NetBSD/sys/dev/usb/usb.c

1303 lines
30 KiB
C

/* $NetBSD: usb.c,v 1.171 2018/08/02 06:09:04 riastradh Exp $ */
/*
* Copyright (c) 1998, 2002, 2008, 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology and Matthew R. Green (mrg@eterna.com.au).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB specifications and other documentation can be found at
* http://www.usb.org/developers/docs/ and
* http://www.usb.org/developers/devclass_docs/
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: usb.c,v 1.171 2018/08/02 06:09:04 riastradh Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#include "opt_compat_netbsd.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/device.h>
#include <sys/kthread.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/poll.h>
#include <sys/select.h>
#include <sys/vnode.h>
#include <sys/signalvar.h>
#include <sys/intr.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/bus.h>
#include <sys/once.h>
#include <sys/atomic.h>
#include <sys/sysctl.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_verbose.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/usbhist.h>
#if defined(USB_DEBUG)
#ifndef USBHIST_SIZE
#define USBHIST_SIZE 50000
#endif
static struct kern_history_ent usbhistbuf[USBHIST_SIZE];
USBHIST_DEFINE(usbhist) = KERNHIST_INITIALIZER(usbhist, usbhistbuf);
#endif
#define USB_DEV_MINOR 255
#ifdef USB_DEBUG
/*
* 0 - do usual exploration
* 1 - do not use timeout exploration
* >1 - do no exploration
*/
int usb_noexplore = 0;
int usbdebug = 0;
SYSCTL_SETUP(sysctl_hw_usb_setup, "sysctl hw.usb setup")
{
int err;
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
err = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "usb",
SYSCTL_DESCR("usb global controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (err)
goto fail;
/* control debugging printfs */
err = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
NULL, 0, &usbdebug, sizeof(usbdebug), CTL_CREATE, CTL_EOL);
if (err)
goto fail;
return;
fail:
aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
}
#else
#define usb_noexplore 0
#endif
#define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(usbdebug,FMT,A,B,C,D)
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usbdebug,N,FMT,A,B,C,D)
struct usb_softc {
#if 0
device_t sc_dev; /* base device */
#endif
struct usbd_bus *sc_bus; /* USB controller */
struct usbd_port sc_port; /* dummy port for root hub */
struct lwp *sc_event_thread;
char sc_dying;
};
struct usb_taskq {
TAILQ_HEAD(, usb_task) tasks;
kmutex_t lock;
kcondvar_t cv;
struct lwp *task_thread_lwp;
const char *name;
struct usb_task *current_task;
};
static struct usb_taskq usb_taskq[USB_NUM_TASKQS];
dev_type_open(usbopen);
dev_type_close(usbclose);
dev_type_read(usbread);
dev_type_ioctl(usbioctl);
dev_type_poll(usbpoll);
dev_type_kqfilter(usbkqfilter);
const struct cdevsw usb_cdevsw = {
.d_open = usbopen,
.d_close = usbclose,
.d_read = usbread,
.d_write = nowrite,
.d_ioctl = usbioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = usbpoll,
.d_mmap = nommap,
.d_kqfilter = usbkqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER
};
Static void usb_discover(struct usb_softc *);
Static void usb_create_event_thread(device_t);
Static void usb_event_thread(void *);
Static void usb_task_thread(void *);
#define USB_MAX_EVENTS 100
struct usb_event_q {
struct usb_event ue;
SIMPLEQ_ENTRY(usb_event_q) next;
};
Static SIMPLEQ_HEAD(, usb_event_q) usb_events =
SIMPLEQ_HEAD_INITIALIZER(usb_events);
Static int usb_nevents = 0;
Static struct selinfo usb_selevent;
Static kmutex_t usb_event_lock;
Static kcondvar_t usb_event_cv;
Static proc_t *usb_async_proc; /* process that wants USB SIGIO */
Static void *usb_async_sih;
Static int usb_dev_open = 0;
Static struct usb_event *usb_alloc_event(void);
Static void usb_free_event(struct usb_event *);
Static void usb_add_event(int, struct usb_event *);
Static int usb_get_next_event(struct usb_event *);
