828 lines
18 KiB
C
828 lines
18 KiB
C
/* $NetBSD: kern_lwp.c,v 1.42 2006/10/08 22:57:11 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Nathan J. Williams.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.42 2006/10/08 22:57:11 christos Exp $");
|
|
|
|
#include "opt_multiprocessor.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/savar.h>
|
|
#include <sys/types.h>
|
|
#include <sys/ucontext.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/kauth.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
POOL_INIT(lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
|
|
&pool_allocator_nointr);
|
|
POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
|
|
&pool_allocator_nointr);
|
|
|
|
static specificdata_domain_t lwp_specificdata_domain;
|
|
|
|
struct lwplist alllwp;
|
|
|
|
#define LWP_DEBUG
|
|
|
|
#ifdef LWP_DEBUG
|
|
int lwp_debug = 0;
|
|
#define DPRINTF(x) if (lwp_debug) printf x
|
|
#else
|
|
#define DPRINTF(x)
|
|
#endif
|
|
|
|
void
|
|
lwpinit(void)
|
|
{
|
|
|
|
lwp_specificdata_domain = specificdata_domain_create();
|
|
KASSERT(lwp_specificdata_domain != NULL);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys__lwp_create(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys__lwp_create_args /* {
|
|
syscallarg(const ucontext_t *) ucp;
|
|
syscallarg(u_long) flags;
|
|
syscallarg(lwpid_t *) new_lwp;
|
|
} */ *uap = v;
|
|
struct proc *p = l->l_proc;
|
|
struct lwp *l2;
|
|
vaddr_t uaddr;
|
|
boolean_t inmem;
|
|
ucontext_t *newuc;
|
|
int s, error;
|
|
|
|
if (p->p_flag & P_SA)
|
|
return EINVAL;
|
|
|
|
newuc = pool_get(&lwp_uc_pool, PR_WAITOK);
|
|
|
|
error = copyin(SCARG(uap, ucp), newuc,
|
|
l->l_proc->p_emul->e_sa->sae_ucsize);
|
|
if (error) {
|
|
pool_put(&lwp_uc_pool, newuc);
|
|
return (error);
|
|
}
|
|
|
|
/* XXX check against resource limits */
|
|
|
|
inmem = uvm_uarea_alloc(&uaddr);
|
|
if (__predict_false(uaddr == 0)) {
|
|
pool_put(&lwp_uc_pool, newuc);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* XXX flags:
|
|
* __LWP_ASLWP is probably needed for Solaris compat.
|
|
*/
|
|
|
|
newlwp(l, p, uaddr, inmem,
|
|
SCARG(uap, flags) & LWP_DETACHED,
|
|
NULL, 0, startlwp, newuc, &l2);
|
|
|
|
if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0) {
|
|
SCHED_LOCK(s);
|
|
l2->l_stat = LSRUN;
|
|
setrunqueue(l2);
|
|
p->p_nrlwps++;
|
|
SCHED_UNLOCK(s);
|
|
} else {
|
|
l2->l_stat = LSSUSPENDED;
|
|
}
|
|
|
|
error = copyout(&l2->l_lid, SCARG(uap, new_lwp),
|
|
sizeof(l2->l_lid));
|
|
if (error) {
|
|
/* XXX We should destroy the LWP. */
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
sys__lwp_exit(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
|
|
lwp_exit(l);
|
|
/* NOTREACHED */
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
sys__lwp_self(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
|
|
*retval = l->l_lid;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
sys__lwp_getprivate(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
|
|
*retval = (uintptr_t) l->l_private;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
sys__lwp_setprivate(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys__lwp_setprivate_args /* {
|
|
syscallarg(void *) ptr;
|
|
} */ *uap = v;
|
|
|
|
l->l_private = SCARG(uap, ptr);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
sys__lwp_suspend(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys__lwp_suspend_args /* {
|
|
syscallarg(lwpid_t) target;
|
|
} */ *uap = v;
|
|
int target_lid;
|
|
struct proc *p = l->l_proc;
|
|
struct lwp *t;
|
|
struct lwp *t2;
|
|
|
|
if (p->p_flag & P_SA)
|
|
return EINVAL;
|
|
|
|
target_lid = SCARG(uap, target);
|
|
|
|
LIST_FOREACH(t, &p->p_lwps, l_sibling)
|
|
if (t->l_lid == target_lid)
|
|
break;
|
|
|
|
if (t == NULL)
|
|
return (ESRCH);
|
|
|
|
if (t == l) {
|
|
/*
|
|
* Check for deadlock, which is only possible
|
|
* when we're suspending ourself.
