NetBSD/sys/dev/pci/yds.c
2016-07-14 04:19:26 +00:00

1755 lines
44 KiB
C

/* $NetBSD: yds.c,v 1.57 2016/07/14 04:19:27 msaitoh Exp $ */
/*
* Copyright (c) 2000, 2001 Kazuki Sakamoto and Minoura Makoto.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Yamaha YMF724[B-F]/740[B-C]/744/754
*
* Documentation links:
* - ftp://ftp.alsa-project.org/pub/manuals/yamaha/
* - ftp://ftp.alsa-project.org/pub/manuals/yamaha/pci/
*
* TODO:
* - FM synth volume (difficult: mixed before ac97)
* - Digital in/out (SPDIF) support
* - Effect??
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: yds.c,v 1.57 2016/07/14 04:19:27 msaitoh Exp $");
#include "mpu.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/fcntl.h>
#include <sys/kmem.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/mulaw.h>
#include <dev/auconv.h>
#include <dev/ic/ac97reg.h>
#include <dev/ic/ac97var.h>
#include <dev/ic/mpuvar.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <dev/microcode/yds/yds_hwmcode.h>
#include <dev/pci/ydsreg.h>
#include <dev/pci/ydsvar.h>
/* Debug */
#undef YDS_USE_REC_SLOT
#define YDS_USE_P44
#ifdef AUDIO_DEBUG
# define DPRINTF(x) if (ydsdebug) printf x
# define DPRINTFN(n,x) if (ydsdebug>(n)) printf x
int ydsdebug = 0;
#else
# define DPRINTF(x)
# define DPRINTFN(n,x)
#endif
#ifdef YDS_USE_REC_SLOT
# define YDS_INPUT_SLOT 0 /* REC slot = ADC + loopbacks */
#else
# define YDS_INPUT_SLOT 1 /* ADC slot */
#endif
static int yds_match(device_t, cfdata_t, void *);
static void yds_attach(device_t, device_t, void *);
static int yds_intr(void *);
#define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
#define KERNADDR(p) ((void *)((p)->addr))
static int yds_allocmem(struct yds_softc *, size_t, size_t,
struct yds_dma *);
static int yds_freemem(struct yds_softc *, struct yds_dma *);
#ifndef AUDIO_DEBUG
#define YWRITE1(sc, r, x) bus_space_write_1((sc)->memt, (sc)->memh, (r), (x))
#define YWRITE2(sc, r, x) bus_space_write_2((sc)->memt, (sc)->memh, (r), (x))
#define YWRITE4(sc, r, x) bus_space_write_4((sc)->memt, (sc)->memh, (r), (x))
#define YREAD1(sc, r) bus_space_read_1((sc)->memt, (sc)->memh, (r))
#define YREAD2(sc, r) bus_space_read_2((sc)->memt, (sc)->memh, (r))
#define YREAD4(sc, r) bus_space_read_4((sc)->memt, (sc)->memh, (r))
#else
static uint16_t YREAD2(struct yds_softc *sc, bus_size_t r)
{
DPRINTFN(5, (" YREAD2(0x%lX)\n", (unsigned long)r));
return bus_space_read_2(sc->memt, sc->memh, r);
}
static uint32_t YREAD4(struct yds_softc *sc, bus_size_t r)
{
DPRINTFN(5, (" YREAD4(0x%lX)\n", (unsigned long)r));
return bus_space_read_4(sc->memt, sc->memh, r);
}
#ifdef notdef
static void YWRITE1(struct yds_softc *sc, bus_size_t r, uint8_t x)
{
DPRINTFN(5, (" YWRITE1(0x%lX,0x%lX)\n", (unsigned long)r,
(unsigned long)x));
bus_space_write_1(sc->memt, sc->memh, r, x);
}
#endif
static void YWRITE2(struct yds_softc *sc, bus_size_t r, uint16_t x)
{
DPRINTFN(5, (" YWRITE2(0x%lX,0x%lX)\n", (unsigned long)r,
(unsigned long)x));
bus_space_write_2(sc->memt, sc->memh, r, x);
}
static void YWRITE4(struct yds_softc *sc, bus_size_t r, uint32_t x)
{
DPRINTFN(5, (" YWRITE4(0x%lX,0x%lX)\n", (unsigned long)r,
(unsigned long)x));
bus_space_write_4(sc->memt, sc->memh, r, x);
}
#endif
#define YWRITEREGION4(sc, r, x, c) \
bus_space_write_region_4((sc)->memt, (sc)->memh, (r), (x), (c) / 4)
CFATTACH_DECL_NEW(yds, sizeof(struct yds_softc),
yds_match, yds_attach, NULL, NULL);
static int yds_open(void *, int);
static void yds_close(void *);
static int yds_query_encoding(void *, struct audio_encoding *);
static int yds_set_params(void *, int, int, audio_params_t *,
audio_params_t *, stream_filter_list_t *,
stream_filter_list_t *);
static int yds_round_blocksize(void *, int, int, const audio_params_t *);
static int yds_trigger_output(void *, void *, void *, int,
void (*)(void *), void *,
const audio_params_t *);
static int yds_trigger_input(void *, void *, void *, int,
void (*)(void *), void *,
const audio_params_t *);
static int yds_halt_output(void *);
static int yds_halt_input(void *);
static int yds_getdev(void *, struct audio_device *);
static int yds_mixer_set_port(void *, mixer_ctrl_t *);
static int yds_mixer_get_port(void *, mixer_ctrl_t *);
static void * yds_malloc(void *, int, size_t);
static void yds_free(void *, void *, size_t);
static size_t yds_round_buffersize(void *, int, size_t);
static paddr_t yds_mappage(void *, void *, off_t, int);
static int yds_get_props(void *);
static int yds_query_devinfo(void *, mixer_devinfo_t *);
static void yds_get_locks(void *, kmutex_t **, kmutex_t **);
static int yds_attach_codec(void *, struct ac97_codec_if *);
static int yds_read_codec(void *, uint8_t, uint16_t *);
