NetBSD/sys/dev/pci/gcscaudio.c
christos e58a356cba make pci_intr_string and eisa_intr_string take a buffer and a length
instead of relying in local static storage.
2014-03-29 19:28:24 +00:00

1363 lines
36 KiB
C

/* $NetBSD: gcscaudio.c,v 1.14 2014/03/29 19:28:24 christos Exp $ */
/*-
* Copyright (c) 2008 SHIMIZU Ryo <ryo@nerv.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: gcscaudio.c,v 1.14 2014/03/29 19:28:24 christos Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kmem.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/mulaw.h>
#include <dev/auconv.h>
#include <dev/ic/ac97reg.h>
#include <dev/ic/ac97var.h>
#include <dev/pci/gcscaudioreg.h>
#define GCSCAUDIO_NPRDTABLE 256 /* including a JMP-PRD for loop */
#define GCSCAUDIO_PRD_SIZE_MAX 65532 /* limited by CS5536 Controller */
#define GCSCAUDIO_BUFSIZE_MAX (GCSCAUDIO_PRD_SIZE_MAX * (GCSCAUDIO_NPRDTABLE - 1))
struct gcscaudio_prd {
/* PRD table for play/rec */
struct gcscaudio_prdtables {
#define PRD_TABLE_FRONT 0
#define PRD_TABLE_SURR 1
#define PRD_TABLE_CENTER 2
#define PRD_TABLE_LFE 3
#define PRD_TABLE_REC 4
#define PRD_TABLE_MAX 5
struct acc_prd prdtbl[PRD_TABLE_MAX][GCSCAUDIO_NPRDTABLE];
} *p_prdtables;
bus_dmamap_t p_prdmap;
bus_dma_segment_t p_prdsegs[1];
int p_prdnseg;
};
struct gcscaudio_dma {
LIST_ENTRY(gcscaudio_dma) list;
bus_dmamap_t map;
void *addr;
size_t size;
bus_dma_segment_t segs[1];
int nseg;
};
struct gcscaudio_softc_ch {
void (*ch_intr)(void *);
void *ch_intr_arg;
struct audio_params ch_params;
};
struct gcscaudio_softc {
device_t sc_dev;
kmutex_t sc_lock;
kmutex_t sc_intr_lock;
pci_chipset_tag_t sc_pc;
pcitag_t sc_pt;
void *sc_ih;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
bus_size_t sc_ios;
bus_dma_tag_t sc_dmat;
/* allocated DMA buffer list */
LIST_HEAD(, gcscaudio_dma) sc_dmalist;
#define GCSCAUDIO_MAXFORMATS 4
struct audio_format sc_formats[GCSCAUDIO_MAXFORMATS];
int sc_nformats;
struct audio_encoding_set *sc_encodings;
/* AC97 codec */
struct ac97_host_if host_if;
struct ac97_codec_if *codec_if;
/* input, output channels */
struct gcscaudio_softc_ch sc_play;
struct gcscaudio_softc_ch sc_rec;
struct gcscaudio_prd sc_prd;
/* multi channel splitter work; {4,6}ch stream to {2,4} DMA buffers */
void *sc_mch_split_buf;
void *sc_mch_split_start;
int sc_mch_split_off;
int sc_mch_split_size;
int sc_mch_split_blksize;
void (*sc_mch_splitter)(void *, void *, int, int);
bool sc_spdif;
};
/* for cfattach */
static int gcscaudio_match(device_t, cfdata_t, void *);
static void gcscaudio_attach(device_t, device_t, void *);
/* for audio_hw_if */
static int gcscaudio_open(void *, int);
static void gcscaudio_close(void *);
static int gcscaudio_query_encoding(void *, struct audio_encoding *);
static int gcscaudio_set_params(void *, int, int, audio_params_t *,
audio_params_t *, stream_filter_list_t *,
stream_filter_list_t *);
static int gcscaudio_round_blocksize(void *, int, int, const audio_params_t *);
static int gcscaudio_halt_output(void *);
static int gcscaudio_halt_input(void *);
static int gcscaudio_getdev(void *, struct audio_device *);
static int gcscaudio_set_port(void *, mixer_ctrl_t *);
static int gcscaudio_get_port(void *, mixer_ctrl_t *);
static int gcscaudio_query_devinfo(void *, mixer_devinfo_t *);
static void *gcscaudio_malloc(void *, int, size_t);
static void gcscaudio_free(void *, void *, size_t);
static size_t gcscaudio_round_buffersize(void *, int, size_t);
static paddr_t gcscaudio_mappage(void *, void *, off_t, int);
static int gcscaudio_get_props(void *);
static int gcscaudio_trigger_output(void *, void *, void *, int,
void (*)(void *), void *,
const audio_params_t *);
static int gcscaudio_trigger_input(void *, void *, void *, int,
void (*)(void *), void *,
const audio_params_t *);
static void gcscaudio_get_locks(void *, kmutex_t **, kmutex_t **);
static bool gcscaudio_resume(device_t, const pmf_qual_t *);
static int gcscaudio_intr(void *);
/* for codec_if */
static int gcscaudio_attach_codec(void *, struct ac97_codec_if *);
static int gcscaudio_write_codec(void *, uint8_t, uint16_t);
static int gcscaudio_read_codec(void *, uint8_t, uint16_t *);
static int gcscaudio_reset_codec(void *);
static void gcscaudio_spdif_event_codec(void *, bool);
/* misc */
static int gcscaudio_append_formats(struct gcscaudio_softc *,
const struct audio_format *);
static int gcscaudio_wait_ready_codec(struct gcscaudio_softc *sc, const char *);
static int gcscaudio_set_params_ch(struct gcscaudio_softc *,
