NetBSD/gnu/dist/gcc/bc-optab.c

807 lines
22 KiB
C

/* Bytecode conversion definitions for GNU C-compiler.
Copyright (C) 1993, 1994 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "tree.h"
#include "rtl.h"
#include "machmode.h"
#include "obstack.h"
#include "bytecode.h"
#include "bc-typecd.h"
#include "bc-opcode.h"
#include "bc-optab.h"
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef NEED_DECLARATION_FREE
extern void free PROTO((void *));
#endif
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
extern char *xmalloc ();
/* Table relating interpreter typecodes to machine modes. */
#define GET_TYPECODE_MODE(CODE) (typecode_mode[((int) CODE)])
enum machine_mode typecode_mode[] = {
#define DEFTYPECODE(CODE, NAME, MODE, TYPE) MODE,
#include "bc-typecd.def"
#undef DEFTYPECODE
};
/* Machine mode to type code map */
static enum typecode signed_mode_to_code_map[MAX_MACHINE_MODE+1];
static enum typecode unsigned_mode_to_code_map[MAX_MACHINE_MODE+1];
#define GET_TYPECODE_SIZE(CODE) GET_MODE_SIZE (GET_TYPECODE_MODE (CODE))
#define BIG_ARBITRARY_NUMBER 100000
/* Table of recipes for conversions among scalar types, to be filled
in as needed at run time. */
static struct conversion_recipe
{
unsigned char *opcodes; /* Bytecodes to emit in order. */
int nopcodes; /* Count of bytecodes. */
int cost; /* A rather arbitrary cost function. */
} conversion_recipe[NUM_TYPECODES][NUM_TYPECODES];
/* Binary operator tables. */
struct binary_operator optab_plus_expr[] = {
{ addSI, SIcode, SIcode, SIcode },
{ addDI, DIcode, DIcode, DIcode },
{ addSF, SFcode, SFcode, SFcode },
{ addDF, DFcode, DFcode, DFcode },
{ addXF, XFcode, XFcode, XFcode },
{ addPSI, Pcode, Pcode, SIcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_minus_expr[] = {
{ subSI, SIcode, SIcode, SIcode },
{ subDI, DIcode, DIcode, DIcode },
{ subSF, SFcode, SFcode, SFcode },
{ subDF, DFcode, DFcode, DFcode },
{ subXF, XFcode, XFcode, XFcode },
{ subPP, SIcode, Pcode, Pcode },
{ -1, -1, -1, -1 },
};
/* The ordering of the tables for multiplicative operators
is such that unsigned operations will be preferred to signed
operations when one argument is unsigned. */
struct binary_operator optab_mult_expr[] = {
{ mulSU, SUcode, SUcode, SUcode },
{ mulDU, DUcode, DUcode, DUcode },
{ mulSI, SIcode, SIcode, SIcode },
{ mulDI, DIcode, DIcode, DIcode },
{ mulSF, SFcode, SFcode, SFcode },
{ mulDF, DFcode, DFcode, DFcode },
{ mulXF, XFcode, XFcode, XFcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_trunc_div_expr[] = {
{ divSU, SUcode, SUcode, SUcode },
{ divDU, DUcode, DUcode, DUcode },
{ divSI, SIcode, SIcode, SIcode },
{ divDI, DIcode, DIcode, DIcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_trunc_mod_expr[] = {
