NetBSD/sys/dev/pci/if_bce.c
ozaki-r dd8638eea5 Move bpf_mtap and if_ipackets++ on Rx of each driver to percpuq if_input
The benefits of the change are:
- We can reduce codes
- We can provide the same behavior between drivers
  - Where/When if_ipackets is counted up
  - Note that some drivers still update packet statistics in their own
    way (periodical update)
- Moved bpf_mtap run in softint
  - This makes it easy to MP-ify bpf

Proposed on tech-kern and tech-net
2016-12-15 09:28:02 +00:00

1467 lines
42 KiB
C

/* $NetBSD: if_bce.c,v 1.44 2016/12/15 09:28:05 ozaki-r Exp $ */
/*
* Copyright (c) 2003 Clifford Wright. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Broadcom BCM440x 10/100 ethernet (broadcom.com)
* SiliconBackplane is technology from Sonics, Inc.(sonicsinc.com)
*
* Cliff Wright cliff@snipe444.org
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_bce.c,v 1.44 2016/12/15 09:28:05 ozaki-r Exp $");
#include "vlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/bpf.h>
#include <sys/rndsource.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/miidevs.h>
#include <dev/mii/brgphyreg.h>
#include <dev/pci/if_bcereg.h>
/* transmit buffer max frags allowed */
#define BCE_NTXFRAGS 16
/* ring descriptor */
struct bce_dma_slot {
uint32_t ctrl;
uint32_t addr;
};
#define CTRL_BC_MASK 0x1fff /* buffer byte count */
#define CTRL_EOT 0x10000000 /* end of descriptor table */
#define CTRL_IOC 0x20000000 /* interrupt on completion */
#define CTRL_EOF 0x40000000 /* end of frame */
#define CTRL_SOF 0x80000000 /* start of frame */
/* Packet status is returned in a pre-packet header */
struct rx_pph {
uint16_t len;
uint16_t flags;
uint16_t pad[12];
};
/* packet status flags bits */
#define RXF_NO 0x8 /* odd number of nibbles */
#define RXF_RXER 0x4 /* receive symbol error */
#define RXF_CRC 0x2 /* crc error */
#define RXF_OV 0x1 /* fifo overflow */
/* number of descriptors used in a ring */
#define BCE_NRXDESC 128
#define BCE_NTXDESC 128
/*
* Mbuf pointers. We need these to keep track of the virtual addresses
* of our mbuf chains since we can only convert from physical to virtual,
* not the other way around.
*/
struct bce_chain_data {
struct mbuf *bce_tx_chain[BCE_NTXDESC];
struct mbuf *bce_rx_chain[BCE_NRXDESC];
bus_dmamap_t bce_tx_map[BCE_NTXDESC];
bus_dmamap_t bce_rx_map[BCE_NRXDESC];
};
#define BCE_TIMEOUT 100 /* # 10us for mii read/write */
struct bce_softc {
device_t bce_dev;
bus_space_tag_t bce_btag;
bus_space_handle_t bce_bhandle;
bus_dma_tag_t bce_dmatag;
struct ethercom ethercom; /* interface info */
void *bce_intrhand;
struct pci_attach_args bce_pa;
struct mii_data bce_mii;
uint32_t bce_phy; /* eeprom indicated phy */
struct ifmedia bce_ifmedia; /* media info *//* Check */
uint8_t enaddr[ETHER_ADDR_LEN];
struct bce_dma_slot *bce_rx_ring; /* receive ring */
struct bce_dma_slot *bce_tx_ring; /* transmit ring */
struct bce_chain_data bce_cdata; /* mbufs */
bus_dmamap_t bce_ring_map;
uint32_t bce_intmask; /* current intr mask */
uint32_t bce_rxin; /* last rx descriptor seen */
uint32_t bce_txin; /* last tx descriptor seen */
int bce_txsfree; /* no. tx slots available */
int bce_txsnext; /* next available tx slot */
callout_t bce_timeout;
krndsource_t rnd_source;
};
/* for ring descriptors */
#define BCE_RXBUF_LEN (MCLBYTES - 4)
#define BCE_INIT_RXDESC(sc, x) \
do { \
struct bce_dma_slot *__bced = &sc->bce_rx_ring[x]; \
\
*mtod(sc->bce_cdata.bce_rx_chain[x], uint32_t *) = 0; \
__bced->addr = \
htole32(sc->bce_cdata.bce_rx_map[x]->dm_segs[0].ds_addr \
+ 0x40000000); \
if (x != (BCE_NRXDESC - 1)) \
__bced->ctrl = htole32(BCE_RXBUF_LEN); \
else \
__bced->ctrl = htole32(BCE_RXBUF_LEN | CTRL_EOT); \
bus_dmamap_sync(sc->bce_dmatag, sc->bce_ring_map, \
sizeof(struct bce_dma_slot) * x, \
sizeof(struct bce_dma_slot), \
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
} while (/* CONSTCOND */ 0)
static int bce_probe(device_t, cfdata_t, void *);
static void bce_attach(device_t, device_t, void *);
static int bce_ioctl(struct ifnet *, u_long, void *);
static void bce_start(struct ifnet *);
static void bce_watchdog(struct ifnet *);
static int bce_intr(void *);
static void bce_rxintr(struct bce_softc *);
static void bce_txintr(struct bce_softc *);
static int bce_init(struct ifnet *);
static void bce_add_mac(struct bce_softc *, uint8_t *, unsigned long);
static int bce_add_rxbuf(struct bce_softc *, int);
static void bce_rxdrain(struct bce_softc *);
static void bce_stop(struct ifnet *, int);
static void bce_reset(struct bce_softc *);
static bool bce_resume(device_t, const pmf_qual_t *);
static void bce_set_filter(struct ifnet *);
static int bce_mii_read(device_t, int, int);
static void bce_mii_write(device_t, int, int, int);
static void bce_statchg(struct ifnet *);
static void bce_tick(void *);
CFATTACH_DECL_NEW(bce, sizeof(struct bce_softc),
bce_probe, bce_attach, NULL, NULL);
static const struct bce_product {
pci_vendor_id_t bp_vendor;
pci_product_id_t bp_product;
const char *bp_name;
} bce_products[] = {
{
PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM4401,
"Broadcom BCM4401 10/100 Ethernet"
},
{
PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM4401_B0,
"Broadcom BCM4401-B0 10/100 Ethernet"
},
{
0,
0,
NULL
},
};
static const struct bce_product *
bce_lookup(const struct pci_attach_args * pa)
{
const struct bce_product *bp;
for (bp = bce_products; bp->bp_name != NULL; bp++) {
if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
PCI_PRODUCT(pa->pa_id) == bp->bp_product)
return (bp);
}
return (NULL);
}
/*
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
* against drivers product list, and return its name if a match is found.