struct gcscaudio_softc_ch *, int,
audio_params_t *, stream_filter_list_t *);
static int gcscaudio_allocate_dma(struct gcscaudio_softc *, size_t, void **,
bus_dma_segment_t *, int, int *,
bus_dmamap_t *);
CFATTACH_DECL_NEW(gcscaudio, sizeof (struct gcscaudio_softc),
gcscaudio_match, gcscaudio_attach, NULL, NULL);
static struct audio_device gcscaudio_device = {
"AMD Geode CS5536",
"",
"gcscaudio"
};
static const struct audio_hw_if gcscaudio_hw_if = {
.open = gcscaudio_open,
.close = gcscaudio_close,
.drain = NULL,
.query_encoding = gcscaudio_query_encoding,
.set_params = gcscaudio_set_params,
.round_blocksize = gcscaudio_round_blocksize,
.commit_settings = NULL,
.init_output = NULL,
.init_input = NULL,
.start_output = NULL,
.start_input = NULL,
.halt_output = gcscaudio_halt_output,
.halt_input = gcscaudio_halt_input,
.speaker_ctl = NULL,
.getdev = gcscaudio_getdev,
.setfd = NULL,
.set_port = gcscaudio_set_port,
.get_port = gcscaudio_get_port,
.query_devinfo = gcscaudio_query_devinfo,
.allocm = gcscaudio_malloc,
.freem = gcscaudio_free,
.round_buffersize = gcscaudio_round_buffersize,
.mappage = gcscaudio_mappage,
.get_props = gcscaudio_get_props,
.trigger_output = gcscaudio_trigger_output,
.trigger_input = gcscaudio_trigger_input,
.dev_ioctl = NULL,
.get_locks = gcscaudio_get_locks,
};
static const struct audio_format gcscaudio_formats_2ch = {
NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
2, AUFMT_STEREO, 0, {8000, 48000}
};
static const struct audio_format gcscaudio_formats_4ch = {
NULL, AUMODE_PLAY, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
4, AUFMT_SURROUND4, 0, {8000, 48000}
};
static const struct audio_format gcscaudio_formats_6ch = {
NULL, AUMODE_PLAY, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
6, AUFMT_DOLBY_5_1, 0, {8000, 48000}
};
static int
gcscaudio_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa;
pa = (struct pci_attach_args *)aux;
if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD) &&
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_CS5536_AUDIO))
return 1;
return 0;
}
static int
gcscaudio_append_formats(struct gcscaudio_softc *sc,
const struct audio_format *format)
{
if (sc->sc_nformats >= GCSCAUDIO_MAXFORMATS) {
aprint_error_dev(sc->sc_dev, "too many formats\n");
return EINVAL;
}
sc->sc_formats[sc->sc_nformats++] = *format;
return 0;
}
static void
gcscaudio_attach(device_t parent, device_t self, void *aux)
{
struct gcscaudio_softc *sc;
struct pci_attach_args *pa;
const char *intrstr;
pci_intr_handle_t ih;
int rc, i;
char intrbuf[PCI_INTRSTR_LEN];
sc = device_private(self);
sc->sc_dev = self;
aprint_naive(": Audio controller\n");
pa = aux;
sc->sc_pc = pa->pa_pc;
sc->sc_pt = pa->pa_tag;
sc->sc_dmat = pa->pa_dmat;
LIST_INIT(&sc->sc_dmalist);
sc->sc_mch_split_buf = NULL;
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
aprint_normal(": AMD Geode CS5536 Audio\n");
if (pci_mapreg_map(pa, PCI_MAPREG_START, PCI_MAPREG_TYPE_IO, 0,
&sc->sc_iot, &sc->sc_ioh, NULL, &sc->sc_ios)) {
aprint_error_dev(sc->sc_dev, "can't map i/o space\n");
return;
}
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
goto attach_failure_unmap;
}
intrstr = pci_intr_string(sc->sc_pc, ih, intrbuf, sizeof(intrbuf));
sc->sc_ih = pci_intr_establish(sc->sc_pc, ih, IPL_AUDIO,
gcscaudio_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
goto attach_failure_unmap;
}
aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
if (gcscaudio_allocate_dma(sc, sizeof(*sc->sc_prd.p_prdtables),
(void **)&(sc->sc_prd.p_prdtables), sc->sc_prd.p_prdsegs, 1,
&(sc->sc_prd.p_prdnseg), &(sc->sc_prd.p_prdmap)) != 0)
goto attach_failure_intr;
sc->host_if.arg = sc;
sc->host_if.attach = gcscaudio_attach_codec;
sc->host_if.read = gcscaudio_read_codec;
sc->host_if.write = gcscaudio_write_codec;
sc->host_if.reset = gcscaudio_reset_codec;
sc->host_if.spdif_event = gcscaudio_spdif_event_codec;
if ((rc = ac97_attach(&sc->host_if, self, &sc->sc_lock)) != 0) {
aprint_error_dev(sc->sc_dev,
"can't attach codec (error=%d)\n", rc);
goto attach_failure_intr;
}
if (!pmf_device_register(self, NULL, gcscaudio_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
sc->sc_nformats = 0;
gcscaudio_append_formats(sc, &gcscaudio_formats_2ch);
mutex_enter(&sc->sc_lock);
if (AC97_IS_4CH(sc->codec_if))
gcscaudio_append_formats(sc, &gcscaudio_formats_4ch);
if (AC97_IS_6CH(sc->codec_if))
gcscaudio_append_formats(sc, &gcscaudio_formats_6ch);
if (AC97_IS_FIXED_RATE(sc->codec_if)) {
