NetBSD/sys/dev/pci/amr.c
pgoyette 916bdfa5d4 Modularize the ld driver and all of its attachments. Ensure that all
parents are capable of rescan (or otherwise provide a means of attaching
children post-initialization).
2016-09-27 03:33:32 +00:00

1586 lines
42 KiB
C

/* $NetBSD: amr.c,v 1.62 2016/09/27 03:33:32 pgoyette Exp $ */
/*-
* Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1999,2000 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
* from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
*/
/*
* Driver for AMI RAID controllers.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.62 2016/09/27 03:33:32 pgoyette Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/kthread.h>
#include <sys/kauth.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/module.h>
#include <machine/endian.h>
#include <sys/bus.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/amrreg.h>
#include <dev/pci/amrvar.h>
#include <dev/pci/amrio.h>
#include "locators.h"
#include "ioconf.h"
static void amr_attach(device_t, device_t, void *);
static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
void *);
static int amr_init(struct amr_softc *, const char *,
struct pci_attach_args *pa);
static int amr_intr(void *);
static int amr_match(device_t, cfdata_t, void *);
static int amr_rescan(device_t, const char *, const int *);
static int amr_print(void *, const char *);
static void amr_shutdown(void *);
static void amr_teardown(struct amr_softc *);
static void amr_quartz_thread(void *);
static void amr_std_thread(void *);
static int amr_quartz_get_work(struct amr_softc *,
struct amr_mailbox_resp *);
static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
static dev_type_open(amropen);
static dev_type_close(amrclose);
static dev_type_ioctl(amrioctl);
CFATTACH_DECL3_NEW(amr, sizeof(struct amr_softc),
amr_match, amr_attach, NULL, NULL, amr_rescan, NULL, 0);
const struct cdevsw amr_cdevsw = {
.d_open = amropen,
.d_close = amrclose,
.d_read = noread,
.d_write = nowrite,
.d_ioctl = amrioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER
};
extern struct cfdriver amr_cd;
#define AT_QUARTZ 0x01 /* `Quartz' chipset */
#define AT_SIG 0x02 /* Check for signature */
static struct amr_pci_type {
u_short apt_vendor;
u_short apt_product;
u_short apt_flags;
} const amr_pci_type[] = {
{ PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
{ PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
{ PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
{ PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
{ PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
{ PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
};
static struct amr_typestr {
const char *at_str;
int at_sig;
} const amr_typestr[] = {
{ "Series 431", AMR_SIG_431 },
{ "Series 438", AMR_SIG_438 },
{ "Series 466", AMR_SIG_466 },
{ "Series 467", AMR_SIG_467 },
{ "Series 490", AMR_SIG_490 },
{ "Series 762", AMR_SIG_762 },
{ "HP NetRAID (T5)", AMR_SIG_T5 },
{ "HP NetRAID (T7)", AMR_SIG_T7 },
};
static struct {
const char *ds_descr;
int ds_happy;
} const amr_dstate[] = {
{ "offline", 0 },
{ "degraded", 1 },
{ "optimal", 1 },
{ "online", 1 },
{ "failed", 0 },
{ "rebuilding", 1 },
{ "hotspare", 0 },
};
static void *amr_sdh;
static kcondvar_t thread_cv;
static kmutex_t thread_mutex;
static int amr_max_segs;
int amr_max_xfer;
static inline u_int8_t
amr_inb(struct amr_softc *amr, int off)
{
bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
}
static inline u_int32_t
amr_inl(struct amr_softc *amr, int off)
{
bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
}
static inline void
amr_outb(struct amr_softc *amr, int off, u_int8_t val)
{
bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
BUS_SPACE_BARRIER_WRITE);
}
static inline void
amr_outl(struct amr_softc *amr, int off, u_int32_t val)
{
bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
BUS_SPACE_BARRIER_WRITE);
}
/*
* Match a supported device.
*/
static int
amr_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa;
pcireg_t s;
int i;
pa = (struct pci_attach_args *)aux;
/*
* Don't match the device if it's operating in I2O mode. In this
* case it should be handled by the `iop' driver.
*/
if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
return (0);
for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
break;
if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
return (0);
if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
return (1);
s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
}
/*
* Attach a supported device.