{ modSU, SUcode, SUcode, SUcode },
{ modDU, DUcode, DUcode, DUcode },
{ modSI, SIcode, SIcode, SIcode },
{ modDI, DIcode, DIcode, DIcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_rdiv_expr[] = {
{ divSF, SFcode, SFcode, SFcode },
{ divDF, DFcode, DFcode, DFcode },
{ divXF, XFcode, XFcode, XFcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_bit_and_expr[] = {
{ andSI, SIcode, SIcode, SIcode },
{ andDI, DIcode, DIcode, DIcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_bit_ior_expr[] = {
{ iorSI, SIcode, SIcode, SIcode },
{ iorDI, DIcode, DIcode, DIcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_bit_xor_expr[] = {
{ xorSI, SIcode, SIcode, SIcode },
{ xorDI, DIcode, DIcode, DIcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_lshift_expr[] = {
{ lshiftSI, SIcode, SIcode, SIcode },
{ lshiftSU, SUcode, SUcode, SIcode },
{ lshiftDI, DIcode, DIcode, SIcode },
{ lshiftDU, DUcode, DUcode, SIcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_rshift_expr[] = {
{ rshiftSI, SIcode, SIcode, SIcode },
{ rshiftSU, SUcode, SUcode, SIcode },
{ rshiftDI, DIcode, DIcode, SIcode },
{ rshiftDU, DUcode, DUcode, SIcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_truth_and_expr[] = {
{ andSI, SIcode, Tcode, Tcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_truth_or_expr[] = {
{ iorSI, SIcode, Tcode, Tcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_lt_expr[] = {
{ ltSI, Tcode, SIcode, SIcode },
{ ltSU, Tcode, SUcode, SUcode },
{ ltDI, Tcode, DIcode, DIcode },
{ ltDU, Tcode, DUcode, DUcode },
{ ltSF, Tcode, SFcode, SFcode },
{ ltDF, Tcode, DFcode, DFcode },
{ ltXF, Tcode, XFcode, XFcode },
{ ltP, Tcode, Pcode, Pcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_le_expr[] = {
{ leSI, Tcode, SIcode, SIcode },
{ leSU, Tcode, SUcode, SUcode },
{ leDI, Tcode, DIcode, DIcode },
{ leDU, Tcode, DUcode, DUcode },
{ leSF, Tcode, SFcode, SFcode },
{ leDF, Tcode, DFcode, DFcode },
{ leXF, Tcode, XFcode, XFcode },
{ leP, Tcode, Pcode, Pcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_ge_expr[] = {
{ geSI, Tcode, SIcode, SIcode },
{ geSU, Tcode, SUcode, SUcode },
{ geDI, Tcode, DIcode, DIcode },
{ geDU, Tcode, DUcode, DUcode },
{ geSF, Tcode, SFcode, SFcode },
{ geDF, Tcode, DFcode, DFcode },
{ geXF, Tcode, XFcode, XFcode },
{ geP, Tcode, Pcode, Pcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_gt_expr[] = {
{ gtSI, Tcode, SIcode, SIcode },
{ gtSU, Tcode, SUcode, SUcode },
{ gtDI, Tcode, DIcode, DIcode },
{ gtDU, Tcode, DUcode, DUcode },
{ gtSF, Tcode, SFcode, SFcode },
{ gtDF, Tcode, DFcode, DFcode },
{ gtXF, Tcode, XFcode, XFcode },
{ gtP, Tcode, Pcode, Pcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_eq_expr[] = {