for (i = 0; i < sc->sc_nformats; i++) {
sc->sc_formats[i].frequency_type = 1;
sc->sc_formats[i].frequency[0] = 48000;
}
}
mutex_exit(&sc->sc_lock);
if ((rc = auconv_create_encodings(sc->sc_formats, sc->sc_nformats,
&sc->sc_encodings)) != 0) {
aprint_error_dev(self,
"auconv_create_encoding: error=%d\n", rc);
goto attach_failure_codec;
}
audio_attach_mi(&gcscaudio_hw_if, sc, sc->sc_dev);
return;
attach_failure_codec:
sc->codec_if->vtbl->detach(sc->codec_if);
attach_failure_intr:
pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
attach_failure_unmap:
bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
return;
}
static int
gcscaudio_attach_codec(void *arg, struct ac97_codec_if *codec_if)
{
struct gcscaudio_softc *sc;
sc = (struct gcscaudio_softc *)arg;
sc->codec_if = codec_if;
return 0;
}
static int
gcscaudio_reset_codec(void *arg)
{
struct gcscaudio_softc *sc;
sc = (struct gcscaudio_softc *)arg;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_CODEC_CNTL,
ACC_CODEC_CNTL_LNK_WRM_RST |
ACC_CODEC_CNTL_CMD_NEW);
if (gcscaudio_wait_ready_codec(sc, "reset timeout\n"))
return 1;
return 0;
}
static void
gcscaudio_spdif_event_codec(void *arg, bool flag)
{
struct gcscaudio_softc *sc;
sc = (struct gcscaudio_softc *)arg;
sc->sc_spdif = flag;
}
static int
gcscaudio_wait_ready_codec(struct gcscaudio_softc *sc, const char *timeout_msg)
{
int i;
#define GCSCAUDIO_WAIT_READY_CODEC_TIMEOUT 500
for (i = GCSCAUDIO_WAIT_READY_CODEC_TIMEOUT; (i >= 0) &&
(bus_space_read_4(sc->sc_iot, sc->sc_ioh, ACC_CODEC_CNTL) &
ACC_CODEC_CNTL_CMD_NEW); i--)
delay(1);
if (i < 0) {
aprint_error_dev(sc->sc_dev, "%s", timeout_msg);
return 1;
}
return 0;
}
static int
gcscaudio_write_codec(void *arg, uint8_t reg, uint16_t val)
{
struct gcscaudio_softc *sc;
sc = (struct gcscaudio_softc *)arg;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_CODEC_CNTL,
ACC_CODEC_CNTL_WRITE_CMD |
ACC_CODEC_CNTL_CMD_NEW |
ACC_CODEC_REG2ADDR(reg) |
(val & ACC_CODEC_CNTL_CMD_DATA_MASK));
if (gcscaudio_wait_ready_codec(sc, "codec write timeout\n"))
return 1;
#ifdef GCSCAUDIO_CODEC_DEBUG
aprint_error_dev(sc->sc_dev, "codec write: reg=0x%02x, val=0x%04x\n",
reg, val);
#endif
return 0;
}
static int
gcscaudio_read_codec(void *arg, uint8_t reg, uint16_t *val)
{
struct gcscaudio_softc *sc;
uint32_t v;
int i;
sc = (struct gcscaudio_softc *)arg;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_CODEC_CNTL,
ACC_CODEC_CNTL_READ_CMD | ACC_CODEC_CNTL_CMD_NEW |
ACC_CODEC_REG2ADDR(reg));
if (gcscaudio_wait_ready_codec(sc, "codec write timeout for reading"))
return 1;
#define GCSCAUDIO_READ_CODEC_TIMEOUT 50
for (i = GCSCAUDIO_READ_CODEC_TIMEOUT; i >= 0; i--) {
v = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ACC_CODEC_STATUS);
if ((v & ACC_CODEC_STATUS_STS_NEW) &&
(ACC_CODEC_ADDR2REG(v) == reg))
break;
delay(10);
}
if (i < 0) {
aprint_error_dev(sc->sc_dev, "codec read timeout\n");
return 1;
}
#ifdef GCSCAUDIO_CODEC_DEBUG
aprint_error_dev(sc->sc_dev, "codec read: reg=0x%02x, val=0x%04x\n",
reg, v & ACC_CODEC_STATUS_STS_DATA_MASK);
#endif
*val = v;
return 0;
}
static int
gcscaudio_open(void *arg, int flags)
{
struct gcscaudio_softc *sc;
sc = (struct gcscaudio_softc *)arg;
sc->codec_if->vtbl->lock(sc->codec_if);
return 0;
}
static void
gcscaudio_close(void *arg)
{
struct gcscaudio_softc *sc;
sc = (struct gcscaudio_softc *)arg;
sc->codec_if->vtbl->unlock(sc->codec_if);
}
static int
gcscaudio_query_encoding(void *arg, struct audio_encoding *fp)
{
struct gcscaudio_softc *sc;
sc = (struct gcscaudio_softc *)arg;
return auconv_query_encoding(sc->sc_encodings, fp);
}
static int
gcscaudio_set_params_ch(struct gcscaudio_softc *sc,
struct gcscaudio_softc_ch *ch, int mode,
audio_params_t *p, stream_filter_list_t *fil)
{
int error, idx;
if ((p->sample_rate < 8000) || (p->sample_rate > 48000))
return EINVAL;
if (p->precision != 8 && p->precision != 16)
return EINVAL;
if ((idx = auconv_set_converter(sc->sc_formats, sc->sc_nformats,
mode, p, TRUE, fil)) < 0)
return EINVAL;
if (fil->req_size > 0)
p = &fil->filters[0].param;
if (mode == AUMODE_PLAY) {
if (!AC97_IS_FIXED_RATE(sc->codec_if)) {
/* setup rate of DAC */
if ((error = sc->codec_if->vtbl->set_rate(sc->codec_if,
AC97_REG_PCM_FRONT_DAC_RATE, &p->sample_rate)) != 0)
return error;
/* additional rate of DAC for Surround */
if ((p->channels >= 4) &&
(error = sc->codec_if->vtbl->set_rate(sc->codec_if,
AC97_REG_PCM_SURR_DAC_RATE, &p->sample_rate)) != 0)
return error;
/* additional rate of DAC for LowFrequencyEffect */