*/
static void
amr_attach(device_t parent, device_t self, void *aux)
{
struct pci_attach_args *pa;
const struct amr_pci_type *apt;
struct amr_softc *amr;
pci_chipset_tag_t pc;
pci_intr_handle_t ih;
const char *intrstr;
pcireg_t reg;
int rseg, i, size, rv, memreg, ioreg;
struct amr_ccb *ac;
char intrbuf[PCI_INTRSTR_LEN];
aprint_naive(": RAID controller\n");
amr = device_private(self);
amr->amr_dv = self;
mutex_init(&amr->amr_mutex, MUTEX_DEFAULT, IPL_BIO);
pa = (struct pci_attach_args *)aux;
pc = pa->pa_pc;
for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
break;
apt = amr_pci_type + i;
memreg = ioreg = 0;
for (i = 0x10; i <= 0x14; i += 4) {
reg = pci_conf_read(pc, pa->pa_tag, i);
switch (PCI_MAPREG_TYPE(reg)) {
case PCI_MAPREG_TYPE_MEM:
if (PCI_MAPREG_MEM_SIZE(reg) != 0)
memreg = i;
break;
case PCI_MAPREG_TYPE_IO:
if (PCI_MAPREG_IO_SIZE(reg) != 0)
ioreg = i;
break;
}
}
if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
&amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
;
else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
&amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
;
else {
aprint_error("can't map control registers\n");
amr_teardown(amr);
return;
}
amr->amr_flags |= AMRF_PCI_REGS;
amr->amr_dmat = pa->pa_dmat;
amr->amr_pc = pa->pa_pc;
/* Enable the device. */
reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
reg | PCI_COMMAND_MASTER_ENABLE);
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
aprint_error("can't map interrupt\n");
amr_teardown(amr);
return;
}
intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
if (amr->amr_ih == NULL) {
aprint_error("can't establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
amr_teardown(amr);
return;
}
amr->amr_flags |= AMRF_PCI_INTR;
/*
* Allocate space for the mailbox and S/G lists. Some controllers
* don't like S/G lists to be located below 0x2000, so we allocate
* enough slop to enable us to compensate.
*
* The standard mailbox structure needs to be aligned on a 16-byte
* boundary. The 64-bit mailbox has one extra field, 4 bytes in
* size, which precedes the standard mailbox.
*/
size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
amr->amr_dmasize = size;
if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
&amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(amr->amr_dv,
"unable to allocate buffer, rv = %d\n", rv);
amr_teardown(amr);
return;
}
amr->amr_flags |= AMRF_DMA_ALLOC;
if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
(void **)&amr->amr_mbox,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n",
rv);
amr_teardown(amr);
return;
}
amr->amr_flags |= AMRF_DMA_MAP;
if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
aprint_error_dev(amr->amr_dv,
"unable to create buffer DMA map, rv = %d\n", rv);
amr_teardown(amr);
return;
}
amr->amr_flags |= AMRF_DMA_CREATE;
if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(amr->amr_dv,
"unable to load buffer DMA map, rv = %d\n", rv);
amr_teardown(amr);
return;
}
amr->amr_flags |= AMRF_DMA_LOAD;
memset(amr->amr_mbox, 0, size);
amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
/*
* Allocate and initalise the command control blocks.
*/
ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
amr->amr_ccbs = ac;
SLIST_INIT(&amr->amr_ccb_freelist);
TAILQ_INIT(&amr->amr_ccb_active);
amr->amr_flags |= AMRF_CCBS;
if (amr_max_xfer == 0) {
amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
}
for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
amr_max_segs, amr_max_xfer, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
if (rv != 0)
break;
ac->ac_ident = i;
cv_init(&ac->ac_cv, "amr1ccb");
mutex_init(&ac->ac_mutex, MUTEX_DEFAULT, IPL_NONE);
amr_ccb_free(amr, ac);
}
if (i != AMR_MAX_CMDS) {
aprint_error_dev(amr->amr_dv, "memory exhausted\n");
amr_teardown(amr);
return;
}
/*
* Take care of model-specific tasks.
*/
if ((apt->apt_flags & AT_QUARTZ) != 0) {
amr->amr_submit = amr_quartz_submit;
amr->amr_get_work = amr_quartz_get_work;
} else {
amr->amr_submit = amr_std_submit;
amr->amr_get_work = amr_std_get_work;
/* Notify the controller of the mailbox location. */
amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
/* Clear outstanding interrupts and enable interrupts. */
amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
amr_outb(amr, AMR_SREG_TOGL,
amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
}
/*
* Retrieve parameters, and tell the world about us.