static int yds_write_codec(void *, uint8_t, uint16_t);
static int yds_reset_codec(void *);
static u_int yds_get_dstype(int);
static int yds_download_mcode(struct yds_softc *);
static int yds_allocate_slots(struct yds_softc *);
static void yds_configure_legacy(device_t);
static void yds_enable_dsp(struct yds_softc *);
static int yds_disable_dsp(struct yds_softc *);
static int yds_ready_codec(struct yds_codec_softc *);
static int yds_halt(struct yds_softc *);
static uint32_t yds_get_lpfq(u_int);
static uint32_t yds_get_lpfk(u_int);
static struct yds_dma *yds_find_dma(struct yds_softc *, void *);
static int yds_init(struct yds_softc *);
#ifdef AUDIO_DEBUG
static void yds_dump_play_slot(struct yds_softc *, int);
#define YDS_DUMP_PLAY_SLOT(n, sc, bank) \
if (ydsdebug > (n)) yds_dump_play_slot(sc, bank)
#else
#define YDS_DUMP_PLAY_SLOT(n, sc, bank)
#endif /* AUDIO_DEBUG */
static const struct audio_hw_if yds_hw_if = {
.open = yds_open,
.close = yds_close,
.drain = NULL,
.query_encoding = yds_query_encoding,
.set_params = yds_set_params,
.round_blocksize = yds_round_blocksize,
.commit_settings = NULL,
.init_output = NULL,
.init_input = NULL,
.start_output = NULL,
.start_input = NULL,
.halt_output = yds_halt_output,
.halt_input = yds_halt_input,
.speaker_ctl = NULL,
.getdev = yds_getdev,
.setfd = NULL,
.set_port = yds_mixer_set_port,
.get_port = yds_mixer_get_port,
.query_devinfo = yds_query_devinfo,
.allocm = yds_malloc,
.freem = yds_free,
.round_buffersize = yds_round_buffersize,
.mappage = yds_mappage,
.get_props = yds_get_props,
.trigger_output = yds_trigger_output,
.trigger_input = yds_trigger_input,
.dev_ioctl = NULL,
.get_locks = yds_get_locks,
};
static const struct audio_device yds_device = {
.name = "Yamaha DS-1",
.version = "",
.config = "yds"
};
static const struct {
uint id;
u_int flags;
#define YDS_CAP_MCODE_1 0x0001
#define YDS_CAP_MCODE_1E 0x0002
#define YDS_CAP_LEGACY_SELECTABLE 0x0004
#define YDS_CAP_LEGACY_FLEXIBLE 0x0008
#define YDS_CAP_HAS_P44 0x0010
} yds_chip_capabliity_list[] = {
{ PCI_PRODUCT_YAMAHA_YMF724,
YDS_CAP_MCODE_1|YDS_CAP_LEGACY_SELECTABLE },
/* 740[C] has only 32 slots. But anyway we use only 2 */
{ PCI_PRODUCT_YAMAHA_YMF740,
YDS_CAP_MCODE_1|YDS_CAP_LEGACY_SELECTABLE }, /* XXX NOT TESTED */
{ PCI_PRODUCT_YAMAHA_YMF740C,
YDS_CAP_MCODE_1E|YDS_CAP_LEGACY_SELECTABLE },
{ PCI_PRODUCT_YAMAHA_YMF724F,
YDS_CAP_MCODE_1E|YDS_CAP_LEGACY_SELECTABLE },
{ PCI_PRODUCT_YAMAHA_YMF744B,
YDS_CAP_MCODE_1E|YDS_CAP_LEGACY_FLEXIBLE },
{ PCI_PRODUCT_YAMAHA_YMF754,
YDS_CAP_MCODE_1E|YDS_CAP_LEGACY_FLEXIBLE|YDS_CAP_HAS_P44 },
{ 0, 0 }
};
#ifdef AUDIO_DEBUG
#define YDS_CAP_BITS "\020\005P44\004LEGFLEX\003LEGSEL\002MCODE1E\001MCODE1"
#endif
static const struct audio_format yds_formats[] = {
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
1, AUFMT_MONAURAL, 0, {4000, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
2, AUFMT_STEREO, 0, {4000, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
1, AUFMT_MONAURAL, 0, {4000, 48000}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
2, AUFMT_STEREO, 0, {4000, 48000}},
};
#define YDS_NFORMATS (sizeof(yds_formats) / sizeof(struct audio_format))
#ifdef AUDIO_DEBUG
static void
yds_dump_play_slot(struct yds_softc *sc, int bank)
{
int i, j;
uint32_t *p;
uint32_t num;
bus_addr_t pa;
for (i = 0; i < N_PLAY_SLOTS; i++) {
printf("pbankp[%d] = %p,", i*2, sc->pbankp[i*2]);
printf("pbankp[%d] = %p\n", i*2+1, sc->pbankp[i*2+1]);
}
pa = DMAADDR(&sc->sc_ctrldata) + sc->pbankoff;
p = sc->ptbl;
printf("ptbl + 0: %d\n", *p++);
for (i = 0; i < N_PLAY_SLOTS; i++) {
printf("ptbl + %d: %#x, should be %#" PRIxPADDR "\n",
i+1, *p,
pa + i * sizeof(struct play_slot_ctrl_bank) *
N_PLAY_SLOT_CTRL_BANK);
p++;
}
num = le32toh(*(uint32_t*)sc->ptbl);
printf("numofplay = %d\n", num);
for (i = 0; i < num; i++) {
p = (uint32_t *)sc->pbankp[i*2];
printf(" pbankp[%d], bank 0 : %p\n", i*2, p);
for (j = 0;
j < sizeof(struct play_slot_ctrl_bank) / sizeof(uint32_t);
j++) {
printf(" 0x%02x: 0x%08x\n",
(unsigned)(j * sizeof(uint32_t)),
(unsigned)*p++);
}
p = (uint32_t *)sc->pbankp[i*2 + 1];
printf(" pbankp[%d], bank 1 : %p\n", i*2 + 1, p);
for (j = 0;
j < sizeof(struct play_slot_ctrl_bank) / sizeof(uint32_t);
j++) {
printf(" 0x%02x: 0x%08x\n",
(unsigned)(j * sizeof(uint32_t)),
(unsigned)*p++);
}
}
}
#endif /* AUDIO_DEBUG */
static u_int
yds_get_dstype(int id)
{
int i;
for (i = 0; yds_chip_capabliity_list[i].id; i++) {
if (PCI_PRODUCT(id) == yds_chip_capabliity_list[i].id)
return yds_chip_capabliity_list[i].flags;
}
return -1;
}
static int
yds_download_mcode(struct yds_softc *sc)
{
static struct {
const uint32_t *mcode;