Static void usb_async_intr(void *);
Static void usb_soft_intr(void *);
#ifdef COMPAT_30
Static void usb_copy_old_devinfo(struct usb_device_info_old *, const struct usb_device_info *);
#endif
Static const char *usbrev_str[] = USBREV_STR;
static int usb_match(device_t, cfdata_t, void *);
static void usb_attach(device_t, device_t, void *);
static int usb_detach(device_t, int);
static int usb_activate(device_t, enum devact);
static void usb_childdet(device_t, device_t);
static int usb_once_init(void);
static void usb_doattach(device_t);
extern struct cfdriver usb_cd;
CFATTACH_DECL3_NEW(usb, sizeof(struct usb_softc),
usb_match, usb_attach, usb_detach, usb_activate, NULL, usb_childdet,
DVF_DETACH_SHUTDOWN);
static const char *taskq_names[] = USB_TASKQ_NAMES;
int
usb_match(device_t parent, cfdata_t match, void *aux)
{
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
return UMATCH_GENERIC;
}
void
usb_attach(device_t parent, device_t self, void *aux)
{
static ONCE_DECL(init_control);
struct usb_softc *sc = device_private(self);
int usbrev;
sc->sc_bus = aux;
usbrev = sc->sc_bus->ub_revision;
aprint_naive("\n");
aprint_normal(": USB revision %s", usbrev_str[usbrev]);
switch (usbrev) {
case USBREV_1_0:
case USBREV_1_1:
case USBREV_2_0:
case USBREV_3_0:
case USBREV_3_1:
break;
default:
aprint_error(", not supported\n");
sc->sc_dying = 1;
return;
}
aprint_normal("\n");
/* XXX we should have our own level */
sc->sc_bus->ub_soft = softint_establish(SOFTINT_USB | SOFTINT_MPSAFE,
usb_soft_intr, sc->sc_bus);
if (sc->sc_bus->ub_soft == NULL) {
aprint_error("%s: can't register softintr\n",
device_xname(self));
sc->sc_dying = 1;
return;
}
sc->sc_bus->ub_methods->ubm_getlock(sc->sc_bus, &sc->sc_bus->ub_lock);
KASSERT(sc->sc_bus->ub_lock != NULL);
RUN_ONCE(&init_control, usb_once_init);
config_interrupts(self, usb_doattach);
}
static int
usb_once_init(void)
{
struct usb_taskq *taskq;
int i;
USBHIST_LINK_STATIC(usbhist);
selinit(&usb_selevent);
mutex_init(&usb_event_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&usb_event_cv, "usbrea");
for (i = 0; i < USB_NUM_TASKQS; i++) {
taskq = &usb_taskq[i];
TAILQ_INIT(&taskq->tasks);
/*
* Since USB task methods usb_{add,rem}_task are callable
* from any context, we have to make this lock a spinlock.
*/
mutex_init(&taskq->lock, MUTEX_DEFAULT, IPL_USB);
cv_init(&taskq->cv, "usbtsk");
taskq->name = taskq_names[i];
taskq->current_task = NULL;
if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
usb_task_thread, taskq, &taskq->task_thread_lwp,
"%s", taskq->name)) {
printf("unable to create task thread: %s\n", taskq->name);
panic("usb_create_event_thread task");
}
/*
* XXX we should make sure these threads are alive before
* end up using them in usb_doattach().
*/
}
return 0;
}
static void
usb_doattach(device_t self)
{
struct usb_softc *sc = device_private(self);
struct usbd_device *dev;
usbd_status err;
int speed;
struct usb_event *ue;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
sc->sc_bus->ub_usbctl = self;
sc->sc_port.up_power = USB_MAX_POWER;
switch (sc->sc_bus->ub_revision) {
case USBREV_1_0:
case USBREV_1_1:
speed = USB_SPEED_FULL;
break;
case USBREV_2_0:
speed = USB_SPEED_HIGH;
break;
case USBREV_3_0:
speed = USB_SPEED_SUPER;
break;
case USBREV_3_1:
speed = USB_SPEED_SUPER_PLUS;
break;
default:
panic("usb_doattach");
}
cv_init(&sc->sc_bus->ub_needsexplore_cv, "usbevt");
ue = usb_alloc_event();
ue->u.ue_ctrlr.ue_bus = device_unit(self);
usb_add_event(USB_EVENT_CTRLR_ATTACH, ue);
err = usbd_new_device(self, sc->sc_bus, 0, speed, 0,
&sc->sc_port);
if (!err) {
dev = sc->sc_port.up_dev;
if (dev->ud_hub == NULL) {
sc->sc_dying = 1;
aprint_error("%s: root device is not a hub\n",
device_xname(self));
return;
}
sc->sc_bus->ub_roothub = dev;
usb_create_event_thread(self);
#if 1
/*
* Turning this code off will delay attachment of USB devices
* until the USB event thread is running, which means that
* the keyboard will not work until after cold boot.