*/
amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
amr->amr_flags |= AMRF_ENQBUF;
amr->amr_maxqueuecnt = i;
aprint_normal(": AMI RAID ");
if (amr_init(amr, intrstr, pa) != 0) {
amr_teardown(amr);
return;
}
/*
* Cap the maximum number of outstanding commands. AMI's Linux
* driver doesn't trust the controller's reported value, and lockups
* have been seen when we do.
*/
amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
if (amr->amr_maxqueuecnt > i)
amr->amr_maxqueuecnt = i;
/* Set our `shutdownhook' before we start any device activity. */
if (amr_sdh == NULL)
amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
/* Attach sub-devices. */
amr_rescan(self, "amr", 0);
SIMPLEQ_INIT(&amr->amr_ccb_queue);
cv_init(&thread_cv, "amrwdog");
mutex_init(&thread_mutex, MUTEX_DEFAULT, IPL_NONE);
if ((apt->apt_flags & AT_QUARTZ) == 0) {
rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
amr_std_thread, amr, &amr->amr_thread,
"%s", device_xname(amr->amr_dv));
} else {
rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
amr_quartz_thread, amr, &amr->amr_thread,
"%s", device_xname(amr->amr_dv));
}
if (rv != 0)
aprint_error_dev(amr->amr_dv, "unable to create thread (%d)",
rv);
else
amr->amr_flags |= AMRF_THREAD;
}
static int
amr_rescan(device_t self, const char *attr, const int *flags)
{
int j;
int locs[AMRCF_NLOCS];
struct amr_attach_args amra;
struct amr_softc *amr;
amr = device_private(self);
for (j = 0; j < amr->amr_numdrives; j++) {
if (amr->amr_drive[j].al_dv)
continue;
if (amr->amr_drive[j].al_size == 0)
continue;
amra.amra_unit = j;
locs[AMRCF_UNIT] = j;
amr->amr_drive[j].al_dv = config_found_sm_loc(amr->amr_dv,
attr, locs, &amra, amr_print, config_stdsubmatch);
}
return 0;
}
/*
* Free up resources.
*/
static void
amr_teardown(struct amr_softc *amr)
{
struct amr_ccb *ac;
int fl;
fl = amr->amr_flags;
if ((fl & AMRF_THREAD) != 0) {
amr->amr_flags |= AMRF_THREAD_EXIT;
mutex_enter(&thread_mutex);
cv_broadcast(&thread_cv);
mutex_exit(&thread_mutex);
while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
mutex_enter(&thread_mutex);
cv_wait(&thread_cv, &thread_mutex);
mutex_exit(&thread_mutex);
}
}
if ((fl & AMRF_CCBS) != 0) {
SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
}
free(amr->amr_ccbs, M_DEVBUF);
}
if ((fl & AMRF_ENQBUF) != 0)
free(amr->amr_enqbuf, M_DEVBUF);
if ((fl & AMRF_DMA_LOAD) != 0)
bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
if ((fl & AMRF_DMA_MAP) != 0)
bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
amr->amr_dmasize);
if ((fl & AMRF_DMA_ALLOC) != 0)
bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
if ((fl & AMRF_DMA_CREATE) != 0)
bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
if ((fl & AMRF_PCI_INTR) != 0)
pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
if ((fl & AMRF_PCI_REGS) != 0)
bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
}
/*
* Print autoconfiguration message for a sub-device.
*/
static int
amr_print(void *aux, const char *pnp)
{
struct amr_attach_args *amra;
amra = (struct amr_attach_args *)aux;
if (pnp != NULL)
aprint_normal("block device at %s", pnp);
aprint_normal(" unit %d", amra->amra_unit);
return (UNCONF);
}
/*
* Retrieve operational parameters and describe the controller.
*/
static int
amr_init(struct amr_softc *amr, const char *intrstr,
struct pci_attach_args *pa)
{
struct amr_adapter_info *aa;
struct amr_prodinfo *ap;
struct amr_enquiry *ae;
struct amr_enquiry3 *aex;
const char *prodstr;
u_int i, sig, ishp;
char sbuf[64];
/*
* Try to get 40LD product info, which tells us what the card is
* labelled as.
*/
ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
amr->amr_enqbuf);
if (ap != NULL) {
aprint_normal("<%.80s>\n", ap->ap_product);
if (intrstr != NULL)
aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
intrstr);
aprint_normal_dev(amr->amr_dv,
"firmware %.16s, BIOS %.16s, %dMB RAM\n",
ap->ap_firmware, ap->ap_bios, le16toh(ap->ap_memsize));
amr->amr_maxqueuecnt = ap->ap_maxio;
/*
* Fetch and record state of logical drives.