if ((p->channels == 6) &&
(error = sc->codec_if->vtbl->set_rate(sc->codec_if,
AC97_REG_PCM_LFE_DAC_RATE, &p->sample_rate)) != 0)
return error;
}
}
if (mode == AUMODE_RECORD) {
if (!AC97_IS_FIXED_RATE(sc->codec_if)) {
/* setup rate of ADC */
if ((error = sc->codec_if->vtbl->set_rate(sc->codec_if,
AC97_REG_PCM_LR_ADC_RATE, &p->sample_rate)) != 0)
return error;
}
}
ch->ch_params = *p;
return 0;
}
static int
gcscaudio_set_params(void *arg, int setmode, int usemode,
audio_params_t *play, audio_params_t *rec,
stream_filter_list_t *pfil, stream_filter_list_t *rfil)
{
struct gcscaudio_softc *sc;
int error;
sc = (struct gcscaudio_softc *)arg;
if (setmode & AUMODE_PLAY) {
if ((error = gcscaudio_set_params_ch(sc, &sc->sc_play,
AUMODE_PLAY, play, pfil)) != 0)
return error;
}
if (setmode & AUMODE_RECORD) {
if ((error = gcscaudio_set_params_ch(sc, &sc->sc_rec,
AUMODE_RECORD, rec, rfil)) != 0)
return error;
}
return 0;
}
static int
gcscaudio_round_blocksize(void *arg, int blk, int mode,
const audio_params_t *param)
{
blk &= -4;
if (blk > GCSCAUDIO_PRD_SIZE_MAX)
blk = GCSCAUDIO_PRD_SIZE_MAX;
return blk;
}
static int
gcscaudio_halt_output(void *arg)
{
struct gcscaudio_softc *sc;
sc = (struct gcscaudio_softc *)arg;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM0_CMD,
ACC_BMx_CMD_BM_CTL_DISABLE);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM4_CMD,
ACC_BMx_CMD_BM_CTL_DISABLE);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM6_CMD,
ACC_BMx_CMD_BM_CTL_DISABLE);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM7_CMD,
ACC_BMx_CMD_BM_CTL_DISABLE);
sc->sc_play.ch_intr = NULL;
/* channel splitter */
sc->sc_mch_splitter = NULL;
if (sc->sc_mch_split_buf)
gcscaudio_free(sc, sc->sc_mch_split_buf, sc->sc_mch_split_size);
sc->sc_mch_split_buf = NULL;
return 0;
}
static int
gcscaudio_halt_input(void *arg)
{
struct gcscaudio_softc *sc;
sc = (struct gcscaudio_softc *)arg;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM1_CMD,
ACC_BMx_CMD_BM_CTL_DISABLE);
sc->sc_rec.ch_intr = NULL;
return 0;
}
static int
gcscaudio_getdev(void *addr, struct audio_device *retp)
{
*retp = gcscaudio_device;
return 0;
}
static int
gcscaudio_set_port(void *addr, mixer_ctrl_t *cp)
{
struct gcscaudio_softc *sc;
sc = addr;
return sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp);
}
static int
gcscaudio_get_port(void *addr, mixer_ctrl_t *cp)
{
struct gcscaudio_softc *sc;
sc = addr;
return sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp);
}
static int
gcscaudio_query_devinfo(void *addr, mixer_devinfo_t *dip)
{
struct gcscaudio_softc *sc;
sc = addr;
return sc->codec_if->vtbl->query_devinfo(sc->codec_if, dip);
}
static void *
gcscaudio_malloc(void *arg, int direction, size_t size)
{
struct gcscaudio_softc *sc;
struct gcscaudio_dma *p;
int error;
sc = (struct gcscaudio_softc *)arg;
p = kmem_alloc(sizeof(*p), KM_SLEEP);
if (p == NULL)
return NULL;
p->size = size;
error = gcscaudio_allocate_dma(sc, size, &p->addr,
p->segs, sizeof(p->segs)/sizeof(p->segs[0]), &p->nseg, &p->map);
if (error) {
kmem_free(p, sizeof(*p));
return NULL;
}
LIST_INSERT_HEAD(&sc->sc_dmalist, p, list);
return p->addr;
}
static void
gcscaudio_free(void *arg, void *ptr, size_t size)
{
struct gcscaudio_softc *sc;
struct gcscaudio_dma *p;
sc = (struct gcscaudio_softc *)arg;
LIST_FOREACH(p, &sc->sc_dmalist, list) {
if (p->addr == ptr) {
bus_dmamap_unload(sc->sc_dmat, p->map);
bus_dmamap_destroy(sc->sc_dmat, p->map);
bus_dmamem_unmap(sc->sc_dmat, p->addr, p->size);
bus_dmamem_free(sc->sc_dmat, p->segs, p->nseg);
LIST_REMOVE(p, list);
kmem_free(p, sizeof(*p));
break;
}
}
}
static paddr_t
gcscaudio_mappage(void *arg, void *mem, off_t off, int prot)
{
struct gcscaudio_softc *sc;
struct gcscaudio_dma *p;
if (off < 0)
return -1;
sc = (struct gcscaudio_softc *)arg;
LIST_FOREACH(p, &sc->sc_dmalist, list) {
if (p->addr == mem) {
return bus_dmamem_mmap(sc->sc_dmat, p->segs, p->nseg,
off, prot, BUS_DMA_WAITOK);
}
}
return -1;
}
static size_t
gcscaudio_round_buffersize(void *addr, int direction, size_t size)
{
if (size > GCSCAUDIO_BUFSIZE_MAX)
size = GCSCAUDIO_BUFSIZE_MAX;
return size;
}
static int
gcscaudio_get_props(void *addr)
{
struct gcscaudio_softc *sc;
int props;
sc = (struct gcscaudio_softc *)addr;
props = AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
/*
* Even if the codec is fixed-rate, set_param() succeeds for any sample
* rate because of aurateconv. Applications can't know what rate the
* device can process in the case of mmap().
