1501 lines
38 KiB
C
1501 lines
38 KiB
C
/* $NetBSD: kern_time.c,v 1.164 2010/04/03 17:20:05 njoly Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Christopher G. Demetriou, and by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_time.c 8.4 (Berkeley) 5/26/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.164 2010/04/03 17:20:05 njoly Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/timetc.h>
|
|
#include <sys/timex.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/savar.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/cpu.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include "opt_sa.h"
|
|
|
|
static void timer_intr(void *);
|
|
static void itimerfire(struct ptimer *);
|
|
static void itimerfree(struct ptimers *, int);
|
|
|
|
kmutex_t timer_lock;
|
|
|
|
static void *timer_sih;
|
|
static TAILQ_HEAD(, ptimer) timer_queue;
|
|
|
|
struct pool ptimer_pool, ptimers_pool;
|
|
|
|
/*
|
|
* Initialize timekeeping.
|
|
*/
|
|
void
|
|
time_init(void)
|
|
{
|
|
|
|
pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
|
|
&pool_allocator_nointr, IPL_NONE);
|
|
pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
|
|
&pool_allocator_nointr, IPL_NONE);
|
|
}
|
|
|
|
void
|
|
time_init2(void)
|
|
{
|
|
|
|
TAILQ_INIT(&timer_queue);
|
|
mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
|
|
timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
|
|
timer_intr, NULL);
|
|
}
|
|
|
|
/* Time of day and interval timer support.
|
|
*
|
|
* These routines provide the kernel entry points to get and set
|
|
* the time-of-day and per-process interval timers. Subroutines
|
|
* here provide support for adding and subtracting timeval structures
|
|
* and decrementing interval timers, optionally reloading the interval
|
|
* timers when they expire.
|
|
*/
|
|
|
|
/* This function is used by clock_settime and settimeofday */
|
|
static int
|
|
settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
|
|
{
|
|
struct timespec delta, now;
|
|
int s;
|
|
|
|
/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
|
|
s = splclock();
|
|
nanotime(&now);
|
|
timespecsub(ts, &now, &delta);
|
|
|
|
if (check_kauth && kauth_authorize_system(kauth_cred_get(),
|
|
KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
|
|
&delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
|
|
splx(s);
|
|
return (EPERM);
|
|
}
|
|
|
|
#ifdef notyet
|
|
if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
|
|
splx(s);
|
|
return (EPERM);
|
|
}
|
|
#endif
|
|
|
|
tc_setclock(ts);
|
|
|
|
timespecadd(&boottime, &delta, &boottime);
|
|
|
|
resettodr();
|
|
splx(s);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
settime(struct proc *p, struct timespec *ts)
|
|
{
|
|
return (settime1(p, ts, true));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys___clock_gettime50(struct lwp *l,
|
|
const struct sys___clock_gettime50_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(clockid_t) clock_id;
|
|
syscallarg(struct timespec *) tp;
|
|
} */
|
|
clockid_t clock_id;
|
|
struct timespec ats;
|
|
|
|
clock_id = SCARG(uap, clock_id);
|
|
switch (clock_id) {
|
|
case CLOCK_REALTIME:
|
|
nanotime(&ats);
|
|
break;
|
|
case CLOCK_MONOTONIC:
|
|
nanouptime(&ats);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return copyout(&ats, SCARG(uap, tp), sizeof(ats));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys___clock_settime50(struct lwp *l,
|
|
const struct sys___clock_settime50_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(clockid_t) clock_id;
|
|
syscallarg(const struct timespec *) tp;
|
|
} */
|
|
int error;
|
|
struct timespec ats;
|
|
|
|
if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
|
|
return error;
|
|
|
|
return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
|
|
}
|
|
|
|
|
|
int
|
|
clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
|
|
bool check_kauth)
|
|
{
|
|
int error;
|
|
|
|
switch (clock_id) {
|
|
case CLOCK_REALTIME:
|
|
if ((error = settime1(p, tp, check_kauth)) != 0)
|
|
return (error);
|
|
break;
|
|
case CLOCK_MONOTONIC:
|
|
return (EINVAL); /* read-only clock */
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(clockid_t) clock_id;
|
|
syscallarg(struct timespec *) tp;
|
|
} */
|
|
struct timespec ts;
|
|
int error = 0;
|
|
|
|
if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
|
|
return error;
|
|
|
|
if (SCARG(uap, tp))
|
|
error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
clock_getres1(clockid_t clock_id, struct timespec *ts)
|
|
{
|
|
|
|
switch (clock_id) {
|
|
case CLOCK_REALTIME:
|
|
case CLOCK_MONOTONIC:
|
|
ts->tv_sec = 0;
|
|
if (tc_getfrequency() > 1000000000)
|
|
ts->tv_nsec = 1;
|
|
else
|
|
ts->tv_nsec = 1000000000 / tc_getfrequency();
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(struct timespec *) rqtp;
|
|
syscallarg(struct timespec *) rmtp;
|
|
} */
|
|
struct timespec rmt, rqt;
|
|
int error, error1;
|
|
|
|
error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
|
|
if (error)
|
|
return (error);
|
|
|
|
error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
|
|
if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
|
|
return error;
|
|
|
|
error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
|
|
return error1 ? error1 : error;
|
|
}
|
|
|
|
int
|
|
nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
|
|
{
|
|
struct timespec rmtstart;
|
|
int error, timo;
|
|
|
|
if ((error = itimespecfix(rqt)) != 0)
|
|
return error;
|
|
|
|
timo = tstohz(rqt);
|
|
/*
|
|
* Avoid inadvertantly sleeping forever
|
|
*/
|
|
if (timo == 0)
|
|
timo = 1;
|
|
getnanouptime(&rmtstart);
|
|
again:
|
|
error = kpause("nanoslp", true, timo, NULL);
|
|
if (rmt != NULL || error == 0) {
|
|
struct timespec rmtend;
|
|
struct timespec t0;
|
|
struct timespec *t;
|
|
|
|
getnanouptime(&rmtend);
|
|
t = (rmt != NULL) ? rmt : &t0;
|
|
timespecsub(&rmtend, &rmtstart, t);
|
|
timespecsub(rqt, t, t);
|
|
if (t->tv_sec < 0)
|
|
timespecclear(t);
|
|
if (error == 0) {
|
|
timo = tstohz(t);
|
|
if (timo > 0)
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
if (error == EWOULDBLOCK)
|
|
error = 0;
|
|
|
|
return error;
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(struct timeval *) tp;
|
|
syscallarg(void *) tzp; really "struct timezone *";
|
|
} */
|
|
struct timeval atv;
|
|
int error = 0;
|
|
struct timezone tzfake;
|
|
|
|
if (SCARG(uap, tp)) {
|
|
microtime(&atv);
|
|
error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
if (SCARG(uap, tzp)) {
|
|
/*
|
|
* NetBSD has no kernel notion of time zone, so we just
|
|
* fake up a timezone struct and return it if demanded.