*/
if (cold && (device_cfdata(self)->cf_flags & 1))
dev->ud_hub->uh_explore(sc->sc_bus->ub_roothub);
#endif
} else {
aprint_error("%s: root hub problem, error=%s\n",
device_xname(self), usbd_errstr(err));
sc->sc_dying = 1;
}
config_pending_incr(self);
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
usb_async_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
usb_async_intr, NULL);
return;
}
void
usb_create_event_thread(device_t self)
{
struct usb_softc *sc = device_private(self);
if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
usb_event_thread, sc, &sc->sc_event_thread,
"%s", device_xname(self))) {
printf("%s: unable to create event thread for\n",
device_xname(self));
panic("usb_create_event_thread");
}
}
/*
* Add a task to be performed by the task thread. This function can be
* called from any context and the task will be executed in a process
* context ASAP.
*/
void
usb_add_task(struct usbd_device *dev, struct usb_task *task, int queue)
{
struct usb_taskq *taskq;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
KASSERT(0 <= queue);
KASSERT(queue < USB_NUM_TASKQS);
taskq = &usb_taskq[queue];
mutex_enter(&taskq->lock);
if (atomic_cas_uint(&task->queue, USB_NUM_TASKQS, queue) ==
USB_NUM_TASKQS) {
DPRINTFN(2, "task=%#jx", (uintptr_t)task, 0, 0, 0);
TAILQ_INSERT_TAIL(&taskq->tasks, task, next);
cv_signal(&taskq->cv);
} else {
DPRINTFN(2, "task=%#jx on q", (uintptr_t)task, 0, 0, 0);
}
mutex_exit(&taskq->lock);
}
/*
* usb_rem_task(dev, task)
*
* If task is queued to run, remove it from the queue.
*
* Caller is _not_ guaranteed that the task is not running when
* this is done.
*
* Never sleeps.
*/
void
usb_rem_task(struct usbd_device *dev, struct usb_task *task)
{
unsigned queue;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
while ((queue = task->queue) != USB_NUM_TASKQS) {
struct usb_taskq *taskq = &usb_taskq[queue];
mutex_enter(&taskq->lock);
if (__predict_true(task->queue == queue)) {
TAILQ_REMOVE(&taskq->tasks, task, next);
task->queue = USB_NUM_TASKQS;
mutex_exit(&taskq->lock);
break;
}
mutex_exit(&taskq->lock);
}
}
/*
* usb_rem_task_wait(dev, task, queue, interlock)
*
* If task is scheduled to run, remove it from the queue. If it
* may have already begun to run, drop interlock if not null, wait
* for it to complete, and reacquire interlock if not null.
* Return true if it successfully removed the task from the queue,
* false if not.
*
* Caller MUST guarantee that task will not be scheduled on a
* _different_ queue, at least until after this returns.
*
* If caller guarantees that task will not be scheduled on the
* same queue before this returns, then caller is guaranteed that
* the task is not running at all when this returns.
*
* May sleep.
*/
bool
usb_rem_task_wait(struct usbd_device *dev, struct usb_task *task, int queue,
kmutex_t *interlock)
{
struct usb_taskq *taskq;
int queue1;
bool removed;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
ASSERT_SLEEPABLE();
KASSERT(0 <= queue);
KASSERT(queue < USB_NUM_TASKQS);
taskq = &usb_taskq[queue];
mutex_enter(&taskq->lock);
queue1 = task->queue;
if (queue1 == USB_NUM_TASKQS) {
/*
* It is not on the queue. It may be about to run, or
* it may have already finished running -- there is no
* stopping it now. Wait for it if it is running.
*/
if (interlock)
mutex_exit(interlock);
while (taskq->current_task == task)
cv_wait(&taskq->cv, &taskq->lock);
removed = false;
} else {
/*
* It is still on the queue. We can stop it before the
* task thread will run it.