*/
if (!AC97_IS_FIXED_RATE(sc->codec_if))
props |= AUDIO_PROP_MMAP;
return props;
}
static int
build_prdtables(struct gcscaudio_softc *sc, int prdidx,
void *addr, size_t size, int blksize, int blklen, int blkoff)
{
struct gcscaudio_dma *p;
struct acc_prd *prdp;
bus_addr_t paddr;
int i;
/* get physical address of start */
paddr = (bus_addr_t)0;
LIST_FOREACH(p, &sc->sc_dmalist, list) {
if (p->addr == addr) {
paddr = p->map->dm_segs[0].ds_addr;
break;
}
}
if (!paddr) {
aprint_error_dev(sc->sc_dev, "bad addr %p\n", addr);
return EINVAL;
}
#define PRDADDR(prdidx,idx) \
(sc->sc_prd.p_prdmap->dm_segs[0].ds_addr) + sizeof(struct acc_prd) * \
(((prdidx) * GCSCAUDIO_NPRDTABLE) + (idx))
/*
* build PRD table
* prdtbl[] = <PRD0>, <PRD1>, <PRD2>, ..., <PRDn>, <jmp to PRD0>
*/
prdp = sc->sc_prd.p_prdtables->prdtbl[prdidx];
for (i = 0; size > 0; size -= blksize, i++) {
prdp[i].address = paddr + blksize * i + blkoff;
prdp[i].ctrlsize =
(size < blklen ? size : blklen) | ACC_BMx_PRD_CTRL_EOP;
}
prdp[i].address = PRDADDR(prdidx, 0);
prdp[i].ctrlsize = ACC_BMx_PRD_CTRL_JMP;
bus_dmamap_sync(sc->sc_dmat, sc->sc_prd.p_prdmap, 0,
sizeof(struct acc_prd) * i, BUS_DMASYNC_PREWRITE);
return 0;
}
static void
split_buffer_4ch(void *dst, void *src, int size, int blksize)
{
int left, i;
uint16_t *s, *d;
/*
* src[blk0]: L,R,SL,SR,L,R,SL,SR,L,R,SL,SR,....
* src[blk1]: L,R,SL,SR,L,R,SL,SR,L,R,SL,SR,....
* src[blk2]: L,R,SL,SR,L,R,SL,SR,L,R,SL,SR,....
* :
*
* rearrange to
*
* src[blk0]: L,R,L,R,L,R,L,R,..
* src[blk1]: L,R,L,R,L,R,L,R,..
* src[blk2]: L,R,L,R,L,R,L,R,..
* :
* dst[blk0]: SL,SR,SL,SR,SL,SR,SL,SR,..
* dst[blk1]: SL,SR,SL,SR,SL,SR,SL,SR,..
* dst[blk2]: SL,SR,SL,SR,SL,SR,SL,SR,..
* :
*/
for (left = size; left > 0; left -= blksize) {
s = (uint16_t *)src;
d = (uint16_t *)dst;
for (i = 0; i < blksize / sizeof(uint16_t) / 4; i++) {
/* L,R,SL,SR -> SL,SR */
s++;
s++;
*d++ = *s++;
*d++ = *s++;
}
s = (uint16_t *)src;
d = (uint16_t *)src;
for (i = 0; i < blksize / sizeof(uint16_t) / 2 / 2; i++) {
/* L,R,SL,SR -> L,R */
*d++ = *s++;
*d++ = *s++;
s++;
s++;
}
src = (char *)src + blksize;
dst = (char *)dst + blksize;
}
}
static void
split_buffer_6ch(void *dst, void *src, int size, int blksize)
{
int left, i;
uint16_t *s, *d, *dc, *dl;
/*
* by default, treat as WAV style 5.1ch order
* 5.1ch(WAV): L R C LFE SL SR
* 5.1ch(AAC): C L R SL SR LFE
* :
*/
/*
* src[blk0]: L,R,C,LFE,SL,SR,L,R,C,LFE,SL,SR,...
* src[blk1]: L,R,C,LFE,SL,SR,L,R,C,LFE,SL,SR,...
* src[blk2]: L,R,C,LFE,SL,SR,L,R,C,LFE,SL,SR,...
* :
* src[N-1] : L,R,C,LFE,SL,SR,L,R,C,LFE,SL,SR,...
*
* rearrange to
*
* src[blk0]: L,R,L,R,..
* src[blk1]: L,R,L,R,..
* src[blk2]: L,R,L,R,..
* :
*
* dst[blk0]: SL,SR,SL,SR,..
* dst[blk1]: SL,SR,SL,SR,..
* dst[blk2]: SL,SR,SL,SR,..