*/
aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
if (aex == NULL) {
aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n");
return (-1);
}
if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
aprint_error_dev(amr->amr_dv, "Inquiry returned more "
"drives (%d) than the array can handle (%zu)\n",
aex->ae_numldrives,
__arraycount(aex->ae_drivestate));
aex->ae_numldrives = __arraycount(aex->ae_drivestate);
}
if (aex->ae_numldrives > AMR_MAX_UNITS) {
aprint_error_dev(amr->amr_dv,
"adjust AMR_MAX_UNITS to %d (currently %d)\n",
AMR_MAX_UNITS, amr->amr_numdrives);
amr->amr_numdrives = AMR_MAX_UNITS;
} else
amr->amr_numdrives = aex->ae_numldrives;
for (i = 0; i < amr->amr_numdrives; i++) {
amr->amr_drive[i].al_size =
le32toh(aex->ae_drivesize[i]);
amr->amr_drive[i].al_state = aex->ae_drivestate[i];
amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
}
return (0);
}
/*
* Try 8LD extended ENQUIRY to get the controller signature. Once
* found, search for a product description.
*/
ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
if (ae != NULL) {
i = 0;
sig = le32toh(ae->ae_signature);
while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
if (amr_typestr[i].at_sig == sig)
break;
i++;
}
if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
snprintf(sbuf, sizeof(sbuf),
"unknown ENQUIRY2 sig (0x%08x)", sig);
prodstr = sbuf;
} else
prodstr = amr_typestr[i].at_str;
} else {
ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
if (ae == NULL) {
aprint_error_dev(amr->amr_dv,
"unsupported controller\n");
return (-1);
}
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_AMI_MEGARAID:
prodstr = "Series 428";
break;
case PCI_PRODUCT_AMI_MEGARAID2:
prodstr = "Series 434";
break;
default:
snprintf(sbuf, sizeof(sbuf),
"unknown PCI dev (0x%04x)",
PCI_PRODUCT(pa->pa_id));
prodstr = sbuf;
break;
}
}
/*
* HP NetRaid controllers have a special encoding of the firmware
* and BIOS versions. The AMI version seems to have it as strings
* whereas the HP version does it with a leading uppercase character
* and two binary numbers.
*/
aa = &ae->ae_adapter;
if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
if (le32toh(ae->ae_signature) == AMR_SIG_438) {
/* The AMI 438 is a NetRaid 3si in HP-land. */
prodstr = "HP NetRaid 3si";
}
ishp = 1;
} else
ishp = 0;
aprint_normal("<%s>\n", prodstr);
if (intrstr != NULL)
aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
intrstr);
if (ishp)
aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, "
"BIOS <%c.%02d.%02d>, %dMB RAM\n", aa->aa_firmware[2],
aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
else
aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, "
"%dMB RAM\n", aa->aa_firmware, aa->aa_bios,
aa->aa_memorysize);
amr->amr_maxqueuecnt = aa->aa_maxio;
/*
* Record state of logical drives.
*/
if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
aprint_error_dev(amr->amr_dv, "Inquiry returned more drives "
"(%d) than the array can handle (%zu)\n",
ae->ae_ldrv.al_numdrives,
__arraycount(ae->ae_ldrv.al_size));
ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
}
if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
aprint_error_dev(amr->amr_dv,
"adjust AMR_MAX_UNITS to %d (currently %d)\n",
ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
amr->amr_numdrives = AMR_MAX_UNITS;
} else
amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
for (i = 0; i < amr->amr_numdrives; i++) {
amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
}
return (0);
}
/*
* Flush the internal cache on each configured controller. Called at
* shutdown time.
*/
static void
amr_shutdown(void *cookie)
{
extern struct cfdriver amr_cd;
struct amr_softc *amr;
struct amr_ccb *ac;
int i, rv;
for (i = 0; i < amr_cd.cd_ndevs; i++) {
if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
continue;
if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
rv = amr_ccb_poll(amr, ac, 30000);
amr_ccb_free(amr, ac);
}
if (rv != 0)
aprint_error_dev(amr->amr_dv,
"unable to flush cache (%d)\n", rv);
}
}
/*
* Interrupt service routine.