|
|
*/
|
|
tzfake.tz_minuteswest = 0;
|
|
tzfake.tz_dsttime = 0;
|
|
error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(const struct timeval *) tv;
|
|
syscallarg(const void *) tzp; really "const struct timezone *";
|
|
} */
|
|
|
|
return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
|
|
}
|
|
|
|
int
|
|
settimeofday1(const struct timeval *utv, bool userspace,
|
|
const void *utzp, struct lwp *l, bool check_kauth)
|
|
{
|
|
struct timeval atv;
|
|
struct timespec ts;
|
|
int error;
|
|
|
|
/* Verify all parameters before changing time. */
|
|
|
|
/*
|
|
* NetBSD has no kernel notion of time zone, and only an
|
|
* obsolete program would try to set it, so we log a warning.
|
|
*/
|
|
if (utzp)
|
|
log(LOG_WARNING, "pid %d attempted to set the "
|
|
"(obsolete) kernel time zone\n", l->l_proc->p_pid);
|
|
|
|
if (utv == NULL)
|
|
return 0;
|
|
|
|
if (userspace) {
|
|
if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
|
|
return error;
|
|
utv = &atv;
|
|
}
|
|
|
|
TIMEVAL_TO_TIMESPEC(utv, &ts);
|
|
return settime1(l->l_proc, &ts, check_kauth);
|
|
}
|
|
|
|
int time_adjusted; /* set if an adjustment is made */
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(const struct timeval *) delta;
|
|
syscallarg(struct timeval *) olddelta;
|
|
} */
|
|
int error = 0;
|
|
struct timeval atv, oldatv;
|
|
|
|
if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
|
|
KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
|
|
return error;
|
|
|
|
if (SCARG(uap, delta)) {
|
|
error = copyin(SCARG(uap, delta), &atv,
|
|
sizeof(*SCARG(uap, delta)));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
adjtime1(SCARG(uap, delta) ? &atv : NULL,
|
|
SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
|
|
if (SCARG(uap, olddelta))
|
|
error = copyout(&oldatv, SCARG(uap, olddelta),
|
|
sizeof(*SCARG(uap, olddelta)));
|
|
return error;
|
|
}
|
|
|
|
void
|
|
adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
|
|
{
|
|
extern int64_t time_adjtime; /* in kern_ntptime.c */
|
|
|
|
if (olddelta) {
|
|
mutex_spin_enter(&timecounter_lock);
|
|
olddelta->tv_sec = time_adjtime / 1000000;
|
|
olddelta->tv_usec = time_adjtime % 1000000;
|
|
if (olddelta->tv_usec < 0) {
|
|
olddelta->tv_usec += 1000000;
|
|
olddelta->tv_sec--;
|
|
}
|
|
mutex_spin_exit(&timecounter_lock);
|
|
}
|
|
|
|
if (delta) {
|
|
mutex_spin_enter(&timecounter_lock);
|
|
time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
|
|
|
|
if (time_adjtime) {
|
|
/* We need to save the system time during shutdown */
|
|
time_adjusted |= 1;
|
|
}
|
|
mutex_spin_exit(&timecounter_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Interval timer support. Both the BSD getitimer() family and the POSIX
|
|
* timer_*() family of routines are supported.
|
|
*
|
|
* All timers are kept in an array pointed to by p_timers, which is
|
|
* allocated on demand - many processes don't use timers at all. The
|
|
* first three elements in this array are reserved for the BSD timers:
|
|
* element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
|
|
* 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
|
|
* syscall.
|
|
*
|
|
* Realtime timers are kept in the ptimer structure as an absolute
|
|
* time; virtual time timers are kept as a linked list of deltas.