* :
*
* dst[N/2+0]: C,C,C,..
* dst[N/2+1]: C,C,C,..
* :
*
* dst[N/2+N/4+0]: LFE,LFE,LFE,..
* dst[N/2+N/4+1]: LFE,LFE,LFE,..
* :
*/
for (left = size; left > 0; left -= blksize) {
s = (uint16_t *)src;
d = (uint16_t *)dst;
dc = (uint16_t *)((char *)dst + blksize / 2);
dl = (uint16_t *)((char *)dst + blksize / 2 + blksize / 4);
for (i = 0; i < blksize / sizeof(uint16_t) / 6; i++) {
#ifdef GCSCAUDIO_5_1CH_AAC_ORDER
/*
* AAC: [C,L,R,SL,SR,LFE]
* => [SL,SR]
* => [C]
* => [LFE]
*/
*dc++ = s[0]; /* C */
*dl++ = s[5]; /* LFE */
*d++ = s[3]; /* SL */
*d++ = s[4]; /* SR */
#else
/*
* WAV: [L,R,C,LFE,SL,SR]
* => [SL,SR]
* => [C]
* => [LFE]
*/
*dc++ = s[2]; /* C */
*dl++ = s[3]; /* LFE */
*d++ = s[4]; /* SL */
*d++ = s[5]; /* SR */
#endif
s += 6;
}
s = (uint16_t *)src;
d = (uint16_t *)src;
for (i = 0; i < blksize / sizeof(uint16_t) / 2 / 2; i++) {
#ifdef GCSCAUDIO_5_1CH_AAC_ORDER
/* AAC: [C,L,R,SL,SR,LFE] => [L,R] */
*d++ = s[1];
*d++ = s[2];
#else
/* WAV: [L,R,C,LFE,SL,SR] => [L,R] */
*d++ = s[0];
*d++ = s[1];
#endif
s += 6;
}
src = (char *)src + blksize;
dst = (char *)dst + blksize;
}
}
static void
channel_splitter(struct gcscaudio_softc *sc)
{
int splitsize, left;
void *src, *dst;
if (sc->sc_mch_splitter == NULL)
return;
left = sc->sc_mch_split_size - sc->sc_mch_split_off;
splitsize = sc->sc_mch_split_blksize;
if (left < splitsize)
splitsize = left;
src = (char *)sc->sc_mch_split_start + sc->sc_mch_split_off;
dst = (char *)sc->sc_mch_split_buf + sc->sc_mch_split_off;
sc->sc_mch_splitter(dst, src, splitsize, sc->sc_mch_split_blksize);
sc->sc_mch_split_off += sc->sc_mch_split_blksize;
if (sc->sc_mch_split_off >= sc->sc_mch_split_size)
sc->sc_mch_split_off = 0;
}
static int
gcscaudio_trigger_output(void *addr, void *start, void *end, int blksize,
void (*intr)(void *), void *arg,
const audio_params_t *param)
{
struct gcscaudio_softc *sc;
size_t size;
sc = (struct gcscaudio_softc *)addr;
sc->sc_play.ch_intr = intr;
sc->sc_play.ch_intr_arg = arg;
size = (char *)end - (char *)start;
switch (sc->sc_play.ch_params.channels) {
case 2:
if (build_prdtables(sc, PRD_TABLE_FRONT, start, size, blksize,
blksize, 0))
return EINVAL;
if (!AC97_IS_4CH(sc->codec_if)) {
/*
* output 2ch PCM to FRONT.LR(BM0)
*
* 2ch: L,R,L,R,L,R,L,R,... => BM0: L,R,L,R,L,R,L,R,...
*
*/
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM0_PRD,
PRDADDR(PRD_TABLE_FRONT, 0));
/* start DMA transfer */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ACC_BM0_CMD,
ACC_BMx_CMD_WRITE |
ACC_BMx_CMD_BYTE_ORD_EL |
ACC_BMx_CMD_BM_CTL_ENABLE);
} else {
/*
* output same PCM to FRONT.LR(BM0) and SURROUND.LR(BM6).
* CENTER(BM4) and LFE(BM7) doesn't sound.
*
* 2ch: L,R,L,R,L,R,L,R,... => BM0: L,R,L,R,L,R,L,R,...
* BM6: (same of BM0)
* BM4: none
* BM7: none
*/
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM0_PRD,
PRDADDR(PRD_TABLE_FRONT, 0));
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM6_PRD,
PRDADDR(PRD_TABLE_FRONT, 0));
/* start DMA transfer */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ACC_BM0_CMD,
ACC_BMx_CMD_WRITE |
ACC_BMx_CMD_BYTE_ORD_EL |
ACC_BMx_CMD_BM_CTL_ENABLE);
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ACC_BM6_CMD,
ACC_BMx_CMD_WRITE |
ACC_BMx_CMD_BYTE_ORD_EL |
ACC_BMx_CMD_BM_CTL_ENABLE);
}
break;
case 4:
/*
* output 4ch PCM split to FRONT.LR(BM0) and SURROUND.LR(BM6).
* CENTER(BM4) and LFE(BM7) doesn't sound.
*
* rearrange ordered channel to continuous per channel
*
* 4ch: L,R,SL,SR,L,R,SL,SR,... => BM0: L,R,L,R,...
* BM6: SL,SR,SL,SR,...
* BM4: none
* BM7: none
*/
if (sc->sc_mch_split_buf)
gcscaudio_free(sc, sc->sc_mch_split_buf,
sc->sc_mch_split_size);
if ((sc->sc_mch_split_buf = gcscaudio_malloc(sc, AUMODE_PLAY,
size)) == NULL)
return ENOMEM;
/*
* 1st and 2nd blocks are split immediately.