*/
static int
amr_intr(void *cookie)
{
struct amr_softc *amr;
struct amr_ccb *ac;
struct amr_mailbox_resp mbox;
u_int i, forus, idx;
amr = cookie;
forus = 0;
mutex_spin_enter(&amr->amr_mutex);
while ((*amr->amr_get_work)(amr, &mbox) == 0) {
/* Iterate over completed commands in this result. */
for (i = 0; i < mbox.mb_nstatus; i++) {
idx = mbox.mb_completed[i] - 1;
ac = amr->amr_ccbs + idx;
if (idx >= amr->amr_maxqueuecnt) {
printf("%s: bad status (bogus ID: %u=%u)\n",
device_xname(amr->amr_dv), i, idx);
continue;
}
if ((ac->ac_flags & AC_ACTIVE) == 0) {
printf("%s: bad status (not active; 0x04%x)\n",
device_xname(amr->amr_dv), ac->ac_flags);
continue;
}
ac->ac_status = mbox.mb_status;
ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
AC_COMPLETE;
TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
if ((ac->ac_flags & AC_MOAN) != 0)
printf("%s: ccb %d completed\n",
device_xname(amr->amr_dv), ac->ac_ident);
/* Pass notification to upper layers. */
mutex_spin_exit(&amr->amr_mutex);
if (ac->ac_handler != NULL) {
(*ac->ac_handler)(ac);
} else {
mutex_enter(&ac->ac_mutex);
cv_signal(&ac->ac_cv);
mutex_exit(&ac->ac_mutex);
}
mutex_spin_enter(&amr->amr_mutex);
}
forus = 1;
}
mutex_spin_exit(&amr->amr_mutex);
if (forus)
amr_ccb_enqueue(amr, NULL);
return (forus);
}
/*
* Watchdog thread.
*/
static void
amr_quartz_thread(void *cookie)
{
struct amr_softc *amr;
struct amr_ccb *ac;
amr = cookie;
for (;;) {
mutex_enter(&thread_mutex);
cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
mutex_exit(&thread_mutex);
if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
amr->amr_flags ^= AMRF_THREAD_EXIT;
mutex_enter(&thread_mutex);
cv_signal(&thread_cv);
mutex_exit(&thread_mutex);
kthread_exit(0);
}
if (amr_intr(amr) == 0)
amr_ccb_enqueue(amr, NULL);
mutex_spin_enter(&amr->amr_mutex);
ac = TAILQ_FIRST(&amr->amr_ccb_active);
while (ac != NULL) {
if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
break;
if ((ac->ac_flags & AC_MOAN) == 0) {
printf("%s: ccb %d timed out; mailbox:\n",
device_xname(amr->amr_dv), ac->ac_ident);
amr_ccb_dump(amr, ac);
ac->ac_flags |= AC_MOAN;
}
ac = TAILQ_NEXT(ac, ac_chain.tailq);
}
mutex_spin_exit(&amr->amr_mutex);
}
}
static void
amr_std_thread(void *cookie)
{
struct amr_softc *amr;
struct amr_ccb *ac;
struct amr_logdrive *al;
struct amr_enquiry *ae;
int rv, i;
amr = cookie;
ae = amr->amr_enqbuf;
for (;;) {
mutex_enter(&thread_mutex);
cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
mutex_exit(&thread_mutex);
if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
amr->amr_flags ^= AMRF_THREAD_EXIT;
mutex_enter(&thread_mutex);
cv_signal(&thread_cv);
mutex_exit(&thread_mutex);
kthread_exit(0);
}
if (amr_intr(amr) == 0)
amr_ccb_enqueue(amr, NULL);
mutex_spin_enter(&amr->amr_mutex);
ac = TAILQ_FIRST(&amr->amr_ccb_active);
while (ac != NULL) {
if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
break;
if ((ac->ac_flags & AC_MOAN) == 0) {
printf("%s: ccb %d timed out; mailbox:\n",
device_xname(amr->amr_dv), ac->ac_ident);
amr_ccb_dump(amr, ac);
ac->ac_flags |= AC_MOAN;
}
ac = TAILQ_NEXT(ac, ac_chain.tailq);
}
mutex_spin_exit(&amr->amr_mutex);
if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
printf("%s: ccb_alloc failed (%d)\n",
device_xname(amr->amr_dv), rv);
continue;
}
ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
if (rv != 0) {
aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n",
rv);
amr_ccb_free(amr, ac);
continue;
}
rv = amr_ccb_wait(amr, ac);
amr_ccb_unmap(amr, ac);
if (rv != 0) {
aprint_error_dev(amr->amr_dv,
"enquiry failed (st=%d)\n", ac->ac_status);
continue;
}
amr_ccb_free(amr, ac);
al = amr->amr_drive;
for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
if (al->al_dv == NULL)
continue;
if (al->al_state == ae->ae_ldrv.al_state[i])
continue;
printf("%s: state changed: %s -> %s\n",
device_xname(al->al_dv),
amr_drive_state(al->al_state, NULL),
amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
al->al_state = ae->ae_ldrv.al_state[i];
}
}
}
/*
* Return a text description of a logical drive's current state.