*/
static int
bce_probe(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = (struct pci_attach_args *) aux;
if (bce_lookup(pa) != NULL)
return (1);
return (0);
}
static void
bce_attach(device_t parent, device_t self, void *aux)
{
struct bce_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
const struct bce_product *bp;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
uint32_t command;
pcireg_t memtype, pmode;
bus_addr_t memaddr;
bus_size_t memsize;
void *kva;
bus_dma_segment_t seg;
int error, i, pmreg, rseg;
struct ifnet *ifp;
char intrbuf[PCI_INTRSTR_LEN];
sc->bce_dev = self;
bp = bce_lookup(pa);
KASSERT(bp != NULL);
sc->bce_pa = *pa;
/* BCM440x can only address 30 bits (1GB) */
if (bus_dmatag_subregion(pa->pa_dmat, 0, (1 << 30),
&(sc->bce_dmatag), BUS_DMA_NOWAIT) != 0) {
aprint_error_dev(self,
"WARNING: failed to restrict dma range,"
" falling back to parent bus dma range\n");
sc->bce_dmatag = pa->pa_dmat;
}
aprint_naive(": Ethernet controller\n");
aprint_normal(": %s\n", bp->bp_name);
/*
* Map control/status registers.
*/
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
if (!(command & PCI_COMMAND_MEM_ENABLE)) {
aprint_error_dev(self, "failed to enable memory mapping!\n");
return;
}
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BCE_PCI_BAR0);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
if (pci_mapreg_map(pa, BCE_PCI_BAR0, memtype, 0, &sc->bce_btag,
&sc->bce_bhandle, &memaddr, &memsize) == 0)
break;
default:
aprint_error_dev(self, "unable to find mem space\n");
return;
}
/* Get it out of power save mode if needed. */
if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, NULL)) {
pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
if (pmode == 3) {
/*
* The card has lost all configuration data in
* this state, so punt.
*/
aprint_error_dev(self,
"unable to wake up from power state D3\n");
return;
}
if (pmode != 0) {
aprint_normal_dev(self,
"waking up from power state D%d\n", pmode);
pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
}
}
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(self, "couldn't map interrupt\n");
return;
}
intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
sc->bce_intrhand = pci_intr_establish(pc, ih, IPL_NET, bce_intr, sc);
if (sc->bce_intrhand == NULL) {
aprint_error_dev(self, "couldn't establish interrupt\n");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
/* reset the chip */
bce_reset(sc);
/*
* Allocate DMA-safe memory for ring descriptors.
* The receive, and transmit rings can not share the same
* 4k space, however both are allocated at once here.
*/
/*
* XXX PAGE_SIZE is wasteful; we only need 1KB + 1KB, but
* due to the limition above. ??