|
|
* Virtual time timers are processed in the hardclock() routine of
|
|
* kern_clock.c. The real time timer is processed by a callout
|
|
* routine, called from the softclock() routine. Since a callout may
|
|
* be delayed in real time due to interrupt processing in the system,
|
|
* it is possible for the real time timeout routine (realtimeexpire,
|
|
* given below), to be delayed in real time past when it is supposed
|
|
* to occur. It does not suffice, therefore, to reload the real timer
|
|
* .it_value from the real time timers .it_interval. Rather, we
|
|
* compute the next time in absolute time the timer should go off. */
|
|
|
|
/* Allocate a POSIX realtime timer. */
|
|
int
|
|
sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(clockid_t) clock_id;
|
|
syscallarg(struct sigevent *) evp;
|
|
syscallarg(timer_t *) timerid;
|
|
} */
|
|
|
|
return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
|
|
SCARG(uap, evp), copyin, l);
|
|
}
|
|
|
|
int
|
|
timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
|
|
copyin_t fetch_event, struct lwp *l)
|
|
{
|
|
int error;
|
|
timer_t timerid;
|
|
struct ptimers *pts;
|
|
struct ptimer *pt;
|
|
struct proc *p;
|
|
|
|
p = l->l_proc;
|
|
|
|
if (id < CLOCK_REALTIME || id > CLOCK_PROF)
|
|
return (EINVAL);
|
|
|
|
if ((pts = p->p_timers) == NULL)
|
|
pts = timers_alloc(p);
|
|
|
|
pt = pool_get(&ptimer_pool, PR_WAITOK);
|
|
if (evp != NULL) {
|
|
if (((error =
|
|
(*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
|
|
((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
|
|
(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
|
|
(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
|
|
(pt->pt_ev.sigev_signo <= 0 ||
|
|
pt->pt_ev.sigev_signo >= NSIG))) {
|
|
pool_put(&ptimer_pool, pt);
|
|
return (error ? error : EINVAL);
|
|
}
|
|
}
|
|
|
|
/* Find a free timer slot, skipping those reserved for setitimer(). */
|
|
mutex_spin_enter(&timer_lock);
|
|
for (timerid = 3; timerid < TIMER_MAX; timerid++)
|
|
if (pts->pts_timers[timerid] == NULL)
|
|
break;
|
|
if (timerid == TIMER_MAX) {
|
|
mutex_spin_exit(&timer_lock);
|
|
pool_put(&ptimer_pool, pt);
|
|
return EAGAIN;
|
|
}
|
|
if (evp == NULL) {
|
|
pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
|
|
switch (id) {
|
|
case CLOCK_REALTIME:
|
|
pt->pt_ev.sigev_signo = SIGALRM;
|
|
break;
|
|
case CLOCK_VIRTUAL:
|
|
pt->pt_ev.sigev_signo = SIGVTALRM;
|
|
break;
|
|
case CLOCK_PROF:
|
|
pt->pt_ev.sigev_signo = SIGPROF;
|
|
break;
|
|
}
|
|
pt->pt_ev.sigev_value.sival_int = timerid;
|
|
}
|
|
pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
|
|
pt->pt_info.ksi_errno = 0;
|
|
pt->pt_info.ksi_code = 0;
|
|
pt->pt_info.ksi_pid = p->p_pid;
|
|
pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
|
|
pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
|
|
pt->pt_type = id;
|
|
pt->pt_proc = p;
|
|
pt->pt_overruns = 0;
|
|
pt->pt_poverruns = 0;
|
|
pt->pt_entry = timerid;
|
|
pt->pt_queued = false;
|
|
timespecclear(&pt->pt_time.it_value);
|
|
if (id == CLOCK_REALTIME)
|
|
callout_init(&pt->pt_ch, 0);
|
|
else
|
|
pt->pt_active = 0;
|
|
|
|
pts->pts_timers[timerid] = pt;
|
|
mutex_spin_exit(&timer_lock);
|
|
|
|
return copyout(&timerid, tid, sizeof(timerid));
|
|
}
|
|
|
|
/* Delete a POSIX realtime timer */
|
|
int
|
|
sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(timer_t) timerid;
|
|
} */
|
|
struct proc *p = l->l_proc;
|
|
timer_t timerid;
|
|
struct ptimers *pts;
|
|
struct ptimer *pt, *ptn;
|
|
|
|
timerid = SCARG(uap, timerid);
|
|
pts = p->p_timers;
|
|
|
|
if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
|
|
return (EINVAL);
|
|
|
|
mutex_spin_enter(&timer_lock);
|
|
if ((pt = pts->pts_timers[timerid]) == NULL) {
|
|
mutex_spin_exit(&timer_lock);
|
|
return (EINVAL);
|
|
}
|
|
if (pt->pt_type != CLOCK_REALTIME) {
|
|
if (pt->pt_active) {
|
|
ptn = LIST_NEXT(pt, pt_list);
|
|
LIST_REMOVE(pt, pt_list);
|
|
for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
|
|
timespecadd(&pt->pt_time.it_value,
|
|
&ptn->pt_time.it_value,
|
|
&ptn->pt_time.it_value);
|
|
pt->pt_active = 0;
|
|
}
|
|
}
|
|
itimerfree(pts, timerid);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set up the given timer. The value in pt->pt_time.it_value is taken
|
|
* to be an absolute time for CLOCK_REALTIME timers and a relative
|
|
* time for virtual timers.
|
|
* Must be called at splclock().
|
|
*/
|
|
void
|
|
timer_settime(struct ptimer *pt)
|
|
{
|
|
struct ptimer *ptn, *pptn;
|
|
struct ptlist *ptl;
|
|
|
|
KASSERT(mutex_owned(&timer_lock));
|
|
|
|
if (pt->pt_type == CLOCK_REALTIME) {
|
|
callout_stop(&pt->pt_ch);
|
|
if (timespecisset(&pt->pt_time.it_value)) {
|
|
/*
|
|
* Don't need to check tshzto() return value, here.
|
|
* callout_reset() does it for us.