*/
const char *
amr_drive_state(int state, int *happy)
{
const char *str;
state = AMR_DRV_CURSTATE(state);
if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
if (happy)
*happy = 1;
str = "status unknown";
} else {
if (happy)
*happy = amr_dstate[state].ds_happy;
str = amr_dstate[state].ds_descr;
}
return (str);
}
/*
* Run a generic enquiry-style command.
*/
static void *
amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
u_int8_t cmdqual, void *sbuf)
{
struct amr_ccb *ac;
u_int8_t *mb;
int rv;
if (amr_ccb_alloc(amr, &ac) != 0)
return (NULL);
/* Build the command proper. */
mb = (u_int8_t *)&ac->ac_cmd;
mb[0] = cmd;
mb[2] = cmdsub;
mb[3] = cmdqual;
rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
if (rv == 0) {
rv = amr_ccb_poll(amr, ac, 2000);
amr_ccb_unmap(amr, ac);
}
amr_ccb_free(amr, ac);
return (rv ? NULL : sbuf);
}
/*
* Allocate and initialise a CCB.
*/
int
amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
{
mutex_spin_enter(&amr->amr_mutex);
if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
mutex_spin_exit(&amr->amr_mutex);
return (EAGAIN);
}
SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
mutex_spin_exit(&amr->amr_mutex);
return (0);
}
/*
* Free a CCB.
*/
void
amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
{
memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
ac->ac_cmd.mb_ident = ac->ac_ident + 1;
ac->ac_cmd.mb_busy = 1;
ac->ac_handler = NULL;
ac->ac_flags = 0;
mutex_spin_enter(&amr->amr_mutex);
SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
mutex_spin_exit(&amr->amr_mutex);
}
/*
* If a CCB is specified, enqueue it. Pull CCBs off the software queue in
* the order that they were enqueued and try to submit their command blocks
* to the controller for execution.
*/
void
amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
{
if (ac != NULL) {
mutex_spin_enter(&amr->amr_mutex);
SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
mutex_spin_exit(&amr->amr_mutex);
}
while (SIMPLEQ_FIRST(&amr->amr_ccb_queue) != NULL) {
mutex_spin_enter(&amr->amr_mutex);
if ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
if ((*amr->amr_submit)(amr, ac) != 0) {
mutex_spin_exit(&amr->amr_mutex);
break;
}
SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue,
ac_chain.simpleq);
TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac,
ac_chain.tailq);
}
mutex_spin_exit(&amr->amr_mutex);
}
}
/*
* Map the specified CCB's data buffer onto the bus, and fill the
* scatter-gather list.
*/
int
amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
int tflag)
{
struct amr_sgentry *sge;
struct amr_mailbox_cmd *mb;
int nsegs, i, rv, sgloff;
bus_dmamap_t xfer;
int dmaflag = 0;
xfer = ac->ac_xfer_map;
rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
BUS_DMA_NOWAIT);
if (rv != 0)
return (rv);
mb = &ac->ac_cmd;
ac->ac_xfer_size = size;
ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
sgloff = AMR_SGL_SIZE * ac->ac_ident;
if (tflag & AC_XFER_OUT)
dmaflag |= BUS_DMASYNC_PREWRITE;
if (tflag & AC_XFER_IN)
dmaflag |= BUS_DMASYNC_PREREAD;
/* We don't need to use a scatter/gather list for just 1 segment. */
nsegs = xfer->dm_nsegs;
if (nsegs == 1) {
mb->mb_nsgelem = 0;
mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
ac->ac_flags |= AC_NOSGL;
} else {
mb->mb_nsgelem = nsegs;
mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
for (i = 0; i < nsegs; i++, sge++) {
sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
}
}
bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
if ((ac->ac_flags & AC_NOSGL) == 0)
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Unmap the specified CCB's data buffer.