*/
if ((error = bus_dmamem_alloc(sc->bce_dmatag,
2 * PAGE_SIZE, PAGE_SIZE, 2 * PAGE_SIZE,
&seg, 1, &rseg, BUS_DMA_NOWAIT))) {
aprint_error_dev(self,
"unable to alloc space for ring descriptors, error = %d\n",
error);
return;
}
/* map ring space to kernel */
if ((error = bus_dmamem_map(sc->bce_dmatag, &seg, rseg,
2 * PAGE_SIZE, &kva, BUS_DMA_NOWAIT))) {
aprint_error_dev(self,
"unable to map DMA buffers, error = %d\n", error);
bus_dmamem_free(sc->bce_dmatag, &seg, rseg);
return;
}
/* create a dma map for the ring */
if ((error = bus_dmamap_create(sc->bce_dmatag,
2 * PAGE_SIZE, 1, 2 * PAGE_SIZE, 0, BUS_DMA_NOWAIT,
&sc->bce_ring_map))) {
aprint_error_dev(self,
"unable to create ring DMA map, error = %d\n", error);
bus_dmamem_unmap(sc->bce_dmatag, kva, 2 * PAGE_SIZE);
bus_dmamem_free(sc->bce_dmatag, &seg, rseg);
return;
}
/* connect the ring space to the dma map */
if (bus_dmamap_load(sc->bce_dmatag, sc->bce_ring_map, kva,
2 * PAGE_SIZE, NULL, BUS_DMA_NOWAIT)) {
bus_dmamap_destroy(sc->bce_dmatag, sc->bce_ring_map);
bus_dmamem_unmap(sc->bce_dmatag, kva, 2 * PAGE_SIZE);
bus_dmamem_free(sc->bce_dmatag, &seg, rseg);
return;
}
/* save the ring space in softc */
sc->bce_rx_ring = (struct bce_dma_slot *) kva;
sc->bce_tx_ring = (struct bce_dma_slot *) ((char *)kva + PAGE_SIZE);
/* Create the transmit buffer DMA maps. */
for (i = 0; i < BCE_NTXDESC; i++) {
if ((error = bus_dmamap_create(sc->bce_dmatag, MCLBYTES,
BCE_NTXFRAGS, MCLBYTES, 0, 0, &sc->bce_cdata.bce_tx_map[i])) != 0) {
aprint_error_dev(self,
"unable to create tx DMA map, error = %d\n", error);
}
sc->bce_cdata.bce_tx_chain[i] = NULL;
}
/* Create the receive buffer DMA maps. */
for (i = 0; i < BCE_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->bce_dmatag, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->bce_cdata.bce_rx_map[i])) != 0) {
aprint_error_dev(self,
"unable to create rx DMA map, error = %d\n", error);
}
sc->bce_cdata.bce_rx_chain[i] = NULL;
}
/* Set up ifnet structure */
ifp = &sc->ethercom.ec_if;
strcpy(ifp->if_xname, device_xname(self));
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = bce_ioctl;
ifp->if_start = bce_start;
ifp->if_watchdog = bce_watchdog;
ifp->if_init = bce_init;
ifp->if_stop = bce_stop;
IFQ_SET_READY(&ifp->if_snd);
/* Initialize our media structures and probe the MII. */
sc->bce_mii.mii_ifp = ifp;
sc->bce_mii.mii_readreg = bce_mii_read;
sc->bce_mii.mii_writereg = bce_mii_write;
sc->bce_mii.mii_statchg = bce_statchg;
sc->ethercom.ec_mii = &sc->bce_mii;
ifmedia_init(&sc->bce_mii.mii_media, 0, ether_mediachange,
ether_mediastatus);
mii_attach(sc->bce_dev, &sc->bce_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, MIIF_FORCEANEG|MIIF_DOPAUSE);
if (LIST_FIRST(&sc->bce_mii.mii_phys) == NULL) {
ifmedia_add(&sc->bce_mii.mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
ifmedia_set(&sc->bce_mii.mii_media, IFM_ETHER | IFM_NONE);
} else
ifmedia_set(&sc->bce_mii.mii_media, IFM_ETHER | IFM_AUTO);
/* get the phy */
sc->bce_phy = bus_space_read_1(sc->bce_btag, sc->bce_bhandle,
BCE_MAGIC_PHY) & 0x1f;
/*
* Enable activity led.
* XXX This should be in a phy driver, but not currently.
*/
bce_mii_write(sc->bce_dev, 1, 26, /* MAGIC */
bce_mii_read(sc->bce_dev, 1, 26) & 0x7fff); /* MAGIC */
/* enable traffic meter led mode */
bce_mii_write(sc->bce_dev, 1, 27, /* MAGIC */
bce_mii_read(sc->bce_dev, 1, 27) | (1 << 6)); /* MAGIC */
/* Attach the interface */
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
sc->enaddr[0] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle,
BCE_MAGIC_ENET0);
sc->enaddr[1] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle,
BCE_MAGIC_ENET1);
sc->enaddr[2] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle,
BCE_MAGIC_ENET2);
sc->enaddr[3] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle,
BCE_MAGIC_ENET3);
sc->enaddr[4] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle,
BCE_MAGIC_ENET4);
sc->enaddr[5] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle,
BCE_MAGIC_ENET5);
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(sc->enaddr));
ether_ifattach(ifp, sc->enaddr);
rnd_attach_source(&sc->rnd_source, device_xname(self),
RND_TYPE_NET, RND_FLAG_DEFAULT);
callout_init(&sc->bce_timeout, 0);
if (pmf_device_register(self, NULL, bce_resume))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
}
/* handle media, and ethernet requests */
static int
bce_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
int s, error;
s = splnet();
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
/* change multicast list */
error = 0;
}
/* Try to get more packets going. */
bce_start(ifp);
splx(s);
return error;
}
/* Start packet transmission on the interface. */
static void
bce_start(struct ifnet *ifp)
{
struct bce_softc *sc = ifp->if_softc;
struct mbuf *m0;
bus_dmamap_t dmamap;
int txstart;
int txsfree;
int newpkts = 0;
int error;
/*
* do not start another if currently transmitting, and more
* descriptors(tx slots) are needed for next packet.