|
|
*/
|
|
callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
|
|
realtimerexpire, pt);
|
|
}
|
|
} else {
|
|
if (pt->pt_active) {
|
|
ptn = LIST_NEXT(pt, pt_list);
|
|
LIST_REMOVE(pt, pt_list);
|
|
for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
|
|
timespecadd(&pt->pt_time.it_value,
|
|
&ptn->pt_time.it_value,
|
|
&ptn->pt_time.it_value);
|
|
}
|
|
if (timespecisset(&pt->pt_time.it_value)) {
|
|
if (pt->pt_type == CLOCK_VIRTUAL)
|
|
ptl = &pt->pt_proc->p_timers->pts_virtual;
|
|
else
|
|
ptl = &pt->pt_proc->p_timers->pts_prof;
|
|
|
|
for (ptn = LIST_FIRST(ptl), pptn = NULL;
|
|
ptn && timespeccmp(&pt->pt_time.it_value,
|
|
&ptn->pt_time.it_value, >);
|
|
pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
|
|
timespecsub(&pt->pt_time.it_value,
|
|
&ptn->pt_time.it_value,
|
|
&pt->pt_time.it_value);
|
|
|
|
if (pptn)
|
|
LIST_INSERT_AFTER(pptn, pt, pt_list);
|
|
else
|
|
LIST_INSERT_HEAD(ptl, pt, pt_list);
|
|
|
|
for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
|
|
timespecsub(&ptn->pt_time.it_value,
|
|
&pt->pt_time.it_value,
|
|
&ptn->pt_time.it_value);
|
|
|
|
pt->pt_active = 1;
|
|
} else
|
|
pt->pt_active = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
timer_gettime(struct ptimer *pt, struct itimerspec *aits)
|
|
{
|
|
struct timespec now;
|
|
struct ptimer *ptn;
|
|
|
|
KASSERT(mutex_owned(&timer_lock));
|
|
|
|
*aits = pt->pt_time;
|
|
if (pt->pt_type == CLOCK_REALTIME) {
|
|
/*
|
|
* Convert from absolute to relative time in .it_value
|
|
* part of real time timer. If time for real time
|
|
* timer has passed return 0, else return difference
|
|
* between current time and time for the timer to go
|
|
* off.
|
|
*/
|
|
if (timespecisset(&aits->it_value)) {
|
|
getnanotime(&now);
|
|
if (timespeccmp(&aits->it_value, &now, <))
|
|
timespecclear(&aits->it_value);
|
|
else
|
|
timespecsub(&aits->it_value, &now,
|
|
&aits->it_value);
|
|
}
|
|
} else if (pt->pt_active) {
|
|
if (pt->pt_type == CLOCK_VIRTUAL)
|
|
ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
|
|
else
|
|
ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
|
|
for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
|
|
timespecadd(&aits->it_value,
|
|
&ptn->pt_time.it_value, &aits->it_value);
|
|
KASSERT(ptn != NULL); /* pt should be findable on the list */
|
|
} else
|
|
timespecclear(&aits->it_value);
|
|
}
|
|
|
|
|
|
|
|
/* Set and arm a POSIX realtime timer */
|
|
int
|
|
sys___timer_settime50(struct lwp *l,
|
|
const struct sys___timer_settime50_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(timer_t) timerid;
|
|
syscallarg(int) flags;
|
|
syscallarg(const struct itimerspec *) value;
|
|
syscallarg(struct itimerspec *) ovalue;
|
|
} */
|
|
int error;
|
|
struct itimerspec value, ovalue, *ovp = NULL;
|
|
|
|
if ((error = copyin(SCARG(uap, value), &value,
|
|
sizeof(struct itimerspec))) != 0)
|
|
return (error);
|
|
|
|
if (SCARG(uap, ovalue))
|
|
ovp = &ovalue;
|
|
|
|
if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
|
|
SCARG(uap, flags), l->l_proc)) != 0)
|
|
return error;
|
|
|
|
if (ovp)
|
|
return copyout(&ovalue, SCARG(uap, ovalue),
|
|
sizeof(struct itimerspec));
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
dotimer_settime(int timerid, struct itimerspec *value,
|
|
struct itimerspec *ovalue, int flags, struct proc *p)
|
|
{
|
|
struct timespec now;
|
|
struct itimerspec val, oval;
|
|
struct ptimers *pts;
|
|
struct ptimer *pt;
|
|
int error;
|
|
|
|
pts = p->p_timers;
|
|
|
|
if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
|
|
return EINVAL;
|
|
val = *value;
|
|
if ((error = itimespecfix(&val.it_value)) != 0 ||
|
|
(error = itimespecfix(&val.it_interval)) != 0)
|
|
return error;
|
|
|
|
mutex_spin_enter(&timer_lock);
|
|
if ((pt = pts->pts_timers[timerid]) == NULL) {
|
|
mutex_spin_exit(&timer_lock);
|
|
return EINVAL;
|
|
}
|
|
|
|
oval = pt->pt_time;
|
|
pt->pt_time = val;
|
|
|
|
/*
|
|
* If we've been passed a relative time for a realtime timer,
|
|
* convert it to absolute; if an absolute time for a virtual
|
|
* timer, convert it to relative and make sure we don't set it
|
|
* to zero, which would cancel the timer, or let it go
|
|
* negative, which would confuse the comparison tests.
|
|
*/
|
|
if (timespecisset(&pt->pt_time.it_value)) {
|
|
if (pt->pt_type == CLOCK_REALTIME) {
|
|
if ((flags & TIMER_ABSTIME) == 0) {
|
|
getnanotime(&now);
|
|
timespecadd(&pt->pt_time.it_value, &now,
|
|
&pt->pt_time.it_value);
|
|
}
|
|
} else {
|
|
if ((flags & TIMER_ABSTIME) != 0) {
|
|
getnanotime(&now);
|
|
timespecsub(&pt->pt_time.it_value, &now,
|
|
&pt->pt_time.it_value);
|
|
if (!timespecisset(&pt->pt_time.it_value) ||
|
|
pt->pt_time.it_value.tv_sec < 0) {
|
|
pt->pt_time.it_value.tv_sec = 0;
|
|
pt->pt_time.it_value.tv_nsec = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
timer_settime(pt);
|
|
mutex_spin_exit(&timer_lock);
|
|
|
|
if (ovalue)
|
|
*ovalue = oval;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Return the time remaining until a POSIX timer fires. */
|
|
int
|
|
sys___timer_gettime50(struct lwp *l,
|
|
const struct sys___timer_gettime50_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(timer_t) timerid;
|
|
syscallarg(struct itimerspec *) value;
|
|
} */
|
|
struct itimerspec its;
|
|
int error;
|
|
|
|
if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
|
|
&its)) != 0)
|
|
return error;
|
|
|
|
return copyout(&its, SCARG(uap, value), sizeof(its));
|
|
}
|
|
|
|
int
|
|
dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
|
|
{
|
|
struct ptimer *pt;
|
|
struct ptimers *pts;
|
|
|
|
pts = p->p_timers;
|
|
if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
|
|
return (EINVAL);
|
|
mutex_spin_enter(&timer_lock);
|
|
if ((pt = pts->pts_timers[timerid]) == NULL) {
|
|
mutex_spin_exit(&timer_lock);
|
|
return (EINVAL);
|
|
}
|
|
timer_gettime(pt, its);
|
|
mutex_spin_exit(&timer_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the count of the number of times a periodic timer expired
|
|
* while a notification was already pending. The counter is reset when
|
|
* a timer expires and a notification can be posted.