|
|
*/
|
|
LIST_FOREACH(t2, &p->p_lwps, l_sibling) {
|
|
if ((t2 != l) && (t2->l_stat != LSSUSPENDED))
|
|
break;
|
|
}
|
|
|
|
if (t2 == NULL) /* All other LWPs are suspended */
|
|
return (EDEADLK);
|
|
}
|
|
|
|
return lwp_suspend(l, t);
|
|
}
|
|
|
|
inline int
|
|
lwp_suspend(struct lwp *l, struct lwp *t)
|
|
{
|
|
struct proc *p = t->l_proc;
|
|
int s;
|
|
|
|
if (t == l) {
|
|
SCHED_LOCK(s);
|
|
KASSERT(l->l_stat == LSONPROC);
|
|
l->l_stat = LSSUSPENDED;
|
|
p->p_nrlwps--;
|
|
/* XXX NJWLWP check if this makes sense here: */
|
|
p->p_stats->p_ru.ru_nvcsw++;
|
|
mi_switch(l, NULL);
|
|
SCHED_ASSERT_UNLOCKED();
|
|
splx(s);
|
|
} else {
|
|
switch (t->l_stat) {
|
|
case LSSUSPENDED:
|
|
return (0); /* _lwp_suspend() is idempotent */
|
|
case LSRUN:
|
|
SCHED_LOCK(s);
|
|
remrunqueue(t);
|
|
t->l_stat = LSSUSPENDED;
|
|
p->p_nrlwps--;
|
|
SCHED_UNLOCK(s);
|
|
break;
|
|
case LSSLEEP:
|
|
t->l_stat = LSSUSPENDED;
|
|
break;
|
|
case LSIDL:
|
|
case LSZOMB:
|
|
return (EINTR); /* It's what Solaris does..... */
|
|
case LSSTOP:
|
|
panic("_lwp_suspend: Stopped LWP in running process!");
|
|
break;
|
|
case LSONPROC:
|
|
/* XXX multiprocessor LWPs? Implement me! */
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
sys__lwp_continue(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys__lwp_continue_args /* {
|
|
syscallarg(lwpid_t) target;
|
|
} */ *uap = v;
|
|
int s, target_lid;
|
|
struct proc *p = l->l_proc;
|
|
struct lwp *t;
|
|
|
|
if (p->p_flag & P_SA)
|
|
return EINVAL;
|
|
|
|
target_lid = SCARG(uap, target);
|
|
|
|
LIST_FOREACH(t, &p->p_lwps, l_sibling)
|
|
if (t->l_lid == target_lid)
|
|
break;
|
|
|
|
if (t == NULL)
|
|
return (ESRCH);
|
|
|
|
SCHED_LOCK(s);
|
|
lwp_continue(t);
|
|
SCHED_UNLOCK(s);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
lwp_continue(struct lwp *l)
|
|
{
|
|
|
|
DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
|
|
l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
|
|
l->l_wchan));
|
|
|
|
if (l->l_stat != LSSUSPENDED)
|
|
return;
|
|
|
|
if (l->l_wchan == 0) {
|
|
/* LWP was runnable before being suspended. */
|
|
setrunnable(l);
|
|
} else {
|
|
/* LWP was sleeping before being suspended. */
|
|
l->l_stat = LSSLEEP;
|
|
}
|
|
}
|
|
|
|
int
|
|
sys__lwp_wakeup(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys__lwp_wakeup_args /* {
|
|
syscallarg(lwpid_t) target;
|
|
} */ *uap = v;
|
|
lwpid_t target_lid;
|
|
struct lwp *t;
|
|
struct proc *p;
|
|
int error;
|
|
int s;
|
|
|
|
p = l->l_proc;
|
|
target_lid = SCARG(uap, target);
|
|
|
|
SCHED_LOCK(s);
|
|
|
|
LIST_FOREACH(t, &p->p_lwps, l_sibling)
|
|
if (t->l_lid == target_lid)
|
|
break;
|
|
|
|
if (t == NULL) {
|
|
error = ESRCH;
|
|
goto exit;
|
|
}
|
|
|
|
if (t->l_stat != LSSLEEP) {
|
|
error = ENODEV;
|
|
goto exit;
|
|
}
|
|
|
|
if ((t->l_flag & L_SINTR) == 0) {
|
|
error = EBUSY;
|
|
goto exit;
|
|
}
|
|
/*
|
|
* Tell ltsleep to wakeup.