*/
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
/* determine number of descriptors available */
if (sc->bce_txsnext >= sc->bce_txin)
txsfree = BCE_NTXDESC - 1 + sc->bce_txin - sc->bce_txsnext;
else
txsfree = sc->bce_txin - sc->bce_txsnext - 1;
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
while (txsfree > 0) {
int seg;
/* Grab a packet off the queue. */
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
/* get the transmit slot dma map */
dmamap = sc->bce_cdata.bce_tx_map[sc->bce_txsnext];
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the alloted number of segments, or we
* were short on resources. If the packet will not fit,
* it will be dropped. If short on resources, it will
* be tried again later.
*/
error = bus_dmamap_load_mbuf(sc->bce_dmatag, dmamap, m0,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error == EFBIG) {
aprint_error_dev(sc->bce_dev,
"Tx packet consumes too many DMA segments, "
"dropping...\n");
IFQ_DEQUEUE(&ifp->if_snd, m0);
m_freem(m0);
ifp->if_oerrors++;
continue;
} else if (error) {
/* short on resources, come back later */
aprint_error_dev(sc->bce_dev,
"unable to load Tx buffer, error = %d\n",
error);
break;
}
/* If not enough descriptors available, try again later */
if (dmamap->dm_nsegs > txsfree) {
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->bce_dmatag, dmamap);
break;
}
/* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
/* So take it off the queue */
IFQ_DEQUEUE(&ifp->if_snd, m0);
/* save the pointer so it can be freed later */
sc->bce_cdata.bce_tx_chain[sc->bce_txsnext] = m0;
/* Sync the data DMA map. */
bus_dmamap_sync(sc->bce_dmatag, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* Initialize the transmit descriptor(s). */
txstart = sc->bce_txsnext;
for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
uint32_t ctrl;
ctrl = dmamap->dm_segs[seg].ds_len & CTRL_BC_MASK;
if (seg == 0)
ctrl |= CTRL_SOF;
if (seg == dmamap->dm_nsegs - 1)
ctrl |= CTRL_EOF;
if (sc->bce_txsnext == BCE_NTXDESC - 1)
ctrl |= CTRL_EOT;
ctrl |= CTRL_IOC;
sc->bce_tx_ring[sc->bce_txsnext].ctrl = htole32(ctrl);
sc->bce_tx_ring[sc->bce_txsnext].addr =
htole32(dmamap->dm_segs[seg].ds_addr + 0x40000000); /* MAGIC */
if (sc->bce_txsnext + 1 > BCE_NTXDESC - 1)
sc->bce_txsnext = 0;
else
sc->bce_txsnext++;
txsfree--;
}
/* sync descriptors being used */
if ( sc->bce_txsnext > txstart ) {
bus_dmamap_sync(sc->bce_dmatag, sc->bce_ring_map,
PAGE_SIZE + sizeof(struct bce_dma_slot) * txstart,
sizeof(struct bce_dma_slot) * dmamap->dm_nsegs,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
} else {
bus_dmamap_sync(sc->bce_dmatag, sc->bce_ring_map,
PAGE_SIZE + sizeof(struct bce_dma_slot) * txstart,
sizeof(struct bce_dma_slot) *
(BCE_NTXDESC - txstart),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if ( sc->bce_txsnext != 0 ) {
bus_dmamap_sync(sc->bce_dmatag,
sc->bce_ring_map, PAGE_SIZE,
sc->bce_txsnext *
sizeof(struct bce_dma_slot),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
/* Give the packet to the chip. */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_DPTR,
sc->bce_txsnext * sizeof(struct bce_dma_slot));
newpkts++;
/* Pass the packet to any BPF listeners. */
bpf_mtap(ifp, m0);
}
if (txsfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (newpkts) {
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/* Watchdog timer handler. */
static void
bce_watchdog(struct ifnet *ifp)
{
struct bce_softc *sc = ifp->if_softc;
aprint_error_dev(sc->bce_dev, "device timeout\n");
ifp->if_oerrors++;
(void) bce_init(ifp);
/* Try to get more packets going. */
bce_start(ifp);
}
int
bce_intr(void *xsc)
{
struct bce_softc *sc;
struct ifnet *ifp;
uint32_t intstatus;
int wantinit;
int handled = 0;
sc = xsc;
ifp = &sc->ethercom.ec_if;
for (wantinit = 0; wantinit == 0;) {
intstatus = bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_INT_STS);
/* ignore if not ours, or unsolicited interrupts */
intstatus &= sc->bce_intmask;
if (intstatus == 0)
break;
handled = 1;
/* Ack interrupt */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_INT_STS,
intstatus);
/* Receive interrupts. */
if (intstatus & I_RI)
bce_rxintr(sc);
/* Transmit interrupts. */
if (intstatus & I_XI)
bce_txintr(sc);
/* Error interrupts */
if (intstatus & ~(I_RI | I_XI)) {
const char *msg = NULL;
if (intstatus & I_XU)
msg = "transmit fifo underflow";
if (intstatus & I_RO) {
msg = "receive fifo overflow";
ifp->if_ierrors++;
}
if (intstatus & I_RU)
msg = "receive descriptor underflow";
if (intstatus & I_DE)
msg = "descriptor protocol error";
if (intstatus & I_PD)
msg = "data error";
if (intstatus & I_PC)
msg = "descriptor error";
if (intstatus & I_TO)
msg = "general purpose timeout";
if (msg != NULL)
aprint_error_dev(sc->bce_dev, "%s\n", msg);
wantinit = 1;
}
}
if (handled) {
if (wantinit)
bce_init(ifp);
rnd_add_uint32(&sc->rnd_source, intstatus);
/* Try to get more packets going. */
if_schedule_deferred_start(ifp);
}
return (handled);
}
/* Receive interrupt handler */
void
bce_rxintr(struct bce_softc *sc)
{
struct ifnet *ifp = &sc->ethercom.ec_if;
struct rx_pph *pph;
struct mbuf *m;
int curr;
int len;
int i;
/* get pointer to active receive slot */
curr = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXSTATUS)
& RS_CD_MASK;
curr = curr / sizeof(struct bce_dma_slot);
if (curr >= BCE_NRXDESC)
curr = BCE_NRXDESC - 1;
/* process packets up to but not current packet being worked on */
for (i = sc->bce_rxin; i != curr;
i + 1 > BCE_NRXDESC - 1 ? i = 0 : i++) {
/* complete any post dma memory ops on packet */
bus_dmamap_sync(sc->bce_dmatag, sc->bce_cdata.bce_rx_map[i], 0,
sc->bce_cdata.bce_rx_map[i]->dm_mapsize,
BUS_DMASYNC_POSTREAD);
/*
* If the packet had an error, simply recycle the buffer,
* resetting the len, and flags.