size_t size;
} ctrls[] = {
{yds_ds1_ctrl_mcode, sizeof(yds_ds1_ctrl_mcode)},
{yds_ds1e_ctrl_mcode, sizeof(yds_ds1e_ctrl_mcode)},
};
u_int ctrl;
const uint32_t *p;
size_t size;
int dstype;
if (sc->sc_flags & YDS_CAP_MCODE_1)
dstype = YDS_DS_1;
else if (sc->sc_flags & YDS_CAP_MCODE_1E)
dstype = YDS_DS_1E;
else
return 1; /* unknown */
if (yds_disable_dsp(sc))
return 1;
/* Software reset */
YWRITE4(sc, YDS_MODE, YDS_MODE_RESET);
YWRITE4(sc, YDS_MODE, 0);
YWRITE4(sc, YDS_MAPOF_REC, 0);
YWRITE4(sc, YDS_MAPOF_EFFECT, 0);
YWRITE4(sc, YDS_PLAY_CTRLBASE, 0);
YWRITE4(sc, YDS_REC_CTRLBASE, 0);
YWRITE4(sc, YDS_EFFECT_CTRLBASE, 0);
YWRITE4(sc, YDS_WORK_BASE, 0);
ctrl = YREAD2(sc, YDS_GLOBAL_CONTROL);
YWRITE2(sc, YDS_GLOBAL_CONTROL, ctrl & ~0x0007);
/* Download DSP microcode. */
p = yds_dsp_mcode;
size = sizeof(yds_dsp_mcode);
YWRITEREGION4(sc, YDS_DSP_INSTRAM, p, size);
/* Download CONTROL microcode. */
p = ctrls[dstype].mcode;
size = ctrls[dstype].size;
YWRITEREGION4(sc, YDS_CTRL_INSTRAM, p, size);
yds_enable_dsp(sc);
delay(10 * 1000); /* nessesary on my 724F (??) */
return 0;
}
static int
yds_allocate_slots(struct yds_softc *sc)
{
size_t pcs, rcs, ecs, ws, memsize;
void *mp;
uint32_t da; /* DMA address */
char *va; /* KVA */
off_t cb;
int i;
struct yds_dma *p;
/* Alloc DSP Control Data */
pcs = YREAD4(sc, YDS_PLAY_CTRLSIZE) * sizeof(uint32_t);
rcs = YREAD4(sc, YDS_REC_CTRLSIZE) * sizeof(uint32_t);
ecs = YREAD4(sc, YDS_EFFECT_CTRLSIZE) * sizeof(uint32_t);
ws = WORK_SIZE;
YWRITE4(sc, YDS_WORK_SIZE, ws / sizeof(uint32_t));
DPRINTF(("play control size : %d\n", (unsigned int)pcs));
DPRINTF(("rec control size : %d\n", (unsigned int)rcs));
DPRINTF(("eff control size : %d\n", (unsigned int)ecs));
#ifndef AUDIO_DEBUG
__USE(ecs);
#endif
DPRINTF(("work size : %d\n", (unsigned int)ws));
#ifdef DIAGNOSTIC
if (pcs != sizeof(struct play_slot_ctrl_bank)) {
aprint_error_dev(sc->sc_dev, "invalid play slot ctrldata %d != %d\n",
(unsigned int)pcs,
(unsigned int)sizeof(struct play_slot_ctrl_bank));
if (rcs != sizeof(struct rec_slot_ctrl_bank))
aprint_error_dev(sc->sc_dev, "invalid rec slot ctrldata %d != %d\n",
(unsigned int)rcs,
(unsigned int)sizeof(struct rec_slot_ctrl_bank));
}
#endif
memsize = N_PLAY_SLOTS*N_PLAY_SLOT_CTRL_BANK*pcs +
N_REC_SLOT_CTRL*N_REC_SLOT_CTRL_BANK*rcs + ws;
memsize += (N_PLAY_SLOTS+1)*sizeof(uint32_t);
p = &sc->sc_ctrldata;
if (KERNADDR(p) == NULL) {
i = yds_allocmem(sc, memsize, 16, p);
if (i) {
aprint_error_dev(sc->sc_dev, "couldn't alloc/map DSP DMA buffer, reason %d\n", i);
return 1;
}
}
mp = KERNADDR(p);
da = DMAADDR(p);
DPRINTF(("mp:%p, DMA addr:%#" PRIxPADDR "\n",
mp, sc->sc_ctrldata.map->dm_segs[0].ds_addr));
memset(mp, 0, memsize);
/* Work space */
cb = 0;
va = (uint8_t *)mp;
YWRITE4(sc, YDS_WORK_BASE, da + cb);
cb += ws;
/* Play control data table */
sc->ptbl = (uint32_t *)(va + cb);
sc->ptbloff = cb;
YWRITE4(sc, YDS_PLAY_CTRLBASE, da + cb);
cb += (N_PLAY_SLOT_CTRL + 1) * sizeof(uint32_t);
/* Record slot control data */
sc->rbank = (struct rec_slot_ctrl_bank *)(va + cb);
YWRITE4(sc, YDS_REC_CTRLBASE, da + cb);
sc->rbankoff = cb;
cb += N_REC_SLOT_CTRL * N_REC_SLOT_CTRL_BANK * rcs;
#if 0
/* Effect slot control data -- unused */
YWRITE4(sc, YDS_EFFECT_CTRLBASE, da + cb);
cb += N_EFFECT_SLOT_CTRL * N_EFFECT_SLOT_CTRL_BANK * ecs;
#endif
/* Play slot control data */
sc->pbankoff = cb;
for (i=0; i < N_PLAY_SLOT_CTRL; i++) {
sc->pbankp[i*2] = (struct play_slot_ctrl_bank *)(va + cb);
*(sc->ptbl + i+1) = htole32(da + cb);
cb += pcs;
sc->pbankp[i*2+1] = (struct play_slot_ctrl_bank *)(va + cb);
cb += pcs;
}
/* Sync play control data table */
bus_dmamap_sync(sc->sc_dmatag, p->map,
sc->ptbloff, (N_PLAY_SLOT_CTRL+1) * sizeof(uint32_t),
BUS_DMASYNC_PREWRITE);
return 0;
}
static void
yds_enable_dsp(struct yds_softc *sc)
{
YWRITE4(sc, YDS_CONFIG, YDS_DSP_SETUP);
}
static int
yds_disable_dsp(struct yds_softc *sc)
{
int to;
uint32_t data;
data = YREAD4(sc, YDS_CONFIG);
if (data)
YWRITE4(sc, YDS_CONFIG, YDS_DSP_DISABLE);
for (to = 0; to < YDS_WORK_TIMEOUT; to++) {
if ((YREAD4(sc, YDS_STATUS) & YDS_STAT_WORK) == 0)
return 0;
delay(1);
}
return 1;
}
static int
yds_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa;
pa = (struct pci_attach_args *)aux;
switch (PCI_VENDOR(pa->pa_id)) {
case PCI_VENDOR_YAMAHA:
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_YAMAHA_YMF724:
case PCI_PRODUCT_YAMAHA_YMF740:
case PCI_PRODUCT_YAMAHA_YMF740C:
case PCI_PRODUCT_YAMAHA_YMF724F:
case PCI_PRODUCT_YAMAHA_YMF744B:
case PCI_PRODUCT_YAMAHA_YMF754:
return 1;
}
break;
}
return 0;
}
/*
* This routine is called after all the ISA devices are configured,
* to avoid conflict.