{ eqSI, Tcode, SIcode, SIcode },
{ eqDI, Tcode, DIcode, DIcode },
{ eqSF, Tcode, SFcode, SFcode },
{ eqDF, Tcode, DFcode, DFcode },
{ eqXF, Tcode, XFcode, XFcode },
{ eqP, Tcode, Pcode, Pcode },
{ -1, -1, -1, -1 },
};
struct binary_operator optab_ne_expr[] = {
{ neSI, Tcode, SIcode, SIcode },
{ neDI, Tcode, DIcode, DIcode },
{ neSF, Tcode, SFcode, SFcode },
{ neDF, Tcode, DFcode, DFcode },
{ neXF, Tcode, XFcode, XFcode },
{ neP, Tcode, Pcode, Pcode },
{ -1, -1, -1, -1 },
};
/* Unary operator tables. */
struct unary_operator optab_negate_expr[] = {
{ negSI, SIcode, SIcode },
{ negDI, DIcode, DIcode },
{ negSF, SFcode, SFcode },
{ negDF, DFcode, DFcode },
{ negXF, XFcode, XFcode },
{ -1, -1, -1 },
};
struct unary_operator optab_bit_not_expr[] = {
{ notSI, SIcode, SIcode },
{ notDI, DIcode, DIcode },
{ -1, -1, -1 },
};
struct unary_operator optab_truth_not_expr[] = {
{ notT, SIcode, SIcode },
{ -1, -1, -1 },
};
/* Increment operator tables. */
struct increment_operator optab_predecrement_expr[] = {
{ predecQI, QIcode },
{ predecQI, QUcode },
{ predecHI, HIcode },
{ predecHI, HUcode },
{ predecSI, SIcode },
{ predecSI, SUcode },
{ predecDI, DIcode },
{ predecDI, DUcode },
{ predecP, Pcode },
{ predecSF, SFcode },
{ predecDF, DFcode },
{ predecXF, XFcode },
{ -1, -1 },
};
struct increment_operator optab_preincrement_expr[] = {
{ preincQI, QIcode },
{ preincQI, QUcode },
{ preincHI, HIcode },
{ preincHI, HUcode },
{ preincSI, SIcode },
{ preincSI, SUcode },
{ preincDI, DIcode },
{ preincDI, DUcode },
{ preincP, Pcode },
{ preincSF, SFcode },
{ preincDF, DFcode },
{ preincXF, XFcode },
{ -1, -1 },
};
struct increment_operator optab_postdecrement_expr[] = {
{ postdecQI, QIcode },
{ postdecQI, QUcode },
{ postdecHI, HIcode },
{ postdecHI, HUcode },
{ postdecSI, SIcode },
{ postdecSI, SUcode },
{ postdecDI, DIcode },
{ postdecDI, DUcode },
{ postdecP, Pcode },
{ postdecSF, SFcode },
{ postdecDF, DFcode },
{ postdecXF, XFcode },
{ -1, -1 },
};
struct increment_operator optab_postincrement_expr[] = {
{ postincQI, QIcode },
{ postincQI, QUcode },
{ postincHI, HIcode },
{ postincHI, HUcode },
{ postincSI, SIcode },
{ postincSI, SUcode },
{ postincDI, DIcode },
{ postincDI, DUcode },
{ postincP, Pcode },
{ postincSF, SFcode },
{ postincDF, DFcode },
{ postincXF, XFcode },
{ -1, -1 },
};
/* Table of conversions supported by the interpreter. */
static struct conversion_info
{
enum bytecode_opcode opcode; /* here indicates the conversion needs no opcode. */
enum typecode from;
enum typecode to;
int cost; /* 1 for no-op conversions, 2 for widening conversions,
4 for int/float conversions, 8 for narrowing conversions. */
} conversion_info[] = {