|
|
*/
|
|
int
|
|
sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(timer_t) timerid;
|
|
} */
|
|
struct proc *p = l->l_proc;
|
|
struct ptimers *pts;
|
|
int timerid;
|
|
struct ptimer *pt;
|
|
|
|
timerid = SCARG(uap, timerid);
|
|
|
|
pts = p->p_timers;
|
|
if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
|
|
return (EINVAL);
|
|
mutex_spin_enter(&timer_lock);
|
|
if ((pt = pts->pts_timers[timerid]) == NULL) {
|
|
mutex_spin_exit(&timer_lock);
|
|
return (EINVAL);
|
|
}
|
|
*retval = pt->pt_poverruns;
|
|
mutex_spin_exit(&timer_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef KERN_SA
|
|
/* Glue function that triggers an upcall; called from userret(). */
|
|
void
|
|
timerupcall(struct lwp *l)
|
|
{
|
|
struct ptimers *pt = l->l_proc->p_timers;
|
|
struct proc *p = l->l_proc;
|
|
unsigned int i, fired, done;
|
|
|
|
KDASSERT(l->l_proc->p_sa);
|
|
/* Bail out if we do not own the virtual processor */
|
|
if (l->l_savp->savp_lwp != l)
|
|
return ;
|
|
|
|
mutex_enter(p->p_lock);
|
|
|
|
fired = pt->pts_fired;
|
|
done = 0;
|
|
while ((i = ffs(fired)) != 0) {
|
|
siginfo_t *si;
|
|
int mask = 1 << --i;
|
|
int f;
|
|
|
|
f = ~l->l_pflag & LP_SA_NOBLOCK;
|
|
l->l_pflag |= LP_SA_NOBLOCK;
|
|
si = siginfo_alloc(PR_WAITOK);
|
|
si->_info = pt->pts_timers[i]->pt_info.ksi_info;
|
|
if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
|
|
sizeof(*si), si, siginfo_free) != 0) {
|
|
siginfo_free(si);
|
|
/* XXX What do we do here?? */
|
|
} else
|
|
done |= mask;
|
|
fired &= ~mask;
|
|
l->l_pflag ^= f;
|
|
}
|
|
pt->pts_fired &= ~done;
|
|
if (pt->pts_fired == 0)
|
|
l->l_proc->p_timerpend = 0;
|
|
|
|
mutex_exit(p->p_lock);
|
|
}
|
|
#endif /* KERN_SA */
|
|
|
|
/*
|
|
* Real interval timer expired:
|
|
* send process whose timer expired an alarm signal.
|
|
* If time is not set up to reload, then just return.
|
|
* Else compute next time timer should go off which is > current time.
|
|
* This is where delay in processing this timeout causes multiple
|
|
* SIGALRM calls to be compressed into one.
|
|
*/
|
|
void
|
|
realtimerexpire(void *arg)
|
|
{
|
|
uint64_t last_val, next_val, interval, now_ms;
|
|
struct timespec now, next;
|
|
struct ptimer *pt;
|
|
int backwards;
|
|
|
|
pt = arg;
|
|
|
|
mutex_spin_enter(&timer_lock);
|
|
itimerfire(pt);
|
|
|
|
if (!timespecisset(&pt->pt_time.it_interval)) {
|
|
timespecclear(&pt->pt_time.it_value);
|
|
mutex_spin_exit(&timer_lock);
|
|
return;
|
|
}
|
|
|
|
getnanotime(&now);
|
|
backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
|
|
timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
|
|
/* Handle the easy case of non-overflown timers first. */
|
|
if (!backwards && timespeccmp(&next, &now, >)) {
|
|
pt->pt_time.it_value = next;
|
|
} else {
|
|
now_ms = timespec2ns(&now);
|
|
last_val = timespec2ns(&pt->pt_time.it_value);
|
|
interval = timespec2ns(&pt->pt_time.it_interval);
|
|
|
|
next_val = now_ms +
|
|
(now_ms - last_val + interval - 1) % interval;
|
|
|
|
if (backwards)
|
|
next_val += interval;
|
|
else
|
|
pt->pt_overruns += (now_ms - last_val) / interval;
|
|
|
|
pt->pt_time.it_value.tv_sec = next_val / 1000000000;
|
|
pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
|
|
}
|
|
|
|
/*
|
|
* Don't need to check tshzto() return value, here.
|
|
* callout_reset() does it for us.