*/
static void
yds_configure_legacy(device_t self)
#define FLEXIBLE (sc->sc_flags & YDS_CAP_LEGACY_FLEXIBLE)
#define SELECTABLE (sc->sc_flags & YDS_CAP_LEGACY_SELECTABLE)
{
static const bus_addr_t opl_addrs[] = {0x388, 0x398, 0x3A0, 0x3A8};
static const bus_addr_t mpu_addrs[] = {0x330, 0x300, 0x332, 0x334};
struct yds_softc *sc;
pcireg_t reg;
device_t dev;
int i;
sc = device_private(self);
if (!FLEXIBLE && !SELECTABLE)
return;
reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY);
reg &= ~0x8133c03f; /* these bits are out of interest */
reg |= ((YDS_PCI_EX_LEGACY_IMOD) |
(YDS_PCI_LEGACY_FMEN |
YDS_PCI_LEGACY_MEN /*| YDS_PCI_LEGACY_MIEN*/));
reg |= YDS_PCI_EX_LEGACY_SMOD_DISABLE;
if (FLEXIBLE) {
pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY, reg);
delay(100*1000);
}
/* Look for OPL */
dev = 0;
for (i = 0; i < sizeof(opl_addrs) / sizeof(bus_addr_t); i++) {
if (SELECTABLE) {
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
YDS_PCI_LEGACY, reg | (i << (0+16)));
delay(100*1000); /* wait 100ms */
} else
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
YDS_PCI_FM_BA, opl_addrs[i]);
if (bus_space_map(sc->sc_opl_iot,
opl_addrs[i], 4, 0, &sc->sc_opl_ioh) == 0) {
struct audio_attach_args aa;
aa.type = AUDIODEV_TYPE_OPL;
aa.hwif = aa.hdl = NULL;
dev = config_found(self, &aa, audioprint);
if (dev == 0)
bus_space_unmap(sc->sc_opl_iot,
sc->sc_opl_ioh, 4);
else {
if (SELECTABLE)
reg |= (i << (0+16));
break;
}
}
}
if (dev == 0) {
reg &= ~YDS_PCI_LEGACY_FMEN;
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
YDS_PCI_LEGACY, reg);
} else {
/* Max. volume */
YWRITE4(sc, YDS_LEGACY_OUT_VOLUME, 0x3fff3fff);
YWRITE4(sc, YDS_LEGACY_REC_VOLUME, 0x3fff3fff);
}
/* Look for MPU */
dev = NULL;
for (i = 0; i < sizeof(mpu_addrs) / sizeof(bus_addr_t); i++) {
if (SELECTABLE)
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
YDS_PCI_LEGACY, reg | (i << (4+16)));
else
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
YDS_PCI_MPU_BA, mpu_addrs[i]);
if (bus_space_map(sc->sc_mpu_iot,
mpu_addrs[i], 2, 0, &sc->sc_mpu_ioh) == 0) {
struct audio_attach_args aa;
aa.type = AUDIODEV_TYPE_MPU;
aa.hwif = aa.hdl = NULL;
dev = config_found(self, &aa, audioprint);
if (dev == 0)
bus_space_unmap(sc->sc_mpu_iot,
sc->sc_mpu_ioh, 2);
else {
if (SELECTABLE)
reg |= (i << (4+16));
break;
}
}
}
if (dev == 0) {
reg &= ~(YDS_PCI_LEGACY_MEN | YDS_PCI_LEGACY_MIEN);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY, reg);
}
sc->sc_mpu = dev;
}
#undef FLEXIBLE
#undef SELECTABLE
static int
yds_init(struct yds_softc *sc)
{
uint32_t reg;
DPRINTF(("yds_init()\n"));
/* Download microcode */
if (yds_download_mcode(sc)) {
aprint_error_dev(sc->sc_dev, "download microcode failed\n");
return 1;
}
/* Allocate DMA buffers */
if (yds_allocate_slots(sc)) {
aprint_error_dev(sc->sc_dev, "could not allocate slots\n");
return 1;
}
/* Warm reset */
reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL,
reg | YDS_DSCTRL_WRST);
delay(50000);
return 0;
}
static bool
yds_suspend(device_t dv, const pmf_qual_t *qual)
{
struct yds_softc *sc = device_private(dv);
pci_chipset_tag_t pc = sc->sc_pc;
pcitag_t tag = sc->sc_pcitag;
mutex_enter(&sc->sc_lock);
mutex_spin_enter(&sc->sc_intr_lock);
sc->sc_dsctrl = pci_conf_read(pc, tag, YDS_PCI_DSCTRL);
sc->sc_legacy = pci_conf_read(pc, tag, YDS_PCI_LEGACY);
sc->sc_ba[0] = pci_conf_read(pc, tag, YDS_PCI_FM_BA);
sc->sc_ba[1] = pci_conf_read(pc, tag, YDS_PCI_MPU_BA);
mutex_spin_exit(&sc->sc_intr_lock);
mutex_exit(&sc->sc_lock);
return true;
}
static bool
yds_resume(device_t dv, const pmf_qual_t *qual)
{
struct yds_softc *sc = device_private(dv);
pci_chipset_tag_t pc = sc->sc_pc;
pcitag_t tag = sc->sc_pcitag;
pcireg_t reg;
/* Disable legacy mode */
mutex_enter(&sc->sc_lock);
mutex_spin_enter(&sc->sc_intr_lock);
reg = pci_conf_read(pc, tag, YDS_PCI_LEGACY);
pci_conf_write(pc, tag, YDS_PCI_LEGACY, reg & YDS_PCI_LEGACY_LAD);
/* Enable the device. */
reg = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
reg |= (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE |
PCI_COMMAND_MASTER_ENABLE);
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, reg);
reg = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
if (yds_init(sc)) {
aprint_error_dev(dv, "reinitialize failed\n");
mutex_spin_exit(&sc->sc_intr_lock);
mutex_exit(&sc->sc_lock);
return false;
}
pci_conf_write(pc, tag, YDS_PCI_DSCTRL, sc->sc_dsctrl);
mutex_spin_exit(&sc->sc_intr_lock);
sc->sc_codec[0].codec_if->vtbl->restore_ports(sc->sc_codec[0].codec_if);
mutex_exit(&sc->sc_lock);
return true;
}
static void
yds_attach(device_t parent, device_t self, void *aux)
{
struct yds_softc *sc;
struct pci_attach_args *pa;
pci_chipset_tag_t pc;
char const *intrstr;
pci_intr_handle_t ih;
pcireg_t reg;
struct yds_codec_softc *codec;
int i, r, to;
int revision;
int ac97_id2;
char intrbuf[PCI_INTRSTR_LEN];
sc = device_private(self);
sc->sc_dev = self;
pa = (struct pci_attach_args *)aux;
pc = pa->pa_pc;
revision = PCI_REVISION(pa->pa_class);
pci_aprint_devinfo(pa, NULL);
/* Map register to memory */
if (pci_mapreg_map(pa, YDS_PCI_MBA, PCI_MAPREG_TYPE_MEM, 0,
&sc->memt, &sc->memh, NULL, NULL)) {
aprint_error_dev(self, "can't map memory space\n");
return;
}
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(self, "couldn't map interrupt\n");
return;
}
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_AUDIO); /* XXX IPL_NONE? */