|
|
*/
|
|
t->l_flag |= L_CANCELLED;
|
|
|
|
setrunnable(t);
|
|
error = 0;
|
|
exit:
|
|
SCHED_UNLOCK(s);
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
sys__lwp_wait(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys__lwp_wait_args /* {
|
|
syscallarg(lwpid_t) wait_for;
|
|
syscallarg(lwpid_t *) departed;
|
|
} */ *uap = v;
|
|
int error;
|
|
lwpid_t dep;
|
|
|
|
error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
|
|
if (error)
|
|
return (error);
|
|
|
|
if (SCARG(uap, departed)) {
|
|
error = copyout(&dep, SCARG(uap, departed),
|
|
sizeof(dep));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
struct lwp *l2, *l3;
|
|
int nfound, error, wpri;
|
|
static const char waitstr1[] = "lwpwait";
|
|
static const char waitstr2[] = "lwpwait2";
|
|
|
|
DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
|
|
p->p_pid, l->l_lid, lid));
|
|
|
|
if (lid == l->l_lid)
|
|
return (EDEADLK); /* Waiting for ourselves makes no sense. */
|
|
|
|
wpri = PWAIT |
|
|
((flags & LWPWAIT_EXITCONTROL) ? PNOEXITERR : PCATCH);
|
|
loop:
|
|
nfound = 0;
|
|
LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
|
|
if ((l2 == l) || (l2->l_flag & L_DETACHED) ||
|
|
((lid != 0) && (lid != l2->l_lid)))
|
|
continue;
|
|
|
|
nfound++;
|
|
if (l2->l_stat == LSZOMB) {
|
|
if (departed)
|
|
*departed = l2->l_lid;
|
|
|
|
simple_lock(&p->p_lock);
|
|
LIST_REMOVE(l2, l_sibling);
|
|
p->p_nlwps--;
|
|
p->p_nzlwps--;
|
|
simple_unlock(&p->p_lock);
|
|
/* XXX decrement limits */
|
|
|
|
specificdata_fini(lwp_specificdata_domain,
|
|
&l->l_specdataref);
|
|
pool_put(&lwp_pool, l2);
|
|
|
|
return (0);
|
|
} else if (l2->l_stat == LSSLEEP ||
|
|
l2->l_stat == LSSUSPENDED) {
|
|
/* Deadlock checks.
|
|
* 1. If all other LWPs are waiting for exits
|
|
* or suspended, we would deadlock.
|
|
*/
|
|
|
|
LIST_FOREACH(l3, &p->p_lwps, l_sibling) {
|
|
if (l3 != l && (l3->l_stat != LSSUSPENDED) &&
|
|
!(l3->l_stat == LSSLEEP &&
|
|
l3->l_wchan == (caddr_t) &p->p_nlwps))
|
|
break;
|
|
}
|
|
if (l3 == NULL) /* Everyone else is waiting. */
|
|
return (EDEADLK);
|
|
|
|
/* XXX we'd like to check for a cycle of waiting
|
|
* LWPs (specific LID waits, not any-LWP waits)
|
|
* and detect that sort of deadlock, but we don't
|
|
* have a good place to store the lwp that is
|
|
* being waited for. wchan is already filled with
|
|
* &p->p_nlwps, and putting the lwp address in
|
|
* there for deadlock tracing would require
|
|
* exiting LWPs to call wakeup on both their
|
|
* own address and &p->p_nlwps, to get threads
|
|
* sleeping on any LWP exiting.