*/
pph = mtod(sc->bce_cdata.bce_rx_chain[i], struct rx_pph *);
if (pph->flags & (RXF_NO | RXF_RXER | RXF_CRC | RXF_OV)) {
ifp->if_ierrors++;
pph->len = 0;
pph->flags = 0;
continue;
}
/* receive the packet */
len = pph->len;
if (len == 0)
continue; /* no packet if empty */
pph->len = 0;
pph->flags = 0;
/* bump past pre header to packet */
sc->bce_cdata.bce_rx_chain[i]->m_data += 30; /* MAGIC */
/*
* The chip includes the CRC with every packet. Trim
* it off here.
*/
len -= ETHER_CRC_LEN;
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when receiving lots
* of small packets.
*
* Otherwise, add a new buffer to the receive
* chain. If this fails, drop the packet and
* recycle the old buffer.
*/
if (len <= (MHLEN - 2)) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
goto dropit;
m->m_data += 2;
memcpy(mtod(m, void *),
mtod(sc->bce_cdata.bce_rx_chain[i], void *), len);
sc->bce_cdata.bce_rx_chain[i]->m_data -= 30; /* MAGIC */
} else {
m = sc->bce_cdata.bce_rx_chain[i];
if (bce_add_rxbuf(sc, i) != 0) {
dropit:
ifp->if_ierrors++;
/* continue to use old buffer */
sc->bce_cdata.bce_rx_chain[i]->m_data -= 30;
bus_dmamap_sync(sc->bce_dmatag,
sc->bce_cdata.bce_rx_map[i], 0,
sc->bce_cdata.bce_rx_map[i]->dm_mapsize,
BUS_DMASYNC_PREREAD);
continue;
}
}
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len = len;
/* Pass it on. */
if_percpuq_enqueue(ifp->if_percpuq, m);
/* re-check current in case it changed */
curr = (bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_DMA_RXSTATUS) & RS_CD_MASK) /
sizeof(struct bce_dma_slot);
if (curr >= BCE_NRXDESC)
curr = BCE_NRXDESC - 1;
}
sc->bce_rxin = curr;
}
/* Transmit interrupt handler */
void
bce_txintr(struct bce_softc *sc)
{
struct ifnet *ifp = &sc->ethercom.ec_if;
int curr;
int i;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Go through the Tx list and free mbufs for those
* frames which have been transmitted.