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, yds_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "couldn't establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
mutex_destroy(&sc->sc_lock);
mutex_destroy(&sc->sc_intr_lock);
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
sc->sc_dmatag = pa->pa_dmat;
sc->sc_pc = pc;
sc->sc_pcitag = pa->pa_tag;
sc->sc_id = pa->pa_id;
sc->sc_revision = revision;
sc->sc_flags = yds_get_dstype(sc->sc_id);
#ifdef AUDIO_DEBUG
if (ydsdebug) {
char bits[80];
snprintb(bits, sizeof(bits), YDS_CAP_BITS, sc->sc_flags);
printf("%s: chip has %s\n", device_xname(self), bits);
}
#endif
/* Disable legacy mode */
reg = pci_conf_read(pc, pa->pa_tag, YDS_PCI_LEGACY);
pci_conf_write(pc, pa->pa_tag, YDS_PCI_LEGACY,
reg & YDS_PCI_LEGACY_LAD);
/* Enable the device. */
reg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
reg |= (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE |
PCI_COMMAND_MASTER_ENABLE);
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
reg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
/* Mute all volumes */
for (i = 0x80; i < 0xc0; i += 2)
YWRITE2(sc, i, 0);
/* Initialize the device */
if (yds_init(sc)) {
aprint_error_dev(self, "initialize failed\n");
mutex_destroy(&sc->sc_lock);
mutex_destroy(&sc->sc_intr_lock);
return;
}
/*
* Detect primary/secondary AC97
* YMF754 Hardware Specification Rev 1.01 page 24
*/
reg = pci_conf_read(pc, pa->pa_tag, YDS_PCI_DSCTRL);
pci_conf_write(pc, pa->pa_tag, YDS_PCI_DSCTRL, reg & ~YDS_DSCTRL_CRST);
delay(400000); /* Needed for 740C. */
/* Primary */
for (to = 0; to < AC97_TIMEOUT; to++) {
if ((YREAD2(sc, AC97_STAT_ADDR1) & AC97_BUSY) == 0)
break;
delay(1);
}
if (to == AC97_TIMEOUT) {
aprint_error_dev(self, "no AC97 available\n");
mutex_destroy(&sc->sc_lock);
mutex_destroy(&sc->sc_intr_lock);
return;
}
/* Secondary */
/* Secondary AC97 is used for 4ch audio. Currently unused. */
ac97_id2 = -1;
if ((YREAD2(sc, YDS_ACTIVITY) & YDS_ACTIVITY_DOCKA) == 0)
goto detected;
#if 0 /* reset secondary... */
YWRITE2(sc, YDS_GPIO_OCTRL,
YREAD2(sc, YDS_GPIO_OCTRL) & ~YDS_GPIO_GPO2);
YWRITE2(sc, YDS_GPIO_FUNCE,
(YREAD2(sc, YDS_GPIO_FUNCE)&(~YDS_GPIO_GPC2))|YDS_GPIO_GPE2);
#endif
for (to = 0; to < AC97_TIMEOUT; to++) {
if ((YREAD2(sc, AC97_STAT_ADDR2) & AC97_BUSY) == 0)
break;
delay(1);
}
if (to < AC97_TIMEOUT) {
/* detect id */
for (ac97_id2 = 1; ac97_id2 < 4; ac97_id2++) {
YWRITE2(sc, AC97_CMD_ADDR,
AC97_CMD_READ | AC97_ID(ac97_id2) | 0x28);
for (to = 0; to < AC97_TIMEOUT; to++) {
if ((YREAD2(sc, AC97_STAT_ADDR2) & AC97_BUSY)
== 0)
goto detected;
delay(1);
}
}
if (ac97_id2 == 4)
ac97_id2 = -1;
detected:
;
}
pci_conf_write(pc, pa->pa_tag, YDS_PCI_DSCTRL, reg | YDS_DSCTRL_CRST);
delay (20);
pci_conf_write(pc, pa->pa_tag, YDS_PCI_DSCTRL, reg & ~YDS_DSCTRL_CRST);
delay (400000);
for (to = 0; to < AC97_TIMEOUT; to++) {
if ((YREAD2(sc, AC97_STAT_ADDR1) & AC97_BUSY) == 0)
break;
delay(1);
}
/*
* Attach ac97 codec
*/
for (i = 0; i < 2; i++) {
static struct {
int data;
int addr;
} statregs[] = {
{AC97_STAT_DATA1, AC97_STAT_ADDR1},
{AC97_STAT_DATA2, AC97_STAT_ADDR2},
};
if (i == 1 && ac97_id2 == -1)
break; /* secondary ac97 not available */
codec = &sc->sc_codec[i];
codec->sc = sc;
codec->id = i == 1 ? ac97_id2 : 0;
codec->status_data = statregs[i].data;
codec->status_addr = statregs[i].addr;
codec->host_if.arg = codec;
codec->host_if.attach = yds_attach_codec;
codec->host_if.read = yds_read_codec;
codec->host_if.write = yds_write_codec;
codec->host_if.reset = yds_reset_codec;
r = ac97_attach(&codec->host_if, self, &sc->sc_lock);
if (r != 0) {
aprint_error_dev(self,
"can't attach codec (error 0x%X)\n", r);
mutex_destroy(&sc->sc_lock);
mutex_destroy(&sc->sc_intr_lock);
return;
}
}
if (0 != auconv_create_encodings(yds_formats, YDS_NFORMATS,
&sc->sc_encodings)) {
mutex_destroy(&sc->sc_lock);
mutex_destroy(&sc->sc_intr_lock);
return;
}
audio_attach_mi(&yds_hw_if, sc, self);
sc->sc_legacy_iot = pa->pa_iot;
config_defer(self, yds_configure_legacy);
if (!pmf_device_register(self, yds_suspend, yds_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
}
static int
yds_attach_codec(void *sc_, struct ac97_codec_if *codec_if)
{
struct yds_codec_softc *sc;
sc = sc_;
sc->codec_if = codec_if;
return 0;
}
static int
yds_ready_codec(struct yds_codec_softc *sc)
{
int to;
for (to = 0; to < AC97_TIMEOUT; to++) {
if ((YREAD2(sc->sc, sc->status_addr) & AC97_BUSY) == 0)
return 0;
delay(1);
}
return 1;
}
static int
yds_read_codec(void *sc_, uint8_t reg, uint16_t *data)
{
struct yds_codec_softc *sc;
sc = sc_;
YWRITE2(sc->sc, AC97_CMD_ADDR, AC97_CMD_READ | AC97_ID(sc->id) | reg);
if (yds_ready_codec(sc)) {
aprint_error_dev(sc->sc->sc_dev, "yds_read_codec timeout\n");
return EIO;
}
if (PCI_PRODUCT(sc->sc->sc_id) == PCI_PRODUCT_YAMAHA_YMF744B &&
sc->sc->sc_revision < 2) {
int i;
for (i=0; i<600; i++)
(void)YREAD2(sc->sc, sc->status_data);
}
*data = YREAD2(sc->sc, sc->status_data);
return 0;
}
static int
yds_write_codec(void *sc_, uint8_t reg, uint16_t data)
{
struct yds_codec_softc *sc;
sc = sc_;
YWRITE2(sc->sc, AC97_CMD_ADDR, AC97_CMD_WRITE | AC97_ID(sc->id) | reg);
YWRITE2(sc->sc, AC97_CMD_DATA, data);
if (yds_ready_codec(sc)) {
aprint_error_dev(sc->sc->sc_dev, "yds_write_codec timeout\n");
return EIO;
}
return 0;
}
/*
* XXX: Must handle the secondary differntly!!