{ -1, QIcode, QUcode, 1 },
{ -1, HIcode, HUcode, 1 },
{ -1, SIcode, SUcode, 1 },
{ -1, DIcode, DUcode, 1 },
{ -1, QUcode, QIcode, 1 },
{ -1, HUcode, HIcode, 1 },
{ -1, SUcode, SIcode, 1 },
{ -1, DUcode, DIcode, 1 },
{ -1, Tcode, SIcode, 1 },
{ convertQIHI, QIcode, HIcode, 2 },
{ convertQUHU, QUcode, HUcode, 2 },
{ convertQUSU, QUcode, SUcode, 2 },
{ convertHISI, HIcode, SIcode, 2 },
{ convertHUSU, HUcode, SUcode, 2 },
{ convertSIDI, SIcode, DIcode, 2 },
{ convertSUDU, SUcode, DUcode, 2 },
{ convertSFDF, SFcode, DFcode, 2 },
{ convertDFXF, DFcode, XFcode, 2 },
{ convertHIQI, HIcode, QIcode, 8 },
{ convertSIQI, SIcode, QIcode, 8 },
{ convertSIHI, SIcode, HIcode, 8 },
{ convertSUQU, SUcode, QUcode, 8 },
{ convertDISI, DIcode, SIcode, 8 },
{ convertDFSF, DFcode, SFcode, 8 },
{ convertXFDF, XFcode, DFcode, 8 },
{ convertPSI, Pcode, SIcode, 2 },
{ convertSIP, SIcode, Pcode, 2 },
{ convertSIT, SIcode, Tcode, 2 },
{ convertDIT, DIcode, Tcode, 2 },
{ convertSFT, SFcode, Tcode, 2 },
{ convertDFT, DFcode, Tcode, 2 },
{ convertXFT, XFcode, Tcode, 2 },
{ convertQISI, QIcode, SIcode, 2 },
{ convertPT, Pcode, Tcode, 2 },
{ convertSISF, SIcode, SFcode, 4 },
{ convertSIDF, SIcode, DFcode, 4 },
{ convertSIXF, SIcode, XFcode, 4 },
{ convertSUSF, SUcode, SFcode, 4 },
{ convertSUDF, SUcode, DFcode, 4 },
{ convertSUXF, SUcode, XFcode, 4 },
{ convertDISF, DIcode, SFcode, 4 },
{ convertDIDF, DIcode, DFcode, 4 },
{ convertDIXF, DIcode, XFcode, 4 },
{ convertDUSF, DUcode, SFcode, 4 },
{ convertDUDF, DUcode, DFcode, 4 },
{ convertDUXF, DUcode, XFcode, 4 },
{ convertSFSI, SFcode, SIcode, 4 },
{ convertDFSI, DFcode, SIcode, 4 },
{ convertXFSI, XFcode, SIcode, 4 },
{ convertSFSU, SFcode, SUcode, 4 },
{ convertDFSU, DFcode, SUcode, 4 },
{ convertXFSU, XFcode, SUcode, 4 },
{ convertSFDI, SFcode, DIcode, 4 },
{ convertDFDI, DFcode, DIcode, 4 },
{ convertXFDI, XFcode, DIcode, 4 },
{ convertSFDU, SFcode, DUcode, 4 },
{ convertDFDU, DFcode, DUcode, 4 },
{ convertXFDU, XFcode, DUcode, 4 },
{ convertSIQI, SIcode, QIcode, 8 },
};
#define NUM_CONVERSIONS (sizeof conversion_info / sizeof (struct conversion_info))
/* List form of a conversion recipe. */
struct conversion_list
{
enum bytecode_opcode opcode;
enum typecode to;
int cost;
struct conversion_list *prev;
};
/* Determine if it is "reasonable" to add a given conversion to
a given list of conversions. The following criteria define
"reasonable" conversion lists:
* No typecode appears more than once in the sequence (no loops).
* At most one conversion from integer to float or vice versa is present.
* Either sign extensions or zero extensions may be present, but not both.
* No widening conversions occur after a signed/unsigned conversion.