*/
void
amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
{
int dmaflag = 0;
if (ac->ac_flags & AC_XFER_IN)
dmaflag |= BUS_DMASYNC_POSTREAD;
if (ac->ac_flags & AC_XFER_OUT)
dmaflag |= BUS_DMASYNC_POSTWRITE;
if ((ac->ac_flags & AC_NOSGL) == 0)
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
dmaflag);
bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
}
/*
* Submit a command to the controller and poll on completion. Return
* non-zero on timeout or error.
*/
int
amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
{
int rv, i;
mutex_spin_enter(&amr->amr_mutex);
if ((rv = (*amr->amr_submit)(amr, ac)) != 0) {
mutex_spin_exit(&amr->amr_mutex);
return (rv);
}
TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
mutex_spin_exit(&amr->amr_mutex);
for (i = timo * 10; i > 0; i--) {
amr_intr(amr);
if ((ac->ac_flags & AC_COMPLETE) != 0)
break;
DELAY(100);
}
if (i == 0)
printf("%s: polled operation timed out after %d ms\n",
device_xname(amr->amr_dv), timo);
return ((i == 0 || ac->ac_status != 0) ? EIO : 0);
}
/*
* Submit a command to the controller and sleep on completion. Return
* non-zero on error.
*/
int
amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
{
amr_ccb_enqueue(amr, ac);
mutex_enter(&ac->ac_mutex);
cv_wait(&ac->ac_cv, &ac->ac_mutex);
mutex_exit(&ac->ac_mutex);
return (ac->ac_status != 0 ? EIO : 0);
}
#if 0
/*
* Wait for the mailbox to become available.
*/
static int
amr_mbox_wait(struct amr_softc *amr)
{
int timo;
for (timo = 10000; timo != 0; timo--) {
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
if (amr->amr_mbox->mb_cmd.mb_busy == 0)
break;
DELAY(100);
}
if (timo == 0)
printf("%s: controller wedged\n", device_xname(amr->amr_dv));
return (timo != 0 ? 0 : EAGAIN);
}
#endif
/*
* Tell the controller that the mailbox contains a valid command. Must be
* called with interrupts blocked.
*/
static int
amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
{
int i = 0;
u_int32_t v;
amr->amr_mbox->mb_poll = 0;
amr->amr_mbox->mb_ack = 0;
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
v = amr_inl(amr, AMR_QREG_ODB);
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
while ((amr->amr_mbox->mb_cmd.mb_busy != 0) && (i++ < 10)) {
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
/* This is a no-op read that flushes pending mailbox updates */
v = amr_inl(amr, AMR_QREG_ODB);
DELAY(1);
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
}
if (amr->amr_mbox->mb_cmd.mb_busy != 0)
return (EAGAIN);
v = amr_inl(amr, AMR_QREG_IDB);
if ((v & AMR_QIDB_SUBMIT) != 0) {
amr->amr_mbox->mb_cmd.mb_busy = 0;
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
printf("%s: submit failed\n", device_xname(amr->amr_dv));
return (EAGAIN);
}
amr->amr_mbox->mb_segment = 0;
memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
ac->ac_start_time = time_uptime;
ac->ac_flags |= AC_ACTIVE;
amr_outl(amr, AMR_QREG_IDB,
(amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
return (0);
}
static int
amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
{
amr->amr_mbox->mb_poll = 0;
amr->amr_mbox->mb_ack = 0;
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
if (amr->amr_mbox->mb_cmd.mb_busy != 0)
return (EAGAIN);
if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
amr->amr_mbox->mb_cmd.mb_busy = 0;
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
return (EAGAIN);
}
amr->amr_mbox->mb_segment = 0;
memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
ac->ac_start_time = time_uptime;
ac->ac_flags |= AC_ACTIVE;
amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
return (0);
}
/*
* Claim any work that the controller has completed; acknowledge completion,
* save details of the completion in (mbsave). Must be called with
* interrupts blocked.
*/
static int
amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
{
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
/* Work waiting for us? */
if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
return (-1);
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
/* Save the mailbox, which contains a list of completed commands. */
memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
/* Ack the interrupt and mailbox transfer. */
amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
/*
* This waits for the controller to notice that we've taken the
* command from it. It's very inefficient, and we shouldn't do it,
* but if we remove this code, we stop completing commands under
* load.
*
* Peter J says we shouldn't do this. The documentation says we
* should. Who is right?