*/
static int
yds_reset_codec(void *sc_)
{
struct yds_codec_softc *codec;
struct yds_softc *sc;
pcireg_t reg;
codec = sc_;
sc = codec->sc;
/* reset AC97 codec */
reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL);
if (reg & 0x03) {
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
YDS_PCI_DSCTRL, reg & ~0x03);
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
YDS_PCI_DSCTRL, reg | 0x03);
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
YDS_PCI_DSCTRL, reg & ~0x03);
delay(50000);
}
yds_ready_codec(sc_);
return 0;
}
static int
yds_intr(void *p)
{
struct yds_softc *sc = p;
#if NMPU > 0
struct mpu_softc *sc_mpu = device_private(sc->sc_mpu);
#endif
u_int status;
mutex_spin_enter(&sc->sc_intr_lock);
status = YREAD4(sc, YDS_STATUS);
DPRINTFN(1, ("yds_intr: status=%08x\n", status));
if ((status & (YDS_STAT_INT|YDS_STAT_TINT)) == 0) {
#if NMPU > 0
if (sc_mpu)
return mpu_intr(sc_mpu);
#endif
mutex_spin_exit(&sc->sc_intr_lock);
return 0;
}
if (status & YDS_STAT_TINT) {
YWRITE4(sc, YDS_STATUS, YDS_STAT_TINT);
printf ("yds_intr: timeout!\n");
}
if (status & YDS_STAT_INT) {
int nbank;
nbank = (YREAD4(sc, YDS_CONTROL_SELECT) == 0);
/* Clear interrupt flag */
YWRITE4(sc, YDS_STATUS, YDS_STAT_INT);
/* Buffer for the next frame is always ready. */
YWRITE4(sc, YDS_MODE, YREAD4(sc, YDS_MODE) | YDS_MODE_ACTV2);
if (sc->sc_play.intr) {
u_int dma, ccpu, blk, len;
/* Sync play slot control data */
bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map,
sc->pbankoff,
sizeof(struct play_slot_ctrl_bank)*
le32toh(*sc->ptbl)*
N_PLAY_SLOT_CTRL_BANK,
BUS_DMASYNC_POSTWRITE|
BUS_DMASYNC_POSTREAD);
dma = le32toh(sc->pbankp[nbank]->pgstart) * sc->sc_play.factor;
ccpu = sc->sc_play.offset;
blk = sc->sc_play.blksize;
len = sc->sc_play.length;
if (((dma > ccpu) && (dma - ccpu > blk * 2)) ||
((ccpu > dma) && (dma + len - ccpu > blk * 2))) {
/* We can fill the next block */
/* Sync ring buffer for previous write */
bus_dmamap_sync(sc->sc_dmatag,
sc->sc_play.dma->map,
ccpu, blk,
BUS_DMASYNC_POSTWRITE);
sc->sc_play.intr(sc->sc_play.intr_arg);
sc->sc_play.offset += blk;
if (sc->sc_play.offset >= len) {
sc->sc_play.offset -= len;
#ifdef DIAGNOSTIC
if (sc->sc_play.offset != 0)
printf ("Audio ringbuffer botch\n");
#endif
}
/* Sync ring buffer for next write */
bus_dmamap_sync(sc->sc_dmatag,
sc->sc_play.dma->map,
ccpu, blk,
BUS_DMASYNC_PREWRITE);
}
}
if (sc->sc_rec.intr) {
u_int dma, ccpu, blk, len;
/* Sync rec slot control data */
bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map,
sc->rbankoff,
sizeof(struct rec_slot_ctrl_bank)*
N_REC_SLOT_CTRL*
N_REC_SLOT_CTRL_BANK,
BUS_DMASYNC_POSTWRITE|
BUS_DMASYNC_POSTREAD);
dma = le32toh(sc->rbank[YDS_INPUT_SLOT*2 + nbank].pgstartadr);
ccpu = sc->sc_rec.offset;
blk = sc->sc_rec.blksize;
len = sc->sc_rec.length;
if (((dma > ccpu) && (dma - ccpu > blk * 2)) ||
((ccpu > dma) && (dma + len - ccpu > blk * 2))) {
/* We can drain the current block */
/* Sync ring buffer first */
bus_dmamap_sync(sc->sc_dmatag,
sc->sc_rec.dma->map,
ccpu, blk,
BUS_DMASYNC_POSTREAD);
sc->sc_rec.intr(sc->sc_rec.intr_arg);
sc->sc_rec.offset += blk;
if (sc->sc_rec.offset >= len) {
sc->sc_rec.offset -= len;
#ifdef DIAGNOSTIC
if (sc->sc_rec.offset != 0)
printf ("Audio ringbuffer botch\n");
#endif
}
/* Sync ring buffer for next read */
bus_dmamap_sync(sc->sc_dmatag,
sc->sc_rec.dma->map,
ccpu, blk,
BUS_DMASYNC_PREREAD);
}
}
}
mutex_spin_exit(&sc->sc_intr_lock);
return 1;
}
static int
yds_allocmem(struct yds_softc *sc, size_t size, size_t align, struct yds_dma *p)
{
int error;
p->size = size;
error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
&p->nsegs, BUS_DMA_WAITOK);
if (error)
return error;
error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
&p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
if (error)
goto free;
error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
0, BUS_DMA_WAITOK, &p->map);
if (error)
goto unmap;
error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
BUS_DMA_WAITOK);
if (error)
goto destroy;
return 0;
destroy:
bus_dmamap_destroy(sc->sc_dmatag, p->map);
unmap:
bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
free:
bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
return error;
}
static int
yds_freemem(struct yds_softc *sc, struct yds_dma *p)
{
bus_dmamap_unload(sc->sc_dmatag, p->map);
bus_dmamap_destroy(sc->sc_dmatag, p->map);
bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
return 0;
}
static int
yds_open(void *addr, int flags)
{
struct yds_softc *sc;
uint32_t mode;
sc = addr;
/* Select bank 0. */
YWRITE4(sc, YDS_CONTROL_SELECT, 0);
/* Start the DSP operation. */
mode = YREAD4(sc, YDS_MODE);
mode |= YDS_MODE_ACTV;
mode &= ~YDS_MODE_ACTV2;
YWRITE4(sc, YDS_MODE, mode);
return 0;
}
static void
yds_close(void *addr)
{
yds_halt(addr);
}
static int
yds_query_encoding(void *addr, struct audio_encoding *fp)
{
struct yds_softc *sc;
sc = addr;
return auconv_query_encoding(sc->sc_encodings, fp);
}
static int
yds_set_params(void *addr, int setmode, int usemode,
audio_params_t *play, audio_params_t* rec,
stream_filter_list_t *pfil, stream_filter_list_t *rfil)
{
if (setmode & AUMODE_RECORD) {
if (auconv_set_converter(yds_formats, YDS_NFORMATS,
AUMODE_RECORD, rec, FALSE, rfil) < 0)
return EINVAL;
}
if (setmode & AUMODE_PLAY) {
if (auconv_set_converter(yds_formats, YDS_NFORMATS,
AUMODE_PLAY, play, FALSE, pfil) < 0)
return EINVAL;
}
return 0;
}
static int
yds_round_blocksize(void *addr, int blk, int mode,
const audio_params_t *param)
{
/*
* Block size must be bigger than a frame.
* That is 1024bytes at most, i.e. for 48000Hz, 16bit, 2ch.