|
|
*/
|
|
callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
|
|
realtimerexpire, pt);
|
|
mutex_spin_exit(&timer_lock);
|
|
}
|
|
|
|
/* BSD routine to get the value of an interval timer. */
|
|
/* ARGSUSED */
|
|
int
|
|
sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) which;
|
|
syscallarg(struct itimerval *) itv;
|
|
} */
|
|
struct proc *p = l->l_proc;
|
|
struct itimerval aitv;
|
|
int error;
|
|
|
|
error = dogetitimer(p, SCARG(uap, which), &aitv);
|
|
if (error)
|
|
return error;
|
|
return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
|
|
}
|
|
|
|
int
|
|
dogetitimer(struct proc *p, int which, struct itimerval *itvp)
|
|
{
|
|
struct ptimers *pts;
|
|
struct ptimer *pt;
|
|
struct itimerspec its;
|
|
|
|
if ((u_int)which > ITIMER_PROF)
|
|
return (EINVAL);
|
|
|
|
mutex_spin_enter(&timer_lock);
|
|
pts = p->p_timers;
|
|
if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
|
|
timerclear(&itvp->it_value);
|
|
timerclear(&itvp->it_interval);
|
|
} else {
|
|
timer_gettime(pt, &its);
|
|
TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
|
|
TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
|
|
}
|
|
mutex_spin_exit(&timer_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* BSD routine to set/arm an interval timer. */
|
|
/* ARGSUSED */
|
|
int
|
|
sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) which;
|
|
syscallarg(const struct itimerval *) itv;
|
|
syscallarg(struct itimerval *) oitv;
|
|
} */
|
|
struct proc *p = l->l_proc;
|
|
int which = SCARG(uap, which);
|
|
struct sys___getitimer50_args getargs;
|
|
const struct itimerval *itvp;
|
|
struct itimerval aitv;
|
|
int error;
|
|
|
|
if ((u_int)which > ITIMER_PROF)
|
|
return (EINVAL);
|
|
itvp = SCARG(uap, itv);
|
|
if (itvp &&
|
|
(error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
|
|
return (error);
|
|
if (SCARG(uap, oitv) != NULL) {
|
|
SCARG(&getargs, which) = which;
|
|
SCARG(&getargs, itv) = SCARG(uap, oitv);
|
|
if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
|
|
return (error);
|
|
}
|
|
if (itvp == 0)
|
|
return (0);
|
|
|
|
return dosetitimer(p, which, &aitv);
|
|
}
|
|
|
|
int
|
|
dosetitimer(struct proc *p, int which, struct itimerval *itvp)
|
|
{
|
|
struct timespec now;
|
|
struct ptimers *pts;
|
|
struct ptimer *pt, *spare;
|
|
|
|
if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Don't bother allocating data structures if the process just
|
|
* wants to clear the timer.
|
|
*/
|
|
spare = NULL;
|
|
pts = p->p_timers;
|
|
retry:
|
|
if (!timerisset(&itvp->it_value) && (pts == NULL ||
|
|
pts->pts_timers[which] == NULL))
|
|
return (0);
|
|
if (pts == NULL)
|
|
pts = timers_alloc(p);
|
|
mutex_spin_enter(&timer_lock);
|
|
pt = pts->pts_timers[which];
|
|
if (pt == NULL) {
|
|
if (spare == NULL) {
|
|
mutex_spin_exit(&timer_lock);
|
|
spare = pool_get(&ptimer_pool, PR_WAITOK);
|
|
goto retry;
|
|
}
|
|
pt = spare;
|
|
spare = NULL;
|
|
pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
|
|
pt->pt_ev.sigev_value.sival_int = which;
|
|
pt->pt_overruns = 0;
|
|
pt->pt_proc = p;
|
|
pt->pt_type = which;
|
|
pt->pt_entry = which;
|
|
pt->pt_queued = false;
|
|
if (pt->pt_type == CLOCK_REALTIME)
|
|
callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
|
|
else
|
|
pt->pt_active = 0;
|
|
|
|
switch (which) {
|
|
case ITIMER_REAL:
|
|
pt->pt_ev.sigev_signo = SIGALRM;
|
|
break;
|
|
case ITIMER_VIRTUAL:
|
|
pt->pt_ev.sigev_signo = SIGVTALRM;
|
|
break;
|
|
case ITIMER_PROF:
|
|
pt->pt_ev.sigev_signo = SIGPROF;
|
|
break;
|
|
}
|
|
pts->pts_timers[which] = pt;
|
|
}
|
|
|
|
TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
|
|
TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
|
|
|
|
if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
|
|
/* Convert to absolute time */
|
|
/* XXX need to wrap in splclock for timecounters case? */
|
|
getnanotime(&now);
|
|
timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
|
|
}
|
|
timer_settime(pt);
|
|
mutex_spin_exit(&timer_lock);
|
|
if (spare != NULL)
|
|
pool_put(&ptimer_pool, spare);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Utility routines to manage the array of pointers to timers. */
|
|
struct ptimers *
|
|
timers_alloc(struct proc *p)
|
|
{
|
|
struct ptimers *pts;
|
|
int i;
|
|
|
|
pts = pool_get(&ptimers_pool, PR_WAITOK);
|
|
LIST_INIT(&pts->pts_virtual);
|
|
LIST_INIT(&pts->pts_prof);
|
|
for (i = 0; i < TIMER_MAX; i++)
|
|
pts->pts_timers[i] = NULL;
|
|
pts->pts_fired = 0;
|
|
mutex_spin_enter(&timer_lock);
|
|
if (p->p_timers == NULL) {
|
|
p->p_timers = pts;
|
|
mutex_spin_exit(&timer_lock);
|
|
return pts;
|
|
}
|
|
mutex_spin_exit(&timer_lock);
|
|
pool_put(&ptimers_pool, pts);
|
|
return p->p_timers;
|
|
}
|
|
|
|
/*
|
|
* Clean up the per-process timers. If "which" is set to TIMERS_ALL,
|
|
* then clean up all timers and free all the data structures. If
|
|
* "which" is set to TIMERS_POSIX, only clean up the timers allocated
|
|
* by timer_create(), not the BSD setitimer() timers, and only free the
|
|
* structure if none of those remain.