*/
KASSERTMSG(queue1 == queue, "task %p on q%d expected on q%d",
task, queue1, queue);
TAILQ_REMOVE(&taskq->tasks, task, next);
task->queue = USB_NUM_TASKQS;
removed = true;
}
mutex_exit(&taskq->lock);
/*
* If there's an interlock, and we dropped it to wait,
* reacquire it.
*/
if (interlock && !removed)
mutex_enter(interlock);
return removed;
}
void
usb_event_thread(void *arg)
{
struct usb_softc *sc = arg;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
/*
* In case this controller is a companion controller to an
* EHCI controller we need to wait until the EHCI controller
* has grabbed the port.
* XXX It would be nicer to do this with a tsleep(), but I don't
* know how to synchronize the creation of the threads so it
* will work.
*/
usb_delay_ms(sc->sc_bus, 500);
/* Make sure first discover does something. */
mutex_enter(sc->sc_bus->ub_lock);
sc->sc_bus->ub_needsexplore = 1;
usb_discover(sc);
mutex_exit(sc->sc_bus->ub_lock);
config_pending_decr(sc->sc_bus->ub_usbctl);
mutex_enter(sc->sc_bus->ub_lock);
while (!sc->sc_dying) {
if (usb_noexplore < 2)
usb_discover(sc);
cv_timedwait(&sc->sc_bus->ub_needsexplore_cv,
sc->sc_bus->ub_lock, usb_noexplore ? 0 : hz * 60);
DPRINTFN(2, "sc %#jx woke up", (uintptr_t)sc, 0, 0, 0);
}
sc->sc_event_thread = NULL;
/* In case parent is waiting for us to exit. */
cv_signal(&sc->sc_bus->ub_needsexplore_cv);
mutex_exit(sc->sc_bus->ub_lock);
DPRINTF("sc %#jx exit", (uintptr_t)sc, 0, 0, 0);
kthread_exit(0);
}
void
usb_task_thread(void *arg)
{
struct usb_task *task;
struct usb_taskq *taskq;
bool mpsafe;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
taskq = arg;
DPRINTF("start taskq %#jx", (uintptr_t)taskq, 0, 0, 0);
mutex_enter(&taskq->lock);
for (;;) {
task = TAILQ_FIRST(&taskq->tasks);
if (task == NULL) {
cv_wait(&taskq->cv, &taskq->lock);
task = TAILQ_FIRST(&taskq->tasks);
}
DPRINTFN(2, "woke up task=%#jx", (uintptr_t)task, 0, 0, 0);
if (task != NULL) {
mpsafe = ISSET(task->flags, USB_TASKQ_MPSAFE);
TAILQ_REMOVE(&taskq->tasks, task, next);
task->queue = USB_NUM_TASKQS;
taskq->current_task = task;
mutex_exit(&taskq->lock);
if (!mpsafe)
KERNEL_LOCK(1, curlwp);
task->fun(task->arg);
/* Can't dereference task after this point. */
if (!mpsafe)
KERNEL_UNLOCK_ONE(curlwp);
mutex_enter(&taskq->lock);
KASSERTMSG(taskq->current_task == task,
"somebody scribbled on usb taskq %p", taskq);
taskq->current_task = NULL;
cv_broadcast(&taskq->cv);
}
}
mutex_exit(&taskq->lock);
}
int
usbctlprint(void *aux, const char *pnp)
{
/* only "usb"es can attach to host controllers */
if (pnp)
aprint_normal("usb at %s", pnp);
return UNCONF;
}
int
usbopen(dev_t dev, int flag, int mode, struct lwp *l)
{
int unit = minor(dev);
struct usb_softc *sc;
if (unit == USB_DEV_MINOR) {
if (usb_dev_open)
return EBUSY;
usb_dev_open = 1;
mutex_enter(proc_lock);
usb_async_proc = 0;
mutex_exit(proc_lock);
return 0;
}
sc = device_lookup_private(&usb_cd, unit);
if (!sc)
return ENXIO;
if (sc->sc_dying)
return EIO;
return 0;
}
int
usbread(dev_t dev, struct uio *uio, int flag)
{
struct usb_event *ue;
#ifdef COMPAT_30
struct usb_event_old *ueo = NULL; /* XXXGCC */
int useold = 0;
#endif
int error, n;