*/
if (blk < 1024)
blk = 1024;
return blk & ~4;
}
static uint32_t
yds_get_lpfq(u_int sample_rate)
{
int i;
static struct lpfqt {
u_int rate;
uint32_t lpfq;
} lpfqt[] = {
{8000, 0x32020000},
{11025, 0x31770000},
{16000, 0x31390000},
{22050, 0x31c90000},
{32000, 0x33d00000},
{48000, 0x40000000},
{0, 0}
};
if (sample_rate == 44100) /* for P44 slot? */
return 0x370A0000;
for (i = 0; lpfqt[i].rate != 0; i++)
if (sample_rate <= lpfqt[i].rate)
break;
return lpfqt[i].lpfq;
}
static uint32_t
yds_get_lpfk(u_int sample_rate)
{
int i;
static struct lpfkt {
u_int rate;
uint32_t lpfk;
} lpfkt[] = {
{8000, 0x18b20000},
{11025, 0x20930000},
{16000, 0x2b9a0000},
{22050, 0x35a10000},
{32000, 0x3eaa0000},
{48000, 0x40000000},
{0, 0}
};
if (sample_rate == 44100) /* for P44 slot? */
return 0x46460000;
for (i = 0; lpfkt[i].rate != 0; i++)
if (sample_rate <= lpfkt[i].rate)
break;
return lpfkt[i].lpfk;
}
static int
yds_trigger_output(void *addr, void *start, void *end, int blksize,
void (*intr)(void *), void *arg, const audio_params_t *param)
#define P44 (sc->sc_flags & YDS_CAP_HAS_P44)
{
struct yds_softc *sc;
struct yds_dma *p;
struct play_slot_ctrl_bank *psb;
const u_int gain = 0x40000000;
bus_addr_t s;
size_t l;
int i;
int p44, channels;
uint32_t format;
sc = addr;
#ifdef DIAGNOSTIC
if (sc->sc_play.intr)
panic("yds_trigger_output: already running");
#endif
sc->sc_play.intr = intr;
sc->sc_play.intr_arg = arg;
sc->sc_play.offset = 0;
sc->sc_play.blksize = blksize;
DPRINTFN(1, ("yds_trigger_output: sc=%p start=%p end=%p "
"blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
p = yds_find_dma(sc, start);
if (!p) {
printf("yds_trigger_output: bad addr %p\n", start);
return EINVAL;
}
sc->sc_play.dma = p;
#ifdef YDS_USE_P44
/* The document says the P44 SRC supports only stereo, 16bit PCM. */
if (P44)
p44 = ((param->sample_rate == 44100) &&
(param->channels == 2) &&
(param->precision == 16));
else
#endif
p44 = 0;
channels = p44 ? 1 : param->channels;
s = DMAADDR(p);
l = ((char *)end - (char *)start);
sc->sc_play.length = l;
*sc->ptbl = htole32(channels); /* Num of play */
sc->sc_play.factor = 1;
if (param->channels == 2)
sc->sc_play.factor *= 2;
if (param->precision != 8)
sc->sc_play.factor *= 2;
l /= sc->sc_play.factor;
format = ((channels == 2 ? PSLT_FORMAT_STEREO : 0) |
(param->precision == 8 ? PSLT_FORMAT_8BIT : 0) |
(p44 ? PSLT_FORMAT_SRC441 : 0));
psb = sc->pbankp[0];
memset(psb, 0, sizeof(*psb));
psb->format = htole32(format);
psb->pgbase = htole32(s);
psb->pgloopend = htole32(l);
if (!p44) {
psb->pgdeltaend = htole32((param->sample_rate * 65536 / 48000) << 12);
psb->lpfkend = htole32(yds_get_lpfk(param->sample_rate));
psb->eggainend = htole32(gain);
psb->lpfq = htole32(yds_get_lpfq(param->sample_rate));
psb->pgdelta = htole32(psb->pgdeltaend);
psb->lpfk = htole32(yds_get_lpfk(param->sample_rate));
psb->eggain = htole32(gain);
}
for (i = 0; i < channels; i++) {
/* i == 0: left or mono, i == 1: right */
psb = sc->pbankp[i*2];
if (i)
/* copy from left */
*psb = *(sc->pbankp[0]);
if (channels == 2) {
/* stereo */
if (i == 0) {
psb->lchgain = psb->lchgainend = htole32(gain);
} else {
psb->lchgain = psb->lchgainend = 0;
psb->rchgain = psb->rchgainend = htole32(gain);
psb->format |= htole32(PSLT_FORMAT_RCH);
}
} else if (!p44) {
/* mono */
psb->lchgain = psb->rchgain = htole32(gain);
psb->lchgainend = psb->rchgainend = htole32(gain);
}
/* copy to the other bank */
*(sc->pbankp[i*2+1]) = *psb;
}
YDS_DUMP_PLAY_SLOT(5, sc, 0);
YDS_DUMP_PLAY_SLOT(5, sc, 1);
if (p44)
YWRITE4(sc, YDS_P44_OUT_VOLUME, 0x3fff3fff);
else
YWRITE4(sc, YDS_DAC_OUT_VOLUME, 0x3fff3fff);
/* Now the play slot for the next frame is set up!! */
/* Sync play slot control data for both directions */
bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map,
sc->ptbloff,
sizeof(struct play_slot_ctrl_bank) *
channels * N_PLAY_SLOT_CTRL_BANK,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
/* Sync ring buffer */
bus_dmamap_sync(sc->sc_dmatag, p->map, 0, blksize,
BUS_DMASYNC_PREWRITE);
/* HERE WE GO!! */
YWRITE4(sc, YDS_MODE,
YREAD4(sc, YDS_MODE) | YDS_MODE_ACTV | YDS_MODE_ACTV2);
return 0;
}
#undef P44
static int
yds_trigger_input(void *addr, void *start, void *end, int blksize,
void (*intr)(void *), void *arg, const audio_params_t *param)
{
struct yds_softc *sc;
struct yds_dma *p;
u_int srate, format;
struct rec_slot_ctrl_bank *rsb;
bus_addr_t s;
size_t l;
sc = addr;
#ifdef DIAGNOSTIC
if (sc->sc_rec.intr)
panic("yds_trigger_input: already running");
#endif
sc->sc_rec.intr = intr;
sc->sc_rec.intr_arg = arg;
sc->sc_rec.offset = 0;
sc->sc_rec.blksize = blksize;
DPRINTFN(1, ("yds_trigger_input: "
"sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
addr, start, end, blksize, intr, arg));
DPRINTFN(1, (" parameters: rate=%u, precision=%u, channels=%u\n",
param->sample_rate, param->precision, param->channels));
p = yds_find_dma(sc, start);
if (!p) {
printf("yds_trigger_input: bad addr %p\n", start);
return EINVAL;
}
sc->sc_rec.dma = p;
s = DMAADDR(p);
l = ((char *)end - (char *)start);
sc->sc_rec.length = l;
sc->sc_rec.factor = 1;
if (param->channels == 2)
sc->sc_rec.factor *= 2;
if (param->precision != 8)
sc->sc_rec.factor *= 2;
rsb = &sc->rbank[0];
memset(rsb, 0, sizeof(*rsb));