|
|
*
|
|
* Revisit later. Maybe another auxillary
|
|
* storage location associated with sleeping
|
|
* is in order.
|
|
*/
|
|
}
|
|
}
|
|
|
|
if (nfound == 0)
|
|
return (ESRCH);
|
|
|
|
if ((error = tsleep((caddr_t) &p->p_nlwps, wpri,
|
|
(lid != 0) ? waitstr1 : waitstr2, 0)) != 0)
|
|
return (error);
|
|
|
|
goto loop;
|
|
}
|
|
|
|
|
|
int
|
|
newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
|
|
int flags, void *stack, size_t stacksize,
|
|
void (*func)(void *), void *arg, struct lwp **rnewlwpp)
|
|
{
|
|
struct lwp *l2;
|
|
int s, error;
|
|
|
|
l2 = pool_get(&lwp_pool, PR_WAITOK);
|
|
|
|
l2->l_stat = LSIDL;
|
|
l2->l_forw = l2->l_back = NULL;
|
|
l2->l_proc = p2;
|
|
|
|
lwp_initspecific(l2);
|
|
|
|
memset(&l2->l_startzero, 0,
|
|
(unsigned) ((caddr_t)&l2->l_endzero -
|
|
(caddr_t)&l2->l_startzero));
|
|
memcpy(&l2->l_startcopy, &l1->l_startcopy,
|
|
(unsigned) ((caddr_t)&l2->l_endcopy -
|
|
(caddr_t)&l2->l_startcopy));
|
|
|
|
#if !defined(MULTIPROCESSOR)
|
|
/*
|
|
* In the single-processor case, all processes will always run
|
|
* on the same CPU. So, initialize the child's CPU to the parent's
|
|
* now. In the multiprocessor case, the child's CPU will be
|
|
* initialized in the low-level context switch code when the
|
|
* process runs.
|
|
*/
|
|
KASSERT(l1->l_cpu != NULL);
|
|
l2->l_cpu = l1->l_cpu;
|
|
#else
|
|
/*
|
|
* zero child's CPU pointer so we don't get trash.
|
|
*/
|
|
l2->l_cpu = NULL;
|
|
#endif /* ! MULTIPROCESSOR */
|
|
|
|
l2->l_flag = inmem ? L_INMEM : 0;
|
|
l2->l_flag |= (flags & LWP_DETACHED) ? L_DETACHED : 0;
|
|
|
|
lwp_update_creds(l2);
|
|
callout_init(&l2->l_tsleep_ch);
|
|
|
|
if (rnewlwpp != NULL)
|
|
*rnewlwpp = l2;
|
|
|
|
l2->l_addr = UAREA_TO_USER(uaddr);
|
|
uvm_lwp_fork(l1, l2, stack, stacksize, func,
|
|
(arg != NULL) ? arg : l2);
|
|
|
|
simple_lock(&p2->p_lock);
|
|
l2->l_lid = ++p2->p_nlwpid;
|
|
LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
|
|
p2->p_nlwps++;
|
|
simple_unlock(&p2->p_lock);
|
|
|
|
/* XXX should be locked differently... */
|
|
s = proclist_lock_write();
|
|
LIST_INSERT_HEAD(&alllwp, l2, l_list);
|
|
proclist_unlock_write(s);
|
|
|
|
if (p2->p_emul->e_lwp_fork)
|
|
(*p2->p_emul->e_lwp_fork)(l1, l2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Quit the process. This will call cpu_exit, which will call cpu_switch,
|
|
* so this can only be used meaningfully if you're willing to switch away.
|
|
* Calling with l!=curlwp would be weird.
|
|
*/
|
|
void
|
|
lwp_exit(struct lwp *l)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
int s;
|
|
|
|
DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
|
|
DPRINTF((" nlwps: %d nrlwps %d nzlwps: %d\n",
|
|
p->p_nlwps, p->p_nrlwps, p->p_nzlwps));
|
|
|
|
if (p->p_emul->e_lwp_exit)
|
|
(*p->p_emul->e_lwp_exit)(l);
|
|
|
|
/*
|
|
* If we are the last live LWP in a process, we need to exit
|
|
* the entire process (if that's not already going on). We do
|
|
* so with an exit status of zero, because it's a "controlled"
|
|
* exit, and because that's what Solaris does.
