (mp = m; mp; mp = mp->m_next) {
len = mp->m_len;
if (len == 0)
continue;
tlen += len;
bcopy(mtod(mp, char *), lebuf, len);
lebuf += len;
}
m_freem(m);
if (tlen < LEMINSIZE) {
bzero(lebuf, LEMINSIZE - tlen);
tlen = LEMINSIZE;
}
return (tlen);
}
/*
* Routine to copy from board local memory into mbufs.
*/
struct mbuf *
leget(lebuf, totlen, off0, ifp)
char *lebuf;
int totlen, off0;
struct ifnet *ifp;
{
register struct mbuf *m;
struct mbuf *top = 0, **mp = &top;
register int off = off0, len;
register char *cp;
char *epkt;
lebuf += sizeof(struct ether_header);
cp = lebuf;
epkt = cp + totlen;
if (off) {
cp += off + 2 * sizeof(u_short);
totlen -= 2 * sizeof(u_short);
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return (0);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = totlen;
m->m_len = MHLEN;
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
m_freem(top);
return (0);
}
m->m_len = MLEN;
}
len = min(totlen, epkt - cp);
if (len >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
m->m_len = len = min(len, MCLBYTES);
else
len = m->m_len;
} else {
/*
* Place initial small packet/header at end of mbuf.
*/
if (len < m->m_len) {
if (top == 0 && len + max_linkhdr <= m->m_len)
m->m_data += max_linkhdr;
m->m_len = len;
} else
len = m->m_len;
}
bcopy(cp, mtod(m, caddr_t), (unsigned)len);
cp += len;
*mp = m;
mp = &m->m_next;
totlen -= len;
if (cp == epkt)
cp = lebuf;
}
return (top);
}
/*
* Process an ioctl request.
*/
int
leioctl(ifp, cmd, data)
register struct ifnet *ifp;
int cmd;
caddr_t data;
{
register struct ifaddr *ifa;
register struct le_softc *sc = lecd.cd_devs[ifp->if_unit];
register volatile struct lereg1 *ler1;
int s = splimp(), error = 0;
switch (cmd) {
case SIOCSIFADDR:
ifa = (struct ifaddr *)data;
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
(void)leinit(ifp->if_unit); /* before arpwhohas */
((struct arpcom *)ifp)->ac_ipaddr =
IA_SIN(ifa)->sin_addr;
arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
if (ns_nullhost(*ina))
ina->x_host = *(union ns_host *)(sc->sc_addr);
else {
/*
* The manual says we can't change the address
* while the receiver is armed,
* so reset everything
*/
ifp->if_flags &= ~IFF_RUNNING;
bcopy((caddr_t)ina->x_host.c_host,
(caddr_t)sc->sc_addr, sizeof(sc->sc_addr));
}
(void)leinit(ifp->if_unit); /* does le_setaddr() */
break;
}
#endif
default:
(void)leinit(ifp->if_unit);
break;
}
break;
case SIOCSIFFLAGS:
ler1 = sc->sc_r1;
if ((ifp->if_flags & IFF_UP) == 0 &&
ifp->if_flags & IFF_RUNNING) {
ler1->ler1_rdp = LE_C0_STOP;
ifp->if_flags &= ~IFF_RUNNING;
} else if (ifp->if_flags & IFF_UP &&
(ifp->if_flags & IFF_RUNNING) == 0)
(void)leinit(ifp->if_unit);
/*
* If the state of the promiscuous bit changes, the interface
* must be reset to effect the change.
*/
if (((ifp->if_flags ^ sc->sc_iflags) & IFF_PROMISC) &&
(ifp->if_flags & IFF_RUNNING)) {
sc->sc_iflags = ifp->if_flags;
lereset(&sc->sc_dev);
lestart(ifp);
}
break;
case SIOCADDMULTI:
error = ether_addmulti((struct ifreq *)data, &sc->sc_ac);
goto update_multicast;
case SIOCDELMULTI:
error = ether_delmulti((struct ifreq *)data, &sc->sc_ac);
update_multicast:
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware
* filter accordingly.
*/
lereset(&sc->sc_dev);
error = 0;
}
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
void
leerror(sc, stat)
register struct le_softc *sc;
int stat;
{
if (!ledebug)
return;
/*
* Not all transceivers implement heartbeat
* so we only log CERR once.
*/
if ((stat & LE_C0_CERR) && sc->sc_cerr)
return;
log(LOG_WARNING, "%s: error: stat=%b\n",
sc->sc_dev.dv_xname, stat, LE_C0_BITS);
}
void
lererror(sc, msg)
register struct le_softc *sc;
char *msg;
{
register volatile struct lermd *rmd;
int len;
if (!ledebug)
return;
rmd = &sc->sc_r2->ler2_rmd[sc->sc_rmd];
len = rmd->rmd3;
log(LOG_WARNING, "%s: ierror(%s): from %s: buf=%d, len=%d, rmd1=%b\n",
sc->sc_dev.dv_xname, msg, len > 11 ?
ether_sprintf((u_char *)&sc->sc_r2->ler2_rbuf[sc->sc_rmd][6]) :
"unknown",
sc->sc_rmd, len, rmd->rmd1_bits, LE_R1_BITS);
}
void
lexerror(sc)
register struct le_softc *sc;
{
register volatile struct letmd *tmd;
register int len, tmd3, tdr;
if (!ledebug)
return;
tmd = sc->sc_r2->ler2_tmd;
tmd3 = tmd->tmd3;
tdr = tmd3 & LE_T3_TDR_MASK;
len = -(tmd->tmd2 & ~LE_XMD2_ONES);
log(LOG_WARNING,
"%s: oerror: to %s: buf=%d, len=%d, tmd1=%b, tmd3=%b, tdr=%d (%d nsecs)\n",
sc->sc_dev.dv_xname, len > 5 ?
ether_sprintf((u_char *)&sc->sc_r2->ler2_tbuf[0][0]) : "unknown",
0, len,
tmd->tmd1_bits, LE_T1_BITS,
tmd3, LE_T3_BITS, tdr, tdr * 100);
}