* The sequence of sizes must be strict nonincreasing or nondecreasing. */
static int
conversion_reasonable_p (conversion, list)
struct conversion_info *conversion;
struct conversion_list *list;
{
struct conversion_list *curr;
int curr_size, prev_size;
int has_int_float, has_float_int;
int has_sign_extend, has_zero_extend;
int has_signed_unsigned, has_unsigned_signed;
has_int_float = 0;
has_float_int = 0;
has_sign_extend = 0;
has_zero_extend = 0;
has_signed_unsigned = 0;
has_unsigned_signed = 0;
/* Make sure the destination typecode doesn't already appear in
the list. */
for (curr = list; curr; curr = curr->prev)
if (conversion->to == curr->to)
return 0;
/* Check for certain kinds of conversions. */
if (TYPECODE_INTEGER_P (conversion->from)
&& TYPECODE_FLOAT_P (conversion->to))
has_int_float = 1;
if (TYPECODE_FLOAT_P (conversion->from)
&& TYPECODE_INTEGER_P (conversion->to))
has_float_int = 1;
if (TYPECODE_SIGNED_P (conversion->from)
&& TYPECODE_SIGNED_P (conversion->to)
&& GET_TYPECODE_SIZE (conversion->from)
< GET_TYPECODE_SIZE (conversion->to))
has_sign_extend = 1;
if (TYPECODE_UNSIGNED_P (conversion->from)
&& TYPECODE_UNSIGNED_P (conversion->to)
&& GET_TYPECODE_SIZE (conversion->from)
< GET_TYPECODE_SIZE (conversion->to))
has_zero_extend = 1;
for (curr = list; curr && curr->prev; curr = curr->prev)
{
if (TYPECODE_INTEGER_P (curr->prev->to)
&& TYPECODE_FLOAT_P (curr->to))
has_int_float = 1;
if (TYPECODE_FLOAT_P (curr->prev->to)
&& TYPECODE_INTEGER_P (curr->to))
has_float_int = 1;
if (TYPECODE_SIGNED_P (curr->prev->to)
&& TYPECODE_SIGNED_P (curr->to)
&& GET_TYPECODE_SIZE (curr->prev->to)
< GET_TYPECODE_SIZE (curr->to))
has_sign_extend = 1;
if (TYPECODE_UNSIGNED_P (curr->prev->to)
&& TYPECODE_UNSIGNED_P (curr->to)
&& GET_TYPECODE_SIZE (curr->prev->to)
< GET_TYPECODE_SIZE (curr->to))
has_zero_extend = 1;
if (TYPECODE_SIGNED_P (curr->prev->to)
&& TYPECODE_UNSIGNED_P (curr->to))
has_signed_unsigned = 1;
if (TYPECODE_UNSIGNED_P (curr->prev->to)
&& TYPECODE_SIGNED_P (curr->to))
has_unsigned_signed = 1;
}
if (TYPECODE_INTEGER_P (conversion->from)
&& TYPECODE_INTEGER_P (conversion->to)
&& GET_TYPECODE_SIZE (conversion->to)
> GET_TYPECODE_SIZE (conversion->from)
&& (has_signed_unsigned || has_unsigned_signed))
return 0;
if (has_float_int && has_int_float || has_sign_extend && has_zero_extend)
return 0;
/* Make sure the sequence of destination typecode sizes is
strictly nondecreasing or strictly nonincreasing. */
prev_size = GET_TYPECODE_SIZE (conversion->to);
for (curr = list; curr; curr = curr->prev)
{
curr_size = GET_TYPECODE_SIZE (curr->to);
if (curr_size != prev_size)
break;
}
if (!curr)
return 1;
if (curr_size < prev_size)
for (prev_size = curr_size; curr; curr = curr->prev)
{
curr_size = GET_TYPECODE_SIZE (curr->to);
if (curr_size > prev_size)
return 0;
prev_size = curr_size;
}
else
for (prev_size = curr_size; curr; curr = curr->prev)
{
curr_size = GET_TYPECODE_SIZE (curr->to);
if (curr_size < prev_size)
return 0;
prev_size = curr_size;
}
return 1;
}
/* Exhaustively search all reasonable conversions to find one to
convert the given types. */
static struct conversion_recipe
deduce_conversion (from, to)
enum typecode from, to;
{
struct rl
{
struct conversion_list *list;