if (minor(dev) != USB_DEV_MINOR)
return ENXIO;
switch (uio->uio_resid) {
#ifdef COMPAT_30
case sizeof(struct usb_event_old):
ueo = kmem_zalloc(sizeof(struct usb_event_old), KM_SLEEP);
useold = 1;
/* FALLTHRU */
#endif
case sizeof(struct usb_event):
ue = usb_alloc_event();
break;
default:
return EINVAL;
}
error = 0;
mutex_enter(&usb_event_lock);
for (;;) {
n = usb_get_next_event(ue);
if (n != 0)
break;
if (flag & IO_NDELAY) {
error = EWOULDBLOCK;
break;
}
error = cv_wait_sig(&usb_event_cv, &usb_event_lock);
if (error)
break;
}
mutex_exit(&usb_event_lock);
if (!error) {
#ifdef COMPAT_30
if (useold) { /* copy fields to old struct */
ueo->ue_type = ue->ue_type;
memcpy(&ueo->ue_time, &ue->ue_time,
sizeof(struct timespec));
switch (ue->ue_type) {
case USB_EVENT_DEVICE_ATTACH:
case USB_EVENT_DEVICE_DETACH:
usb_copy_old_devinfo(&ueo->u.ue_device, &ue->u.ue_device);
break;
case USB_EVENT_CTRLR_ATTACH:
case USB_EVENT_CTRLR_DETACH:
ueo->u.ue_ctrlr.ue_bus=ue->u.ue_ctrlr.ue_bus;
break;
case USB_EVENT_DRIVER_ATTACH:
case USB_EVENT_DRIVER_DETACH:
ueo->u.ue_driver.ue_cookie=ue->u.ue_driver.ue_cookie;
memcpy(ueo->u.ue_driver.ue_devname,
ue->u.ue_driver.ue_devname,
sizeof(ue->u.ue_driver.ue_devname));
break;
default:
;
}
error = uiomove((void *)ueo, sizeof(*ueo), uio);
} else
#endif
error = uiomove((void *)ue, sizeof(*ue), uio);
}
usb_free_event(ue);
#ifdef COMPAT_30
if (useold)
kmem_free(ueo, sizeof(struct usb_event_old));
#endif
return error;
}
int
usbclose(dev_t dev, int flag, int mode,
struct lwp *l)
{
int unit = minor(dev);
if (unit == USB_DEV_MINOR) {
mutex_enter(proc_lock);
usb_async_proc = 0;
mutex_exit(proc_lock);
usb_dev_open = 0;
}
return 0;
}
int
usbioctl(dev_t devt, u_long cmd, void *data, int flag, struct lwp *l)
{
struct usb_softc *sc;
int unit = minor(devt);
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
if (unit == USB_DEV_MINOR) {
switch (cmd) {
case FIONBIO:
/* All handled in the upper FS layer. */
return 0;
case FIOASYNC:
mutex_enter(proc_lock);
if (*(int *)data)
usb_async_proc = l->l_proc;
else
usb_async_proc = 0;
mutex_exit(proc_lock);
return 0;
default:
return EINVAL;
}
}
sc = device_lookup_private(&usb_cd, unit);
if (sc->sc_dying)
return EIO;
int error = 0;
DPRINTF("cmd %#jx", cmd, 0, 0, 0);
switch (cmd) {
#ifdef USB_DEBUG
case USB_SETDEBUG:
if (!(flag & FWRITE))
return EBADF;
usbdebug = ((*(int *)data) & 0x000000ff);
break;
#endif /* USB_DEBUG */
case USB_REQUEST:
{
struct usb_ctl_request *ur = (void *)data;
int len = UGETW(ur->ucr_request.wLength);
struct iovec iov;
struct uio uio;
void *ptr = 0;
int addr = ur->ucr_addr;
usbd_status err;
if (!(flag & FWRITE)) {
error = EBADF;
goto fail;
}
DPRINTF("USB_REQUEST addr=%jd len=%jd", addr, len, 0, 0);
if (len < 0 || len > 32768) {
error = EINVAL;
goto fail;
}
if (addr < 0 || addr >= USB_MAX_DEVICES) {
error = EINVAL;
goto fail;
}
size_t dindex = usb_addr2dindex(addr);
if (sc->sc_bus->ub_devices[dindex] == NULL) {
error = EINVAL;
goto fail;
}
if (len != 0) {
iov.iov_base = (void *)ur->ucr_data;
iov.iov_len = len;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_resid = len;
uio.uio_offset = 0;
uio.uio_rw =
ur->ucr_request.bmRequestType & UT_READ ?