*/
curr = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXSTATUS) &
RS_CD_MASK;
curr = curr / sizeof(struct bce_dma_slot);
if (curr >= BCE_NTXDESC)
curr = BCE_NTXDESC - 1;
for (i = sc->bce_txin; i != curr;
i + 1 > BCE_NTXDESC - 1 ? i = 0 : i++) {
/* do any post dma memory ops on transmit data */
if (sc->bce_cdata.bce_tx_chain[i] == NULL)
continue;
bus_dmamap_sync(sc->bce_dmatag, sc->bce_cdata.bce_tx_map[i], 0,
sc->bce_cdata.bce_tx_map[i]->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bce_dmatag, sc->bce_cdata.bce_tx_map[i]);
m_freem(sc->bce_cdata.bce_tx_chain[i]);
sc->bce_cdata.bce_tx_chain[i] = NULL;
ifp->if_opackets++;
}
sc->bce_txin = curr;
/*
* If there are no more pending transmissions, cancel the watchdog
* timer
*/
if (sc->bce_txsnext == sc->bce_txin)
ifp->if_timer = 0;
}
/* initialize the interface */
static int
bce_init(struct ifnet *ifp)
{
struct bce_softc *sc = ifp->if_softc;
uint32_t reg_win;
int error;
int i;
/* Cancel any pending I/O. */
bce_stop(ifp, 0);
/* enable pci inerrupts, bursts, and prefetch */
/* remap the pci registers to the Sonics config registers */
/* save the current map, so it can be restored */
reg_win = pci_conf_read(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag,
BCE_REG_WIN);
/* set register window to Sonics registers */
pci_conf_write(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN,
BCE_SONICS_WIN);
/* enable SB to PCI interrupt */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBINTVEC,
bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBINTVEC) |
SBIV_ENET0);
/* enable prefetch and bursts for sonics-to-pci translation 2 */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SPCI_TR2,
bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SPCI_TR2) |
SBTOPCI_PREF | SBTOPCI_BURST);
/* restore to ethernet register space */
pci_conf_write(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN,
reg_win);
/* Reset the chip to a known state. */
bce_reset(sc);
/* Initialize transmit descriptors */
memset(sc->bce_tx_ring, 0, BCE_NTXDESC * sizeof(struct bce_dma_slot));
sc->bce_txsnext = 0;
sc->bce_txin = 0;
/* enable crc32 generation */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MACCTL,
bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MACCTL) |
BCE_EMC_CG);
/* setup DMA interrupt control */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMAI_CTL, 1 << 24); /* MAGIC */
/* setup packet filter */
bce_set_filter(ifp);
/* set max frame length, account for possible vlan tag */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_MAX,
ETHER_MAX_LEN + 32);
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_MAX,
ETHER_MAX_LEN + 32);
/* set tx watermark */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_WATER, 56);
/* enable transmit */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXCTL, XC_XE);
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXADDR,
sc->bce_ring_map->dm_segs[0].ds_addr + PAGE_SIZE + 0x40000000); /* MAGIC */
/*
* Give the receive ring to the chip, and
* start the receive DMA engine.
*/
sc->bce_rxin = 0;
/* clear the rx descriptor ring */
memset(sc->bce_rx_ring, 0, BCE_NRXDESC * sizeof(struct bce_dma_slot));
/* enable receive */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXCTL,
30 << 1 | 1); /* MAGIC */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXADDR,
sc->bce_ring_map->dm_segs[0].ds_addr + 0x40000000); /* MAGIC */
/* Initalize receive descriptors */
for (i = 0; i < BCE_NRXDESC; i++) {
if (sc->bce_cdata.bce_rx_chain[i] == NULL) {
if ((error = bce_add_rxbuf(sc, i)) != 0) {
aprint_error_dev(sc->bce_dev,
"unable to allocate or map rx(%d) "
"mbuf, error = %d\n", i, error);
bce_rxdrain(sc);
return (error);
}
} else
BCE_INIT_RXDESC(sc, i);
}
/* Enable interrupts */
sc->bce_intmask =
I_XI | I_RI | I_XU | I_RO | I_RU | I_DE | I_PD | I_PC | I_TO;
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_INT_MASK,
sc->bce_intmask);
/* start the receive dma */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXDPTR,
BCE_NRXDESC * sizeof(struct bce_dma_slot));
/* set media */
if ((error = ether_mediachange(ifp)) != 0)
return error;
/* turn on the ethernet mac */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL,
bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_ENET_CTL) | EC_EE);
/* start timer */
callout_reset(&sc->bce_timeout, hz, bce_tick, sc);
/* mark as running, and no outputs active */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
return 0;
}
/* add a mac address to packet filter */
void
bce_add_mac(struct bce_softc *sc, uint8_t *mac, u_long idx)
{
int i;
uint32_t rval;
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_LOW,
mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5]);
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_HI,
mac[0] << 8 | mac[1] | 0x10000); /* MAGIC */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL,
idx << 16 | 8); /* MAGIC */
/* wait for write to complete */
for (i = 0; i < 100; i++) {
rval = bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_FILT_CTL);
if (!(rval & 0x80000000)) /* MAGIC */
break;
delay(10);
}
if (i == 100) {
aprint_error_dev(sc->bce_dev,
"timed out writing pkt filter ctl\n");
}
}
/* Add a receive buffer to the indiciated descriptor. */
static int
bce_add_rxbuf(struct bce_softc *sc, int idx)
{
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (sc->bce_cdata.bce_rx_chain[idx] != NULL)
bus_dmamap_unload(sc->bce_dmatag,
sc->bce_cdata.bce_rx_map[idx]);
sc->bce_cdata.bce_rx_chain[idx] = m;