struct rl *next;
} *prev, curr, *good, *temp;
struct conversion_list *conv, *best;
int i, cost, bestcost;
struct conversion_recipe result;
struct obstack recipe_obstack;
obstack_init (&recipe_obstack);
curr.next = (struct rl *) obstack_alloc (&recipe_obstack, sizeof (struct rl));
curr.next->list
= (struct conversion_list *) obstack_alloc (&recipe_obstack,
sizeof (struct conversion_list));
curr.next->list->opcode = -1;
curr.next->list->to = from;
curr.next->list->cost = 0;
curr.next->list->prev = 0;
curr.next->next = 0;
good = 0;
while (curr.next)
{
/* Remove successful conversions from further consideration. */
for (prev = &curr; prev; prev = prev->next)
if (prev->next && prev->next->list->to == to)
{
temp = prev->next->next;
prev->next->next = good;
good = prev->next;
prev->next = temp;
}
/* Go through each of the pending conversion chains, trying
all possible candidate conversions on them. */
for (prev = curr.next, curr.next = 0; prev; prev = prev->next)
for (i = 0; i < NUM_CONVERSIONS; ++i)
if (conversion_info[i].from == prev->list->to
&& conversion_reasonable_p (&conversion_info[i], prev->list))
{
temp = (struct rl *) obstack_alloc (&recipe_obstack,
sizeof (struct rl));
temp->list = (struct conversion_list *)
obstack_alloc (&recipe_obstack,
sizeof (struct conversion_list));
temp->list->opcode = conversion_info[i].opcode;
temp->list->to = conversion_info[i].to;
temp->list->cost = conversion_info[i].cost;
temp->list->prev = prev->list;
temp->next = curr.next;
curr.next = temp;
}
}
bestcost = BIG_ARBITRARY_NUMBER;
best = 0;
for (temp = good; temp; temp = temp->next)
{
for (conv = temp->list, cost = 0; conv; conv = conv->prev)
cost += conv->cost;
if (cost < bestcost)
{
bestcost = cost;
best = temp->list;
}
}
if (!best)
abort ();
for (i = 0, conv = best; conv; conv = conv->prev)
if (conv->opcode != -1)
++i;
result.opcodes = (unsigned char *) xmalloc (i);
result.nopcodes = i;
for (conv = best; conv; conv = conv->prev)
if (conv->opcode != -1)
result.opcodes[--i] = conv->opcode;
result.cost = bestcost;
obstack_free (&recipe_obstack, 0);
return result;
}
#define DEDUCE_CONVERSION(FROM, TO) \
(conversion_recipe[(int) FROM][(int) TO].opcodes ? 0 \
: (conversion_recipe[(int) FROM][(int) TO] \
= deduce_conversion (FROM, TO), 0))
/* Emit a conversion between the given scalar types. */
void
emit_typecode_conversion (from, to)
enum typecode from, to;
{
int i;
DEDUCE_CONVERSION (from, to);
for (i = 0; i < conversion_recipe[(int) from][(int) to].nopcodes; ++i)
bc_emit_instruction (conversion_recipe[(int) from][(int) to].opcodes[i]);
}
/* Initialize mode_to_code_map[] */
void
bc_init_mode_to_code_map ()
{
int mode;
for (mode = 0; mode < MAX_MACHINE_MODE + 1; mode++)
{
signed_mode_to_code_map[mode]
= unsigned_mode_to_code_map[mode]
= LAST_AND_UNUSED_TYPECODE;
}
#define DEF_MODEMAP(SYM, CODE, UCODE, CONST, LOAD, STORE) \
{ signed_mode_to_code_map[(int) SYM] = CODE; \
unsigned_mode_to_code_map[(int) SYM] = UCODE; }
#include "modemap.def"
#undef DEF_MODEMAP
/* Initialize opcode maps for const, load, and store */
bc_init_mode_to_opcode_maps ();
}
/* Given a machine mode return the preferred typecode. */
enum typecode
preferred_typecode (mode, unsignedp)
enum machine_mode mode;