*/
while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
DELAY(10);
return (0);
}
static int
amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
{
u_int8_t istat;
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
/* Check for valid interrupt status. */
if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
return (-1);
/* Ack the interrupt. */
amr_outb(amr, AMR_SREG_INTR, istat);
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
/* Save mailbox, which contains a list of completed commands. */
memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
/* Ack mailbox transfer. */
amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
return (0);
}
static void
amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
{
int i;
printf("%s: ", device_xname(amr->amr_dv));
for (i = 0; i < 4; i++)
printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
printf("\n");
}
static int
amropen(dev_t dev, int flag, int mode, struct lwp *l)
{
struct amr_softc *amr;
if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
return (ENXIO);
if ((amr->amr_flags & AMRF_OPEN) != 0)
return (EBUSY);
amr->amr_flags |= AMRF_OPEN;
return (0);
}
static int
amrclose(dev_t dev, int flag, int mode, struct lwp *l)
{
struct amr_softc *amr;
amr = device_lookup_private(&amr_cd, minor(dev));
amr->amr_flags &= ~AMRF_OPEN;
return (0);
}
/* used below to correct for a firmware bug */
static unsigned long
amrioctl_buflen(unsigned long len)
{
if (len <= 4 * 1024)
return (4 * 1024);
if (len <= 8 * 1024)
return (8 * 1024);
if (len <= 32 * 1024)
return (32 * 1024);
if (len <= 64 * 1024)
return (64 * 1024);
return (len);
}
static int
amrioctl(dev_t dev, u_long cmd, void *data, int flag,
struct lwp *l)
{
struct amr_softc *amr;
struct amr_user_ioctl *au;
struct amr_ccb *ac;
struct amr_mailbox_ioctl *mbi;
unsigned long au_length;
uint8_t *au_cmd;
int error;
void *dp = NULL, *au_buffer;
amr = device_lookup_private(&amr_cd, minor(dev));
/* This should be compatible with the FreeBSD interface */
switch (cmd) {
case AMR_IO_VERSION:
*(int *)data = AMR_IO_VERSION_NUMBER;
return 0;
case AMR_IO_COMMAND:
error = kauth_authorize_device_passthru(l->l_cred, dev,
KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
if (error)
return (error);
au = (struct amr_user_ioctl *)data;
au_cmd = au->au_cmd;
au_buffer = au->au_buffer;
au_length = au->au_length;
break;
default:
return ENOTTY;
}
if (au_cmd[0] == AMR_CMD_PASS) {
/* not yet */
return EOPNOTSUPP;
}
if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
return (EINVAL);
/*
* allocate kernel memory for data, doing I/O directly to user
* buffer isn't that easy. Correct allocation size for a bug
* in at least some versions of the device firmware, by using
* the amrioctl_buflen() function, defined above.
*/
dp = malloc(amrioctl_buflen(au_length), M_DEVBUF, M_WAITOK|M_ZERO);
if (dp == NULL)
return ENOMEM;
if ((error = copyin(au_buffer, dp, au_length)) != 0)
goto out;
/* direct command to controller */
while (amr_ccb_alloc(amr, &ac) != 0) {
mutex_enter(&thread_mutex);
error = cv_timedwait_sig(&thread_cv, &thread_mutex, hz);
mutex_exit(&thread_mutex);
if (error == EINTR)
goto out;
}
mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
mbi->mb_command = au_cmd[0];
mbi->mb_channel = au_cmd[1];
mbi->mb_param = au_cmd[2];
mbi->mb_pad[0] = au_cmd[3];
mbi->mb_drive = au_cmd[4];
error = amr_ccb_map(amr, ac, dp, (int)au_length,
AC_XFER_IN | AC_XFER_OUT);
if (error == 0) {
error = amr_ccb_wait(amr, ac);
amr_ccb_unmap(amr, ac);
if (error == 0)
error = copyout(dp, au_buffer, au_length);
}
amr_ccb_free(amr, ac);
out:
free(dp, M_DEVBUF);
return (error);
}
MODULE(MODULE_CLASS_DRIVER, amr, "pci");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
amr_modcmd(modcmd_t cmd, void *opaque)
{
int error = 0;
#ifdef _MODULE
switch (cmd) {
case MODULE_CMD_INIT:
error = config_init_component(cfdriver_ioconf_amr,
cfattach_ioconf_amr, cfdata_ioconf_amr);
break;
case MODULE_CMD_FINI:
error = config_fini_component(cfdriver_ioconf_amr,
cfattach_ioconf_amr, cfdata_ioconf_amr);
break;
default:
error = ENOTTY;
break;
}
#endif
return error;
}