* Other blocks will be split synchronous with intr.
*/
split_buffer_4ch(sc->sc_mch_split_buf, start, blksize * 2,
blksize);
sc->sc_mch_split_start = start;
sc->sc_mch_split_size = size;
sc->sc_mch_split_blksize = blksize;
sc->sc_mch_split_off = (blksize * 2) % size;
sc->sc_mch_splitter = split_buffer_4ch; /* split function */
if (build_prdtables(sc, PRD_TABLE_FRONT, start, size, blksize,
blksize / 2, 0))
return EINVAL;
if (build_prdtables(sc, PRD_TABLE_SURR, sc->sc_mch_split_buf,
size, blksize, blksize / 2, 0))
return EINVAL;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM0_PRD,
PRDADDR(PRD_TABLE_FRONT, 0));
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM6_PRD,
PRDADDR(PRD_TABLE_SURR, 0));
/* start DMA transfer */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ACC_BM0_CMD,
ACC_BMx_CMD_WRITE |
ACC_BMx_CMD_BYTE_ORD_EL |
ACC_BMx_CMD_BM_CTL_ENABLE);
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ACC_BM6_CMD,
ACC_BMx_CMD_WRITE |
ACC_BMx_CMD_BYTE_ORD_EL |
ACC_BMx_CMD_BM_CTL_ENABLE);
break;
case 6:
/*
* output 6ch PCM split to
* FRONT.LR(BM0), SURROUND.LR(BM6), CENTER(BM4) and LFE(BM7)
*
* rearrange ordered channel to continuous per channel
*
* 5.1ch: L,R,C,LFE,SL,SR,... => BM0: L,R,...
* BM4: C,...
* BM6: SL,SR,...
* BM7: LFE,...
*
*/
if (sc->sc_mch_split_buf)
gcscaudio_free(sc, sc->sc_mch_split_buf,
sc->sc_mch_split_size);
if ((sc->sc_mch_split_buf = gcscaudio_malloc(sc, AUMODE_PLAY,
size)) == NULL)
return ENOMEM;
/*
* 1st and 2nd blocks are split immediately.
* Other block will be split synchronous with intr.
*/
split_buffer_6ch(sc->sc_mch_split_buf, start, blksize * 2,
blksize);
sc->sc_mch_split_start = start;
sc->sc_mch_split_size = size;
sc->sc_mch_split_blksize = blksize;
sc->sc_mch_split_off = (blksize * 2) % size;
sc->sc_mch_splitter = split_buffer_6ch; /* split function */
if (build_prdtables(sc, PRD_TABLE_FRONT, start, size, blksize,
blksize / 3, 0))
return EINVAL;
if (build_prdtables(sc, PRD_TABLE_CENTER, sc->sc_mch_split_buf,
size, blksize, blksize / 3, blksize / 2))
return EINVAL;
if (build_prdtables(sc, PRD_TABLE_SURR, sc->sc_mch_split_buf,
size, blksize, blksize / 3, 0))
return EINVAL;
if (build_prdtables(sc, PRD_TABLE_LFE, sc->sc_mch_split_buf,
size, blksize, blksize / 3, blksize / 2 + blksize / 4))
return EINVAL;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM0_PRD,
PRDADDR(PRD_TABLE_FRONT, 0));
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM4_PRD,
PRDADDR(PRD_TABLE_CENTER, 0));
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM6_PRD,
PRDADDR(PRD_TABLE_SURR, 0));
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM7_PRD,
PRDADDR(PRD_TABLE_LFE, 0));
/* start DMA transfer */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ACC_BM0_CMD,
ACC_BMx_CMD_WRITE | ACC_BMx_CMD_BYTE_ORD_EL |
ACC_BMx_CMD_BM_CTL_ENABLE);
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ACC_BM4_CMD,
ACC_BMx_CMD_WRITE | ACC_BMx_CMD_BYTE_ORD_EL |
ACC_BMx_CMD_BM_CTL_ENABLE);
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ACC_BM6_CMD,
ACC_BMx_CMD_WRITE | ACC_BMx_CMD_BYTE_ORD_EL |
ACC_BMx_CMD_BM_CTL_ENABLE);
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ACC_BM7_CMD,
ACC_BMx_CMD_WRITE | ACC_BMx_CMD_BYTE_ORD_EL |
ACC_BMx_CMD_BM_CTL_ENABLE);
break;
}
return 0;
}
static int
gcscaudio_trigger_input(void *addr, void *start, void *end, int blksize,
void (*intr)(void *), void *arg,
const audio_params_t *param)
{
struct gcscaudio_softc *sc;
size_t size;
sc = (struct gcscaudio_softc *)addr;
sc->sc_rec.ch_intr = intr;
sc->sc_rec.ch_intr_arg = arg;
size = (char *)end - (char *)start;
if (build_prdtables(sc, PRD_TABLE_REC, start, size, blksize, blksize, 0))
return EINVAL;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ACC_BM1_PRD,
PRDADDR(PRD_TABLE_REC, 0));
/* start transfer */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ACC_BM1_CMD,
ACC_BMx_CMD_READ |
ACC_BMx_CMD_BYTE_ORD_EL |
ACC_BMx_CMD_BM_CTL_ENABLE);
return 0;
}
static void
gcscaudio_get_locks(void *arg, kmutex_t **intr, kmutex_t **thread)
{
struct gcscaudio_softc *sc;
sc = (struct gcscaudio_softc *)arg;
*intr = &sc->sc_intr_lock;
*thread = &sc->sc_lock;
}
static int