|
|
*/
|
|
if (((p->p_nlwps - p->p_nzlwps) == 1) && ((p->p_flag & P_WEXIT) == 0)) {
|
|
DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
|
|
p->p_pid, l->l_lid));
|
|
exit1(l, 0);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
s = proclist_lock_write();
|
|
LIST_REMOVE(l, l_list);
|
|
proclist_unlock_write(s);
|
|
|
|
/*
|
|
* Release our cached credentials, and collate accounting flags.
|
|
*/
|
|
kauth_cred_free(l->l_cred);
|
|
simple_lock(&p->p_lock);
|
|
p->p_acflag |= l->l_acflag;
|
|
simple_unlock(&p->p_lock);
|
|
|
|
/* Free MD LWP resources */
|
|
#ifndef __NO_CPU_LWP_FREE
|
|
cpu_lwp_free(l, 0);
|
|
#endif
|
|
|
|
pmap_deactivate(l);
|
|
|
|
if (l->l_flag & L_DETACHED) {
|
|
simple_lock(&p->p_lock);
|
|
LIST_REMOVE(l, l_sibling);
|
|
p->p_nlwps--;
|
|
simple_unlock(&p->p_lock);
|
|
|
|
curlwp = NULL;
|
|
l->l_proc = NULL;
|
|
}
|
|
|
|
SCHED_LOCK(s);
|
|
p->p_nrlwps--;
|
|
l->l_stat = LSDEAD;
|
|
SCHED_UNLOCK(s);
|
|
|
|
/* This LWP no longer needs to hold the kernel lock. */
|
|
KERNEL_PROC_UNLOCK(l);
|
|
|
|
/* cpu_exit() will not return */
|
|
cpu_exit(l);
|
|
}
|
|
|
|
/*
|
|
* We are called from cpu_exit() once it is safe to schedule the
|
|
* dead process's resources to be freed (i.e., once we've switched to
|
|
* the idle PCB for the current CPU).
|
|
*
|
|
* NOTE: One must be careful with locking in this routine. It's
|
|
* called from a critical section in machine-dependent code, so
|
|
* we should refrain from changing any interrupt state.
|
|
*/
|
|
void
|
|
lwp_exit2(struct lwp *l)
|
|
{
|
|
struct proc *p;
|
|
|
|
KERNEL_LOCK(LK_EXCLUSIVE);
|
|
/*
|
|
* Free the VM resources we're still holding on to.
|
|
*/
|
|
uvm_lwp_exit(l);
|
|
|
|
if (l->l_flag & L_DETACHED) {
|
|
/* Nobody waits for detached LWPs. */
|
|
specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
|
|
pool_put(&lwp_pool, l);
|
|
KERNEL_UNLOCK();
|
|
} else {
|
|
l->l_stat = LSZOMB;
|
|
p = l->l_proc;
|
|
p->p_nzlwps++;
|
|
KERNEL_UNLOCK();
|
|
wakeup(&p->p_nlwps);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pick a LWP to represent the process for those operations which
|
|
* want information about a "process" that is actually associated
|
|
* with a LWP.
|
|
*/
|
|
struct lwp *
|
|
proc_representative_lwp(struct proc *p)
|
|
{
|
|
struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
|
|
struct lwp *signalled;
|
|
|
|
/* Trivial case: only one LWP */
|
|
if (p->p_nlwps == 1)
|
|
return (LIST_FIRST(&p->p_lwps));
|
|
|
|
switch (p->p_stat) {
|
|
case SSTOP:
|
|
case SACTIVE:
|
|
/* Pick the most live LWP */
|
|
onproc = running = sleeping = stopped = suspended = NULL;
|
|
signalled = NULL;
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
if (l->l_lid == p->p_sigctx.ps_lwp)
|
|
signalled = l;
|
|
switch (l->l_stat) {
|
|
case LSONPROC:
|
|
onproc = l;
|
|
break;
|
|
case LSRUN:
|
|
running = l;
|
|
break;
|
|
case LSSLEEP:
|
|
sleeping = l;
|
|
break;
|
|
case LSSTOP:
|
|
stopped = l;
|
|
break;
|
|
case LSSUSPENDED:
|
|
suspended = l;
|
|
break;
|
|
}
|
|
}
|
|
if (signalled)
|
|
return signalled;
|
|
if (onproc)
|
|
return onproc;
|
|
if (running)
|
|
return running;
|
|
if (sleeping)
|
|
return sleeping;
|
|
if (stopped)
|
|
return stopped;
|
|
if (suspended)
|
|
return suspended;
|
|
break;
|
|
case SZOMB:
|
|
/* Doesn't really matter... */
|
|
return (LIST_FIRST(&p->p_lwps));
|
|
#ifdef DIAGNOSTIC
|
|
case SIDL:
|
|
/* We have more than one LWP and we're in SIDL?