|
|
*/
|
|
void
|
|
timers_free(struct proc *p, int which)
|
|
{
|
|
struct ptimers *pts;
|
|
struct ptimer *ptn;
|
|
struct timespec ts;
|
|
int i;
|
|
|
|
if (p->p_timers == NULL)
|
|
return;
|
|
|
|
pts = p->p_timers;
|
|
mutex_spin_enter(&timer_lock);
|
|
if (which == TIMERS_ALL) {
|
|
p->p_timers = NULL;
|
|
i = 0;
|
|
} else {
|
|
timespecclear(&ts);
|
|
for (ptn = LIST_FIRST(&pts->pts_virtual);
|
|
ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
|
|
ptn = LIST_NEXT(ptn, pt_list)) {
|
|
KASSERT(ptn->pt_type != CLOCK_REALTIME);
|
|
timespecadd(&ts, &ptn->pt_time.it_value, &ts);
|
|
}
|
|
LIST_FIRST(&pts->pts_virtual) = NULL;
|
|
if (ptn) {
|
|
KASSERT(ptn->pt_type != CLOCK_REALTIME);
|
|
timespecadd(&ts, &ptn->pt_time.it_value,
|
|
&ptn->pt_time.it_value);
|
|
LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
|
|
}
|
|
timespecclear(&ts);
|
|
for (ptn = LIST_FIRST(&pts->pts_prof);
|
|
ptn && ptn != pts->pts_timers[ITIMER_PROF];
|
|
ptn = LIST_NEXT(ptn, pt_list)) {
|
|
KASSERT(ptn->pt_type != CLOCK_REALTIME);
|
|
timespecadd(&ts, &ptn->pt_time.it_value, &ts);
|
|
}
|
|
LIST_FIRST(&pts->pts_prof) = NULL;
|
|
if (ptn) {
|
|
KASSERT(ptn->pt_type != CLOCK_REALTIME);
|
|
timespecadd(&ts, &ptn->pt_time.it_value,
|
|
&ptn->pt_time.it_value);
|
|
LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
|
|
}
|
|
i = 3;
|
|
}
|
|
for ( ; i < TIMER_MAX; i++) {
|
|
if (pts->pts_timers[i] != NULL) {
|
|
itimerfree(pts, i);
|
|
mutex_spin_enter(&timer_lock);
|
|
}
|
|
}
|
|
if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
|
|
pts->pts_timers[2] == NULL) {
|
|
p->p_timers = NULL;
|
|
mutex_spin_exit(&timer_lock);
|
|
pool_put(&ptimers_pool, pts);
|
|
} else
|
|
mutex_spin_exit(&timer_lock);
|
|
}
|
|
|
|
static void
|
|
itimerfree(struct ptimers *pts, int index)
|
|
{
|
|
struct ptimer *pt;
|
|
|
|
KASSERT(mutex_owned(&timer_lock));
|
|
|
|
pt = pts->pts_timers[index];
|
|
pts->pts_timers[index] = NULL;
|
|
if (pt->pt_type == CLOCK_REALTIME)
|
|
callout_halt(&pt->pt_ch, &timer_lock);
|
|
else if (pt->pt_queued)
|
|
TAILQ_REMOVE(&timer_queue, pt, pt_chain);
|
|
mutex_spin_exit(&timer_lock);
|
|
if (pt->pt_type == CLOCK_REALTIME)
|
|
callout_destroy(&pt->pt_ch);
|
|
pool_put(&ptimer_pool, pt);
|
|
}
|
|
|
|
/*
|
|
* Decrement an interval timer by a specified number
|
|
* of nanoseconds, which must be less than a second,
|
|
* i.e. < 1000000000. If the timer expires, then reload
|
|
* it. In this case, carry over (nsec - old value) to
|
|
* reduce the value reloaded into the timer so that
|
|
* the timer does not drift. This routine assumes
|
|
* that it is called in a context where the timers
|
|
* on which it is operating cannot change in value.
|
|
*/
|
|
static int
|
|
itimerdecr(struct ptimer *pt, int nsec)
|
|
{
|
|
struct itimerspec *itp;
|
|
|
|
KASSERT(mutex_owned(&timer_lock));
|
|
|
|
itp = &pt->pt_time;
|
|
if (itp->it_value.tv_nsec < nsec) {
|
|
if (itp->it_value.tv_sec == 0) {
|
|
/* expired, and already in next interval */
|
|
nsec -= itp->it_value.tv_nsec;
|
|
goto expire;
|
|
}
|
|
itp->it_value.tv_nsec += 1000000000;
|
|
itp->it_value.tv_sec--;
|
|
}
|
|
itp->it_value.tv_nsec -= nsec;
|
|
nsec = 0;
|
|
if (timespecisset(&itp->it_value))
|
|
return (1);
|
|
/* expired, exactly at end of interval */
|
|
expire:
|
|
if (timespecisset(&itp->it_interval)) {
|
|
itp->it_value = itp->it_interval;
|
|
itp->it_value.tv_nsec -= nsec;
|
|
if (itp->it_value.tv_nsec < 0) {
|
|
itp->it_value.tv_nsec += 1000000000;
|
|
itp->it_value.tv_sec--;
|
|
}
|
|
timer_settime(pt);
|
|
} else
|
|
itp->it_value.tv_nsec = 0; /* sec is already 0 */
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
itimerfire(struct ptimer *pt)
|
|
{
|
|
|
|
KASSERT(mutex_owned(&timer_lock));
|
|
|
|
/*
|
|
* XXX Can overrun, but we don't do signal queueing yet, anyway.
|
|
* XXX Relying on the clock interrupt is stupid.