UIO_READ : UIO_WRITE;
uio.uio_vmspace = l->l_proc->p_vmspace;
ptr = kmem_alloc(len, KM_SLEEP);
if (uio.uio_rw == UIO_WRITE) {
error = uiomove(ptr, len, &uio);
if (error)
goto ret;
}
}
err = usbd_do_request_flags(sc->sc_bus->ub_devices[dindex],
&ur->ucr_request, ptr, ur->ucr_flags, &ur->ucr_actlen,
USBD_DEFAULT_TIMEOUT);
if (err) {
error = EIO;
goto ret;
}
if (len > ur->ucr_actlen)
len = ur->ucr_actlen;
if (len != 0) {
if (uio.uio_rw == UIO_READ) {
error = uiomove(ptr, len, &uio);
if (error)
goto ret;
}
}
ret:
if (ptr) {
len = UGETW(ur->ucr_request.wLength);
kmem_free(ptr, len);
}
break;
}
case USB_DEVICEINFO:
{
struct usbd_device *dev;
struct usb_device_info *di = (void *)data;
int addr = di->udi_addr;
if (addr < 0 || addr >= USB_MAX_DEVICES) {
error = EINVAL;
goto fail;
}
size_t dindex = usb_addr2dindex(addr);
if ((dev = sc->sc_bus->ub_devices[dindex]) == NULL) {
error = ENXIO;
goto fail;
}
usbd_fill_deviceinfo(dev, di, 1);
break;
}
#ifdef COMPAT_30
case USB_DEVICEINFO_OLD:
{
struct usbd_device *dev;
struct usb_device_info_old *di = (void *)data;
int addr = di->udi_addr;
if (addr < 1 || addr >= USB_MAX_DEVICES) {
error = EINVAL;
goto fail;
}
size_t dindex = usb_addr2dindex(addr);
if ((dev = sc->sc_bus->ub_devices[dindex]) == NULL) {
error = ENXIO;
goto fail;
}
usbd_fill_deviceinfo_old(dev, di, 1);
break;
}
#endif
case USB_DEVICESTATS:
*(struct usb_device_stats *)data = sc->sc_bus->ub_stats;
break;
default:
error = EINVAL;
}
fail:
DPRINTF("... done (error = %jd)", error, 0, 0, 0);
return error;
}
int
usbpoll(dev_t dev, int events, struct lwp *l)
{
int revents, mask;
if (minor(dev) == USB_DEV_MINOR) {
revents = 0;
mask = POLLIN | POLLRDNORM;
mutex_enter(&usb_event_lock);
if (events & mask && usb_nevents > 0)
revents |= events & mask;
if (revents == 0 && events & mask)
selrecord(l, &usb_selevent);
mutex_exit(&usb_event_lock);
return revents;
} else {
return 0;
}
}
static void
filt_usbrdetach(struct knote *kn)
{
mutex_enter(&usb_event_lock);
SLIST_REMOVE(&usb_selevent.sel_klist, kn, knote, kn_selnext);
mutex_exit(&usb_event_lock);
}
static int
filt_usbread(struct knote *kn, long hint)
{
if (usb_nevents == 0)
return 0;
kn->kn_data = sizeof(struct usb_event);
return 1;
}
static const struct filterops usbread_filtops = {
.f_isfd = 1,
.f_attach = NULL,
.f_detach = filt_usbrdetach,
.f_event = filt_usbread,
};
int
usbkqfilter(dev_t dev, struct knote *kn)
{
struct klist *klist;
switch (kn->kn_filter) {
case EVFILT_READ:
if (minor(dev) != USB_DEV_MINOR)
return 1;
klist = &usb_selevent.sel_klist;
kn->kn_fop = &usbread_filtops;
break;
default:
return EINVAL;
}
kn->kn_hook = NULL;
mutex_enter(&usb_event_lock);
SLIST_INSERT_HEAD(klist, kn, kn_selnext);
mutex_exit(&usb_event_lock);
return 0;
}
/* Explore device tree from the root. */
Static void
usb_discover(struct usb_softc *sc)
{
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
KASSERT(mutex_owned(sc->sc_bus->ub_lock));
if (usb_noexplore > 1)
return;
/*
* We need mutual exclusion while traversing the device tree,
* but this is guaranteed since this function is only called
* from the event thread for the controller.