error = bus_dmamap_load(sc->bce_dmatag, sc->bce_cdata.bce_rx_map[idx],
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error)
return (error);
bus_dmamap_sync(sc->bce_dmatag, sc->bce_cdata.bce_rx_map[idx], 0,
sc->bce_cdata.bce_rx_map[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
BCE_INIT_RXDESC(sc, idx);
return (0);
}
/* Drain the receive queue. */
static void
bce_rxdrain(struct bce_softc *sc)
{
int i;
for (i = 0; i < BCE_NRXDESC; i++) {
if (sc->bce_cdata.bce_rx_chain[i] != NULL) {
bus_dmamap_unload(sc->bce_dmatag,
sc->bce_cdata.bce_rx_map[i]);
m_freem(sc->bce_cdata.bce_rx_chain[i]);
sc->bce_cdata.bce_rx_chain[i] = NULL;
}
}
}
/* Stop transmission on the interface */
static void
bce_stop(struct ifnet *ifp, int disable)
{
struct bce_softc *sc = ifp->if_softc;
int i;
uint32_t val;
/* Stop the 1 second timer */
callout_stop(&sc->bce_timeout);
/* Down the MII. */
mii_down(&sc->bce_mii);
/* Disable interrupts. */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_INT_MASK, 0);
sc->bce_intmask = 0;
delay(10);
/* Disable emac */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL, EC_ED);
for (i = 0; i < 200; i++) {
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_ENET_CTL);
if (!(val & EC_ED))
break;
delay(10);
}
/* Stop the DMA */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXCTL, 0);
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXCTL, 0);
delay(10);
/* Release any queued transmit buffers. */
for (i = 0; i < BCE_NTXDESC; i++) {
if (sc->bce_cdata.bce_tx_chain[i] != NULL) {
bus_dmamap_unload(sc->bce_dmatag,
sc->bce_cdata.bce_tx_map[i]);
m_freem(sc->bce_cdata.bce_tx_chain[i]);
sc->bce_cdata.bce_tx_chain[i] = NULL;
}
}
/* Mark the interface down and cancel the watchdog timer. */
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
/* drain receive queue */
if (disable)
bce_rxdrain(sc);
}
/* reset the chip */
static void
bce_reset(struct bce_softc *sc)
{
uint32_t val;
uint32_t sbval;
int i;
/* if SB core is up */
sbval = bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_SBTMSTATELOW);
if ((sbval & (SBTML_RESET | SBTML_REJ | SBTML_CLK)) == SBTML_CLK) {
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMAI_CTL,
0);
/* disable emac */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL,
EC_ED);
for (i = 0; i < 200; i++) {
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_ENET_CTL);
if (!(val & EC_ED))
break;
delay(10);
}
if (i == 200) {
aprint_error_dev(sc->bce_dev,
"timed out disabling ethernet mac\n");
}
/* reset the dma engines */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXCTL, 0);
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXSTATUS);
/* if error on receive, wait to go idle */
if (val & RS_ERROR) {
for (i = 0; i < 100; i++) {
val = bus_space_read_4(sc->bce_btag,
sc->bce_bhandle, BCE_DMA_RXSTATUS);
if (val & RS_DMA_IDLE)
break;
delay(10);
}
if (i == 100) {
aprint_error_dev(sc->bce_dev,
"receive dma did not go idle after"
" error\n");
}
}
bus_space_write_4(sc->bce_btag, sc->bce_bhandle,
BCE_DMA_RXSTATUS, 0);
/* reset ethernet mac */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL,
EC_ES);
for (i = 0; i < 200; i++) {
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_ENET_CTL);
if (!(val & EC_ES))
break;
delay(10);
}
if (i == 200) {
aprint_error_dev(sc->bce_dev,
"timed out resetting ethernet mac\n");
}
} else {
uint32_t reg_win;
/* remap the pci registers to the Sonics config registers */
/* save the current map, so it can be restored */
reg_win = pci_conf_read(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag,
BCE_REG_WIN);
/* set register window to Sonics registers */
pci_conf_write(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag,
BCE_REG_WIN, BCE_SONICS_WIN);
/* enable SB to PCI interrupt */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBINTVEC,
bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_SBINTVEC) |
SBIV_ENET0);
/* enable prefetch and bursts for sonics-to-pci translation 2 */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SPCI_TR2,
bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_SPCI_TR2) |
SBTOPCI_PREF | SBTOPCI_BURST);
/* restore to ethernet register space */
pci_conf_write(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN,
reg_win);
}
/* disable SB core if not in reset */
if (!(sbval & SBTML_RESET)) {
/* set the reject bit */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle,
BCE_SBTMSTATELOW, SBTML_REJ | SBTML_CLK);
for (i = 0; i < 200; i++) {
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_SBTMSTATELOW);
if (val & SBTML_REJ)
break;
delay(1);
}
if (i == 200) {
aprint_error_dev(sc->bce_dev,
"while resetting core, reject did not set\n");
}
/* wait until busy is clear */
for (i = 0; i < 200; i++) {
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_SBTMSTATEHI);
if (!(val & 0x4))
break;
delay(1);
}
if (i == 200) {
aprint_error_dev(sc->bce_dev,
"while resetting core, busy did not clear\n");
}
/* set reset and reject while enabling the clocks */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle,
BCE_SBTMSTATELOW,
SBTML_FGC | SBTML_CLK | SBTML_REJ | SBTML_RESET);
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_SBTMSTATELOW);
delay(10);
bus_space_write_4(sc->bce_btag, sc->bce_bhandle,
BCE_SBTMSTATELOW, SBTML_REJ | SBTML_RESET);
delay(1);
}
/* enable clock */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW,
SBTML_FGC | SBTML_CLK | SBTML_RESET);
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW);
delay(1);
/* clear any error bits that may be on */