|
|
* How'd that happen?
|
|
*/
|
|
panic("Too many LWPs (%d) in SIDL process %d (%s)",
|
|
p->p_nrlwps, p->p_pid, p->p_comm);
|
|
default:
|
|
panic("Process %d (%s) in unknown state %d",
|
|
p->p_pid, p->p_comm, p->p_stat);
|
|
#endif
|
|
}
|
|
|
|
panic("proc_representative_lwp: couldn't find a lwp for process"
|
|
" %d (%s)", p->p_pid, p->p_comm);
|
|
/* NOTREACHED */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Update an LWP's cached credentials to mirror the process' master copy.
|
|
*
|
|
* This happens early in the syscall path, on user trap, and on LWP
|
|
* creation. A long-running LWP can also voluntarily choose to update
|
|
* it's credentials by calling this routine. This may be called from
|
|
* LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
|
|
*/
|
|
void
|
|
lwp_update_creds(struct lwp *l)
|
|
{
|
|
kauth_cred_t oc;
|
|
struct proc *p;
|
|
|
|
p = l->l_proc;
|
|
oc = l->l_cred;
|
|
|
|
simple_lock(&p->p_lock);
|
|
kauth_cred_hold(p->p_cred);
|
|
l->l_cred = p->p_cred;
|
|
simple_unlock(&p->p_lock);
|
|
if (oc != NULL)
|
|
kauth_cred_free(oc);
|
|
}
|
|
|
|
/*
|
|
* lwp_specific_key_create --
|
|
* Create a key for subsystem lwp-specific data.
|
|
*/
|
|
int
|
|
lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
|
|
{
|
|
|
|
return (specificdata_key_create(lwp_specificdata_domain,
|
|
keyp, dtor));
|
|
}
|
|
|
|
/*
|
|
* lwp_specific_key_delete --
|
|
* Delete a key for subsystem lwp-specific data.
|
|
*/
|
|
void
|
|
lwp_specific_key_delete(specificdata_key_t key)
|
|
{
|
|
|
|
specificdata_key_delete(lwp_specificdata_domain, key);
|
|
}
|
|
|
|
void
|
|
lwp_initspecific(struct lwp *l)
|
|
{
|
|
int error;
|
|
error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
|
|
KASSERT(error == 0);
|
|
}
|
|
|
|
/*
|
|
* lwp_getspecific --
|
|
* Return lwp-specific data corresponding to the specified key.
|
|
*
|
|
* Note: LWP specific data is NOT INTERLOCKED. An LWP should access
|
|
* only its OWN SPECIFIC DATA. If it is necessary to access another
|
|
* LWP's specifc data, care must be taken to ensure that doing so
|
|
* would not cause internal data structure inconsistency (i.e. caller
|
|
* can guarantee that the target LWP is not inside an lwp_getspecific()
|
|
* or lwp_setspecific() call).
|
|
*/
|
|
void *
|
|
lwp_getspecific(struct lwp *l, specificdata_key_t key)
|
|
{
|
|
|
|
return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
|
|
&l->l_specdataref, key));
|
|
}
|
|
|
|
/*
|
|
* lwp_setspecific --
|
|
* Set lwp-specific data corresponding to the specified key.
|
|
*/
|
|
void
|
|
lwp_setspecific(struct lwp *l, specificdata_key_t key, void *data)
|
|
{
|
|
|
|
specificdata_setspecific(lwp_specificdata_domain,
|
|
&l->l_specdataref, key, data);
|
|
}
|