*
* Also, we now have sc_bus->ub_lock held.
*/
while (sc->sc_bus->ub_needsexplore && !sc->sc_dying) {
sc->sc_bus->ub_needsexplore = 0;
mutex_exit(sc->sc_bus->ub_lock);
sc->sc_bus->ub_roothub->ud_hub->uh_explore(sc->sc_bus->ub_roothub);
mutex_enter(sc->sc_bus->ub_lock);
}
}
void
usb_needs_explore(struct usbd_device *dev)
{
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
mutex_enter(dev->ud_bus->ub_lock);
dev->ud_bus->ub_needsexplore = 1;
cv_signal(&dev->ud_bus->ub_needsexplore_cv);
mutex_exit(dev->ud_bus->ub_lock);
}
void
usb_needs_reattach(struct usbd_device *dev)
{
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
mutex_enter(dev->ud_bus->ub_lock);
dev->ud_powersrc->up_reattach = 1;
dev->ud_bus->ub_needsexplore = 1;
cv_signal(&dev->ud_bus->ub_needsexplore_cv);
mutex_exit(dev->ud_bus->ub_lock);
}
/* Called at with usb_event_lock held. */
int
usb_get_next_event(struct usb_event *ue)
{
struct usb_event_q *ueq;
KASSERT(mutex_owned(&usb_event_lock));
if (usb_nevents <= 0)
return 0;
ueq = SIMPLEQ_FIRST(&usb_events);
#ifdef DIAGNOSTIC
if (ueq == NULL) {
printf("usb: usb_nevents got out of sync! %d\n", usb_nevents);
usb_nevents = 0;
return 0;
}
#endif
if (ue)
*ue = ueq->ue;
SIMPLEQ_REMOVE_HEAD(&usb_events, next);
usb_free_event((struct usb_event *)(void *)ueq);
usb_nevents--;
return 1;
}
void
usbd_add_dev_event(int type, struct usbd_device *udev)
{
struct usb_event *ue = usb_alloc_event();
usbd_fill_deviceinfo(udev, &ue->u.ue_device, false);
usb_add_event(type, ue);
}
void
usbd_add_drv_event(int type, struct usbd_device *udev, device_t dev)
{
struct usb_event *ue = usb_alloc_event();
ue->u.ue_driver.ue_cookie = udev->ud_cookie;
strncpy(ue->u.ue_driver.ue_devname, device_xname(dev),
sizeof(ue->u.ue_driver.ue_devname));
usb_add_event(type, ue);
}
Static struct usb_event *
usb_alloc_event(void)
{
/* Yes, this is right; we allocate enough so that we can use it later */
return kmem_zalloc(sizeof(struct usb_event_q), KM_SLEEP);
}
Static void
usb_free_event(struct usb_event *uep)
{
kmem_free(uep, sizeof(struct usb_event_q));
}
Static void
usb_add_event(int type, struct usb_event *uep)
{
struct usb_event_q *ueq;
struct timeval thetime;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
microtime(&thetime);
/* Don't want to wait here with usb_event_lock held */
ueq = (struct usb_event_q *)(void *)uep;
ueq->ue = *uep;
ueq->ue.ue_type = type;
TIMEVAL_TO_TIMESPEC(&thetime, &ueq->ue.ue_time);
mutex_enter(&usb_event_lock);
if (++usb_nevents >= USB_MAX_EVENTS) {
/* Too many queued events, drop an old one. */
DPRINTF("event dropped", 0, 0, 0, 0);
(void)usb_get_next_event(0);
}
SIMPLEQ_INSERT_TAIL(&usb_events, ueq, next);
cv_signal(&usb_event_cv);
selnotify(&usb_selevent, 0, 0);
if (usb_async_proc != NULL) {
kpreempt_disable();
softint_schedule(usb_async_sih);
kpreempt_enable();
}
mutex_exit(&usb_event_lock);
}
Static void
usb_async_intr(void *cookie)
{
proc_t *proc;
mutex_enter(proc_lock);
if ((proc = usb_async_proc) != NULL)
psignal(proc, SIGIO);
mutex_exit(proc_lock);
}
Static void
usb_soft_intr(void *arg)
{
struct usbd_bus *bus = arg;