gcscaudio_intr(void *arg)
{
struct gcscaudio_softc *sc;
uint16_t intr;
uint8_t bmstat;
int nintr;
nintr = 0;
sc = (struct gcscaudio_softc *)arg;
mutex_spin_enter(&sc->sc_intr_lock);
intr = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ACC_IRQ_STATUS);
if (intr == 0)
goto done;
/* Front output */
if (intr & ACC_IRQ_STATUS_BM0_IRQ_STS) {
bmstat = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ACC_BM0_STATUS);
if (bmstat & ACC_BMx_STATUS_BM_EOP_ERR)
aprint_normal_dev(sc->sc_dev, "BM0: Bus Master Error\n");
if (!(bmstat & ACC_BMx_STATUS_EOP))
aprint_normal_dev(sc->sc_dev, "BM0: NO End of Page?\n");
if (sc->sc_play.ch_intr) {
sc->sc_play.ch_intr(sc->sc_play.ch_intr_arg);
channel_splitter(sc);
}
nintr++;
}
/* Center output */
if (intr & ACC_IRQ_STATUS_BM4_IRQ_STS) {
bmstat = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ACC_BM4_STATUS);
if (bmstat & ACC_BMx_STATUS_BM_EOP_ERR)
aprint_normal_dev(sc->sc_dev, "BM4: Bus Master Error\n");
if (!(bmstat & ACC_BMx_STATUS_EOP))
aprint_normal_dev(sc->sc_dev, "BM4: NO End of Page?\n");
nintr++;
}
/* Surround output */
if (intr & ACC_IRQ_STATUS_BM6_IRQ_STS) {
bmstat = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ACC_BM6_STATUS);
if (bmstat & ACC_BMx_STATUS_BM_EOP_ERR)
aprint_normal_dev(sc->sc_dev, "BM6: Bus Master Error\n");
if (!(bmstat & ACC_BMx_STATUS_EOP))
aprint_normal_dev(sc->sc_dev, "BM6: NO End of Page?\n");
nintr++;
}
/* LowFrequencyEffect output */
if (intr & ACC_IRQ_STATUS_BM7_IRQ_STS) {
bmstat = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ACC_BM7_STATUS);
if (bmstat & ACC_BMx_STATUS_BM_EOP_ERR)
aprint_normal_dev(sc->sc_dev, "BM7: Bus Master Error\n");
if (!(bmstat & ACC_BMx_STATUS_EOP))
aprint_normal_dev(sc->sc_dev, "BM7: NO End of Page?\n");
nintr++;
}
/* record */
if (intr & ACC_IRQ_STATUS_BM1_IRQ_STS) {
bmstat = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ACC_BM1_STATUS);
if (bmstat & ACC_BMx_STATUS_BM_EOP_ERR)
aprint_normal_dev(sc->sc_dev, "BM1: Bus Master Error\n");
if (!(bmstat & ACC_BMx_STATUS_EOP))
aprint_normal_dev(sc->sc_dev, "BM1: NO End of Page?\n");
if (sc->sc_rec.ch_intr) {
sc->sc_rec.ch_intr(sc->sc_rec.ch_intr_arg);
}
nintr++;
}
#ifdef GCSCAUDIO_DEBUG
if (intr & ACC_IRQ_STATUS_IRQ_STS)
aprint_normal_dev(sc->sc_dev, "Codec GPIO IRQ Status\n");
if (intr & ACC_IRQ_STATUS_WU_IRQ_STS)
aprint_normal_dev(sc->sc_dev, "Codec GPIO Wakeup IRQ Status\n");
if (intr & ACC_IRQ_STATUS_BM2_IRQ_STS)
aprint_normal_dev(sc->sc_dev, "Audio Bus Master 2 IRQ Status\n");
if (intr & ACC_IRQ_STATUS_BM3_IRQ_STS)
aprint_normal_dev(sc->sc_dev, "Audio Bus Master 3 IRQ Status\n");
if (intr & ACC_IRQ_STATUS_BM5_IRQ_STS)
aprint_normal_dev(sc->sc_dev, "Audio Bus Master 5 IRQ Status\n");
#endif
done:
mutex_spin_exit(&sc->sc_intr_lock);
return nintr ? 1 : 0;
}
static bool
gcscaudio_resume(device_t dv, const pmf_qual_t *qual)
{
struct gcscaudio_softc *sc = device_private(dv);
gcscaudio_reset_codec(sc);
DELAY(1000);
(sc->codec_if->vtbl->restore_ports)(sc->codec_if);
return true;
}
static int
gcscaudio_allocate_dma(struct gcscaudio_softc *sc, size_t size, void **addrp,
bus_dma_segment_t *seglist, int nseg, int *rsegp,
bus_dmamap_t *mapp)
{
int error;
if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
nseg, rsegp, BUS_DMA_WAITOK)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to allocate DMA buffer, error=%d\n", error);
goto fail_alloc;
}
if ((error = bus_dmamem_map(sc->sc_dmat, seglist, nseg, size, addrp,
BUS_DMA_WAITOK | BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to map DMA buffer, error=%d\n",
error);
goto fail_map;
}
if ((error = bus_dmamap_create(sc->sc_dmat, size, nseg, size, 0,
BUS_DMA_WAITOK, mapp)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create DMA map, error=%d\n", error);
goto fail_create;
}
if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
BUS_DMA_WAITOK)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to load DMA map, error=%d\n", error);
goto fail_load;
}
return 0;
fail_load:
bus_dmamap_destroy(sc->sc_dmat, *mapp);
fail_create:
bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
fail_map:
bus_dmamem_free(sc->sc_dmat, seglist, nseg);
fail_alloc:
return error;
}