rsb->pgbase = htole32(s);
rsb->pgloopendadr = htole32(l);
/* Seems all 4 banks must be set up... */
sc->rbank[1] = *rsb;
sc->rbank[2] = *rsb;
sc->rbank[3] = *rsb;
YWRITE4(sc, YDS_ADC_IN_VOLUME, 0x3fff3fff);
YWRITE4(sc, YDS_REC_IN_VOLUME, 0x3fff3fff);
srate = 48000 * 4096 / param->sample_rate - 1;
format = ((param->precision == 8 ? YDS_FORMAT_8BIT : 0) |
(param->channels == 2 ? YDS_FORMAT_STEREO : 0));
DPRINTF(("srate=%d, format=%08x\n", srate, format));
#ifdef YDS_USE_REC_SLOT
YWRITE4(sc, YDS_DAC_REC_VOLUME, 0x3fff3fff);
YWRITE4(sc, YDS_P44_REC_VOLUME, 0x3fff3fff);
YWRITE4(sc, YDS_MAPOF_REC, YDS_RECSLOT_VALID);
YWRITE4(sc, YDS_REC_SAMPLE_RATE, srate);
YWRITE4(sc, YDS_REC_FORMAT, format);
#else
YWRITE4(sc, YDS_MAPOF_REC, YDS_ADCSLOT_VALID);
YWRITE4(sc, YDS_ADC_SAMPLE_RATE, srate);
YWRITE4(sc, YDS_ADC_FORMAT, format);
#endif
/* Now the rec slot for the next frame is set up!! */
/* Sync record slot control data */
bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map,
sc->rbankoff,
sizeof(struct rec_slot_ctrl_bank)*
N_REC_SLOT_CTRL*
N_REC_SLOT_CTRL_BANK,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
/* Sync ring buffer */
bus_dmamap_sync(sc->sc_dmatag, p->map, 0, blksize,
BUS_DMASYNC_PREREAD);
/* HERE WE GO!! */
YWRITE4(sc, YDS_MODE,
YREAD4(sc, YDS_MODE) | YDS_MODE_ACTV | YDS_MODE_ACTV2);
return 0;
}
static int
yds_halt(struct yds_softc *sc)
{
uint32_t mode;
/* Stop the DSP operation. */
mode = YREAD4(sc, YDS_MODE);
YWRITE4(sc, YDS_MODE, mode & ~(YDS_MODE_ACTV|YDS_MODE_ACTV2));
/* Paranoia... mute all */
YWRITE4(sc, YDS_P44_OUT_VOLUME, 0);
YWRITE4(sc, YDS_DAC_OUT_VOLUME, 0);
YWRITE4(sc, YDS_ADC_IN_VOLUME, 0);
YWRITE4(sc, YDS_REC_IN_VOLUME, 0);
YWRITE4(sc, YDS_DAC_REC_VOLUME, 0);
YWRITE4(sc, YDS_P44_REC_VOLUME, 0);
return 0;
}
static int
yds_halt_output(void *addr)
{
struct yds_softc *sc;
DPRINTF(("yds: yds_halt_output\n"));
sc = addr;
if (sc->sc_play.intr) {
sc->sc_play.intr = 0;
/* Sync play slot control data */
bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map,
sc->pbankoff,
sizeof(struct play_slot_ctrl_bank)*
(*sc->ptbl)*N_PLAY_SLOT_CTRL_BANK,
BUS_DMASYNC_POSTWRITE|BUS_DMASYNC_POSTREAD);
/* Stop the play slot operation */
sc->pbankp[0]->status =
sc->pbankp[1]->status =
sc->pbankp[2]->status =
sc->pbankp[3]->status = 1;
/* Sync ring buffer */
bus_dmamap_sync(sc->sc_dmatag, sc->sc_play.dma->map,
0, sc->sc_play.length, BUS_DMASYNC_POSTWRITE);
}
return 0;
}
static int
yds_halt_input(void *addr)
{
struct yds_softc *sc;
DPRINTF(("yds: yds_halt_input\n"));
sc = addr;
sc->sc_rec.intr = NULL;
if (sc->sc_rec.intr) {
/* Stop the rec slot operation */
YWRITE4(sc, YDS_MAPOF_REC, 0);
sc->sc_rec.intr = 0;
/* Sync rec slot control data */
bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map,
sc->rbankoff,
sizeof(struct rec_slot_ctrl_bank)*
N_REC_SLOT_CTRL*N_REC_SLOT_CTRL_BANK,
BUS_DMASYNC_POSTWRITE|BUS_DMASYNC_POSTREAD);
/* Sync ring buffer */
bus_dmamap_sync(sc->sc_dmatag, sc->sc_rec.dma->map,
0, sc->sc_rec.length, BUS_DMASYNC_POSTREAD);
}
return 0;
}
static int
yds_getdev(void *addr, struct audio_device *retp)
{
*retp = yds_device;
return 0;
}
static int
yds_mixer_set_port(void *addr, mixer_ctrl_t *cp)
{
struct yds_softc *sc;
sc = addr;
return sc->sc_codec[0].codec_if->vtbl->mixer_set_port(
sc->sc_codec[0].codec_if, cp);
}
static int
yds_mixer_get_port(void *addr, mixer_ctrl_t *cp)
{
struct yds_softc *sc;
sc = addr;
return sc->sc_codec[0].codec_if->vtbl->mixer_get_port(
sc->sc_codec[0].codec_if, cp);
}
static int
yds_query_devinfo(void *addr, mixer_devinfo_t *dip)
{
struct yds_softc *sc;
sc = addr;
return sc->sc_codec[0].codec_if->vtbl->query_devinfo(
sc->sc_codec[0].codec_if, dip);
}
static void *
yds_malloc(void *addr, int direction, size_t size)
{
struct yds_softc *sc;
struct yds_dma *p;
int error;
p = kmem_alloc(sizeof(*p), KM_SLEEP);
if (p == NULL)
return NULL;
sc = addr;
error = yds_allocmem(sc, size, 16, p);
if (error) {
kmem_free(p, sizeof(*p));
return NULL;
}
p->next = sc->sc_dmas;
sc->sc_dmas = p;
return KERNADDR(p);
}
static void
yds_free(void *addr, void *ptr, size_t size)
{
struct yds_softc *sc;
struct yds_dma **pp, *p;
sc = addr;
for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
if (KERNADDR(p) == ptr) {
yds_freemem(sc, p);
*pp = p->next;
kmem_free(p, sizeof(*p));
return;
}
}
}
static struct yds_dma *
yds_find_dma(struct yds_softc *sc, void *addr)
{
struct yds_dma *p;
for (p = sc->sc_dmas; p && KERNADDR(p) != addr; p = p->next)
continue;
return p;
}
static size_t
yds_round_buffersize(void *addr, int direction, size_t size)
{
/*
* Buffer size should be at least twice as bigger as a frame.
*/
if (size < 1024 * 3)
size = 1024 * 3;
return size;
}
static paddr_t
yds_mappage(void *addr, void *mem, off_t off, int prot)
{
struct yds_softc *sc;
struct yds_dma *p;
if (off < 0)
return -1;
sc = addr;
p = yds_find_dma(sc, mem);
if (p == NULL)
return -1;
return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
off, prot, BUS_DMA_WAITOK);
}
static int
yds_get_props(void *addr)
{
return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
AUDIO_PROP_FULLDUPLEX;
}
static void
yds_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
{
struct yds_softc *sc;
sc = addr;
*intr = &sc->sc_intr_lock;
*thread = &sc->sc_lock;
}