mutex_enter(bus->ub_lock);
bus->ub_methods->ubm_softint(bus);
mutex_exit(bus->ub_lock);
}
void
usb_schedsoftintr(struct usbd_bus *bus)
{
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
DPRINTFN(10, "polling=%jd", bus->ub_usepolling, 0, 0, 0);
if (bus->ub_usepolling) {
bus->ub_methods->ubm_softint(bus);
} else {
kpreempt_disable();
softint_schedule(bus->ub_soft);
kpreempt_enable();
}
}
int
usb_activate(device_t self, enum devact act)
{
struct usb_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
sc->sc_dying = 1;
return 0;
default:
return EOPNOTSUPP;
}
}
void
usb_childdet(device_t self, device_t child)
{
int i;
struct usb_softc *sc = device_private(self);
struct usbd_device *dev;
if ((dev = sc->sc_port.up_dev) == NULL || dev->ud_subdevlen == 0)
return;
for (i = 0; i < dev->ud_subdevlen; i++)
if (dev->ud_subdevs[i] == child)
dev->ud_subdevs[i] = NULL;
}
int
usb_detach(device_t self, int flags)
{
struct usb_softc *sc = device_private(self);
struct usb_event *ue;
int rc;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
/* Make all devices disconnect. */
if (sc->sc_port.up_dev != NULL &&
(rc = usb_disconnect_port(&sc->sc_port, self, flags)) != 0)
return rc;
pmf_device_deregister(self);
/* Kill off event thread. */
sc->sc_dying = 1;
while (sc->sc_event_thread != NULL) {
mutex_enter(sc->sc_bus->ub_lock);
cv_signal(&sc->sc_bus->ub_needsexplore_cv);
cv_timedwait(&sc->sc_bus->ub_needsexplore_cv,
sc->sc_bus->ub_lock, hz * 60);
mutex_exit(sc->sc_bus->ub_lock);
}
DPRINTF("event thread dead", 0, 0, 0, 0);
if (sc->sc_bus->ub_soft != NULL) {
softint_disestablish(sc->sc_bus->ub_soft);
sc->sc_bus->ub_soft = NULL;
}
ue = usb_alloc_event();
ue->u.ue_ctrlr.ue_bus = device_unit(self);
usb_add_event(USB_EVENT_CTRLR_DETACH, ue);
cv_destroy(&sc->sc_bus->ub_needsexplore_cv);
return 0;
}
#ifdef COMPAT_30
Static void
usb_copy_old_devinfo(struct usb_device_info_old *uo,
const struct usb_device_info *ue)
{
const unsigned char *p;
unsigned char *q;
int i, n;
uo->udi_bus = ue->udi_bus;
uo->udi_addr = ue->udi_addr;
uo->udi_cookie = ue->udi_cookie;
for (i = 0, p = (const unsigned char *)ue->udi_product,
q = (unsigned char *)uo->udi_product;
*p && i < USB_MAX_STRING_LEN - 1; p++) {
if (*p < 0x80)
q[i++] = *p;
else {
q[i++] = '?';
if ((*p & 0xe0) == 0xe0)
p++;
p++;
}
}
q[i] = 0;
for (i = 0, p = ue->udi_vendor, q = uo->udi_vendor;
*p && i < USB_MAX_STRING_LEN - 1; p++) {
if (* p < 0x80)
q[i++] = *p;
else {
q[i++] = '?';
p++;
if ((*p & 0xe0) == 0xe0)
p++;
}
}
q[i] = 0;
memcpy(uo->udi_release, ue->udi_release, sizeof(uo->udi_release));
uo->udi_productNo = ue->udi_productNo;
uo->udi_vendorNo = ue->udi_vendorNo;
uo->udi_releaseNo = ue->udi_releaseNo;
uo->udi_class = ue->udi_class;
uo->udi_subclass = ue->udi_subclass;
uo->udi_protocol = ue->udi_protocol;
uo->udi_config = ue->udi_config;
uo->udi_speed = ue->udi_speed;
uo->udi_power = ue->udi_power;
uo->udi_nports = ue->udi_nports;
for (n=0; n<USB_MAX_DEVNAMES; n++)
memcpy(uo->udi_devnames[n],
ue->udi_devnames[n], USB_MAX_DEVNAMELEN);
memcpy(uo->udi_ports, ue->udi_ports, sizeof(uo->udi_ports));
}
#endif