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATEHI);
if (val & 1)
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATEHI,
0);
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBIMSTATE);
if (val & SBIM_MAGIC_ERRORBITS)
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBIMSTATE,
val & ~SBIM_MAGIC_ERRORBITS);
/* clear reset and allow it to propagate throughout the core */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW,
SBTML_FGC | SBTML_CLK);
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW);
delay(1);
/* leave clock enabled */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW,
SBTML_CLK);
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW);
delay(1);
/* initialize MDC preamble, frequency */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_CTL, 0x8d); /* MAGIC */
/* enable phy, differs for internal, and external */
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DEVCTL);
if (!(val & BCE_DC_IP)) {
/* select external phy */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL, EC_EP);
} else if (val & BCE_DC_ER) { /* internal, clear reset bit if on */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DEVCTL,
val & ~BCE_DC_ER);
delay(100);
}
}
/* Set up the receive filter. */
void
bce_set_filter(struct ifnet *ifp)
{
struct bce_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_PROMISC) {
ifp->if_flags |= IFF_ALLMULTI;
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL,
bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL)
| ERC_PE);
} else {
ifp->if_flags &= ~IFF_ALLMULTI;
/* turn off promiscuous */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL,
bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_RX_CTL) & ~ERC_PE);
/* enable/disable broadcast */
if (ifp->if_flags & IFF_BROADCAST)
bus_space_write_4(sc->bce_btag, sc->bce_bhandle,
BCE_RX_CTL, bus_space_read_4(sc->bce_btag,
sc->bce_bhandle, BCE_RX_CTL) & ~ERC_DB);
else
bus_space_write_4(sc->bce_btag, sc->bce_bhandle,
BCE_RX_CTL, bus_space_read_4(sc->bce_btag,
sc->bce_bhandle, BCE_RX_CTL) | ERC_DB);
/* disable the filter */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL,
0);
/* add our own address */
bce_add_mac(sc, sc->enaddr, 0);
/* for now accept all multicast */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL,
bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL) |
ERC_AM);
ifp->if_flags |= IFF_ALLMULTI;
/* enable the filter */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL,
bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_FILT_CTL) | 1);
}
}
static bool
bce_resume(device_t self, const pmf_qual_t *qual)
{
struct bce_softc *sc = device_private(self);
bce_reset(sc);
return true;
}
/* Read a PHY register on the MII. */
int
bce_mii_read(device_t self, int phy, int reg)
{
struct bce_softc *sc = device_private(self);
int i;
uint32_t val;
/* clear mii_int */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_STS, BCE_MIINTR);
/* Read the PHY register */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_COMM,
(MII_COMMAND_READ << 28) | (MII_COMMAND_START << 30) | /* MAGIC */
(MII_COMMAND_ACK << 16) | BCE_MIPHY(phy) | BCE_MIREG(reg)); /* MAGIC */
for (i = 0; i < BCE_TIMEOUT; i++) {
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_STS);
if (val & BCE_MIINTR)
break;
delay(10);
}
val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_COMM);
if (i == BCE_TIMEOUT) {
aprint_error_dev(sc->bce_dev,
"PHY read timed out reading phy %d, reg %d, val = "
"0x%08x\n", phy, reg, val);
return (0);
}
return (val & BCE_MICOMM_DATA);
}
/* Write a PHY register on the MII */
void
bce_mii_write(device_t self, int phy, int reg, int val)
{
struct bce_softc *sc = device_private(self);
int i;
uint32_t rval;
/* clear mii_int */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_STS,
BCE_MIINTR);
/* Write the PHY register */
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_COMM,
(MII_COMMAND_WRITE << 28) | (MII_COMMAND_START << 30) | /* MAGIC */
(MII_COMMAND_ACK << 16) | (val & BCE_MICOMM_DATA) | /* MAGIC */
BCE_MIPHY(phy) | BCE_MIREG(reg));
/* wait for write to complete */
for (i = 0; i < BCE_TIMEOUT; i++) {
rval = bus_space_read_4(sc->bce_btag, sc->bce_bhandle,
BCE_MI_STS);
if (rval & BCE_MIINTR)
break;
delay(10);
}
rval = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_COMM);
if (i == BCE_TIMEOUT) {
aprint_error_dev(sc->bce_dev,
"PHY timed out writing phy %d, reg %d, val = 0x%08x\n", phy,
reg, val);
}
}
/* sync hardware duplex mode to software state */
void
bce_statchg(struct ifnet *ifp)
{
struct bce_softc *sc = ifp->if_softc;
uint32_t reg;
/* if needed, change register to match duplex mode */
reg = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_CTL);
if (sc->bce_mii.mii_media_active & IFM_FDX && !(reg & EXC_FD))
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_CTL,
reg | EXC_FD);
else if (!(sc->bce_mii.mii_media_active & IFM_FDX) && reg & EXC_FD)
bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_CTL,
reg & ~EXC_FD);
/*
* Enable activity led.
* XXX This should be in a phy driver, but not currently.
*/
bce_mii_write(sc->bce_dev, 1, 26, /* MAGIC */
bce_mii_read(sc->bce_dev, 1, 26) & 0x7fff); /* MAGIC */
/* enable traffic meter led mode */
bce_mii_write(sc->bce_dev, 1, 26, /* MAGIC */
bce_mii_read(sc->bce_dev, 1, 27) | (1 << 6)); /* MAGIC */
}
/* One second timer, checks link status */
static void
bce_tick(void *v)
{
struct bce_softc *sc = v;
/* Tick the MII. */
mii_tick(&sc->bce_mii);
callout_reset(&sc->bce_timeout, hz, bce_tick, sc);
}