int unsignedp;
{
enum typecode code = (unsignedp
? unsigned_mode_to_code_map
: signed_mode_to_code_map) [MIN ((int) mode,
(int) MAX_MACHINE_MODE)];
if (code == LAST_AND_UNUSED_TYPECODE)
abort ();
return code;
}
/* Expand a conversion between the given types. */
void
bc_expand_conversion (from, to)
tree from, to;
{
enum typecode fcode, tcode;
fcode = preferred_typecode (TYPE_MODE (from), TREE_UNSIGNED (from));
tcode = preferred_typecode (TYPE_MODE (to), TREE_UNSIGNED (to));
emit_typecode_conversion (fcode, tcode);
}
/* Expand a conversion of the given type to a truth value. */
void
bc_expand_truth_conversion (from)
tree from;
{
enum typecode fcode;
fcode = preferred_typecode (TYPE_MODE (from), TREE_UNSIGNED (from));
emit_typecode_conversion (fcode, Tcode);
}
/* Emit an appropriate binary operation. */
void
bc_expand_binary_operation (optab, resulttype, arg0, arg1)
struct binary_operator optab[];
tree resulttype, arg0, arg1;
{
int i, besti, cost, bestcost;
enum typecode resultcode, arg0code, arg1code;
resultcode = preferred_typecode (TYPE_MODE (resulttype), TREE_UNSIGNED (resulttype));
arg0code = preferred_typecode (TYPE_MODE (TREE_TYPE (arg0)), TREE_UNSIGNED (resulttype));
arg1code = preferred_typecode (TYPE_MODE (TREE_TYPE (arg1)), TREE_UNSIGNED (resulttype));
besti = -1;
bestcost = BIG_ARBITRARY_NUMBER;
for (i = 0; optab[i].opcode != -1; ++i)
{
cost = 0;
DEDUCE_CONVERSION (arg0code, optab[i].arg0);
cost += conversion_recipe[(int) arg0code][(int) optab[i].arg0].cost;
DEDUCE_CONVERSION (arg1code, optab[i].arg1);
cost += conversion_recipe[(int) arg1code][(int) optab[i].arg1].cost;
if (cost < bestcost)
{
besti = i;
bestcost = cost;
}
}
if (besti == -1)
abort ();
expand_expr (arg1, 0, VOIDmode, 0);
emit_typecode_conversion (arg1code, optab[besti].arg1);
expand_expr (arg0, 0, VOIDmode, 0);
emit_typecode_conversion (arg0code, optab[besti].arg0);
bc_emit_instruction (optab[besti].opcode);
emit_typecode_conversion (optab[besti].result, resultcode);
}
/* Emit an appropriate unary operation. */
void
bc_expand_unary_operation (optab, resulttype, arg0)
struct unary_operator optab[];
tree resulttype, arg0;
{
int i, besti, cost, bestcost;
enum typecode resultcode, arg0code;
resultcode = preferred_typecode (TYPE_MODE (resulttype), TREE_UNSIGNED (resulttype));
arg0code = preferred_typecode (TYPE_MODE (TREE_TYPE (arg0)), TREE_UNSIGNED (TREE_TYPE (arg0)));
besti = -1;
bestcost = BIG_ARBITRARY_NUMBER;
for (i = 0; optab[i].opcode != -1; ++i)
{
DEDUCE_CONVERSION (arg0code, optab[i].arg0);
cost = conversion_recipe[(int) arg0code][(int) optab[i].arg0].cost;
if (cost < bestcost)
{
besti = i;
bestcost = cost;
}
}
if (besti == -1)
abort ();
expand_expr (arg0, 0, VOIDmode, 0);
emit_typecode_conversion (arg0code, optab[besti].arg0);
bc_emit_instruction (optab[besti].opcode);
emit_typecode_conversion (optab[besti].result, resultcode);
}
/* Emit an appropriate increment. */
void
bc_expand_increment (optab, type)
struct increment_operator optab[];
tree type;
{
enum typecode code;
int i;
code = preferred_typecode (TYPE_MODE (type), TREE_UNSIGNED (type));
for (i = 0; (int) optab[i].opcode >= 0; ++i)
if (code == optab[i].arg)
{
bc_emit_instruction (optab[i].opcode);
return;
}
abort ();
}