|
|
*/
|
|
if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
|
|
(pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
|
|
pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
|
|
return;
|
|
TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
|
|
pt->pt_queued = true;
|
|
softint_schedule(timer_sih);
|
|
}
|
|
|
|
void
|
|
timer_tick(lwp_t *l, bool user)
|
|
{
|
|
struct ptimers *pts;
|
|
struct ptimer *pt;
|
|
proc_t *p;
|
|
|
|
p = l->l_proc;
|
|
if (p->p_timers == NULL)
|
|
return;
|
|
|
|
mutex_spin_enter(&timer_lock);
|
|
if ((pts = l->l_proc->p_timers) != NULL) {
|
|
/*
|
|
* Run current process's virtual and profile time, as needed.
|
|
*/
|
|
if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
|
|
if (itimerdecr(pt, tick * 1000) == 0)
|
|
itimerfire(pt);
|
|
if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
|
|
if (itimerdecr(pt, tick * 1000) == 0)
|
|
itimerfire(pt);
|
|
}
|
|
mutex_spin_exit(&timer_lock);
|
|
}
|
|
|
|
#ifdef KERN_SA
|
|
/*
|
|
* timer_sa_intr:
|
|
*
|
|
* SIGEV_SA handling for timer_intr(). We are called (and return)
|
|
* with the timer lock held. We know that the process had SA enabled
|
|
* when this timer was enqueued. As timer_intr() is a soft interrupt
|
|
* handler, SA should still be enabled by the time we get here.
|
|
*/
|
|
static void
|
|
timer_sa_intr(struct ptimer *pt, proc_t *p)
|
|
{
|
|
unsigned int i;
|
|
struct sadata *sa;
|
|
struct sadata_vp *vp;
|
|
|
|
/* Cause the process to generate an upcall when it returns. */
|
|
if (!p->p_timerpend) {
|
|
/*
|
|
* XXX stop signals can be processed inside tsleep,
|
|
* which can be inside sa_yield's inner loop, which
|
|
* makes testing for sa_idle alone insuffucent to
|
|
* determine if we really should call setrunnable.
|
|
*/
|
|
pt->pt_poverruns = pt->pt_overruns;
|
|
pt->pt_overruns = 0;
|
|
i = 1 << pt->pt_entry;
|
|
p->p_timers->pts_fired = i;
|
|
p->p_timerpend = 1;
|
|
|
|
sa = p->p_sa;
|
|
mutex_enter(&sa->sa_mutex);
|
|
SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
|
|
struct lwp *vp_lwp = vp->savp_lwp;
|
|
lwp_lock(vp_lwp);
|
|
lwp_need_userret(vp_lwp);
|
|
if (vp_lwp->l_flag & LW_SA_IDLE) {
|
|
vp_lwp->l_flag &= ~LW_SA_IDLE;
|
|
lwp_unsleep(vp_lwp, true);
|
|
break;
|
|
}
|
|
lwp_unlock(vp_lwp);
|
|
}
|
|
mutex_exit(&sa->sa_mutex);
|
|
} else {
|
|
i = 1 << pt->pt_entry;
|
|
if ((p->p_timers->pts_fired & i) == 0) {
|
|
pt->pt_poverruns = pt->pt_overruns;
|
|
pt->pt_overruns = 0;
|
|
p->p_timers->pts_fired |= i;
|
|
} else
|
|
pt->pt_overruns++;
|
|
}
|
|
}
|
|
#endif /* KERN_SA */
|
|
|
|
static void
|
|
timer_intr(void *cookie)
|
|
{
|
|
ksiginfo_t ksi;
|
|
struct ptimer *pt;
|
|
proc_t *p;
|
|
|
|
mutex_enter(proc_lock);
|
|
mutex_spin_enter(&timer_lock);
|
|
while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
|
|
TAILQ_REMOVE(&timer_queue, pt, pt_chain);
|
|
KASSERT(pt->pt_queued);
|
|
pt->pt_queued = false;
|
|
|
|
if (pt->pt_proc->p_timers == NULL) {
|
|
/* Process is dying. */
|
|
continue;
|
|
}
|
|
p = pt->pt_proc;
|
|
#ifdef KERN_SA
|
|
if (pt->pt_ev.sigev_notify == SIGEV_SA) {
|
|
timer_sa_intr(pt, p);
|
|
continue;
|
|
}
|
|
#endif /* KERN_SA */
|
|
if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
|
|
continue;
|
|
if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
|
|
pt->pt_overruns++;
|
|
continue;
|
|
}
|
|
|
|
KSI_INIT(&ksi);
|
|
ksi.ksi_signo = pt->pt_ev.sigev_signo;
|
|
ksi.ksi_code = SI_TIMER;
|
|
ksi.ksi_value = pt->pt_ev.sigev_value;
|
|
pt->pt_poverruns = pt->pt_overruns;
|
|
pt->pt_overruns = 0;
|
|
mutex_spin_exit(&timer_lock);
|
|
kpsignal(p, &ksi, NULL);
|
|
mutex_spin_enter(&timer_lock);
|
|
}
|
|
mutex_spin_exit(&timer_lock);
|
|
mutex_exit(proc_lock);
|
|
}
|
|
|
|
/*
|
|
* Check if the time will wrap if set to ts.
|
|
*
|
|
* ts - timespec describing the new time
|
|
* delta - the delta between the current time and ts
|
|
*/
|
|
bool
|
|
time_wraps(struct timespec *ts, struct timespec *delta)
|
|
{
|
|
|
|
/*
|
|
* Don't allow the time to be set forward so far it
|
|
* will wrap and become negative, thus allowing an
|
|
* attacker to bypass the next check below. The
|
|
* cutoff is 1 year before rollover occurs, so even
|
|
* if the attacker uses adjtime(2) to move the time
|
|
* past the cutoff, it will take a very long time
|
|
* to get to the wrap point.
|
|
*/
|
|
if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
|
|
(delta->tv_sec < 0 || delta->tv_nsec < 0))
|
|
return true;
|
|
|
|
return false;
|
|
}
|