NetBSD/sys/compat/netbsd32/netbsd32_signal.c

692 lines
18 KiB
C

/* $NetBSD: netbsd32_signal.c,v 1.53 2021/11/06 20:42:56 thorpej Exp $ */
/*
* Copyright (c) 1998, 2001 Matthew R. Green
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: netbsd32_signal.c,v 1.53 2021/11/06 20:42:56 thorpej Exp $");
#if defined(_KERNEL_OPT)
#include "opt_ktrace.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/signalvar.h>
#include <sys/ktrace.h>
#include <sys/proc.h>
#include <sys/wait.h>
#include <sys/dirent.h>
#include <sys/module.h>
#include <sys/exec.h>
#include <uvm/uvm_extern.h>
#include <compat/netbsd32/netbsd32.h>
#include <compat/netbsd32/netbsd32_conv.h>
#include <compat/netbsd32/netbsd32_exec.h>
#include <compat/netbsd32/netbsd32_syscallargs.h>
#include <compat/sys/signal.h>
#include <compat/sys/signalvar.h>
#include <compat/sys/siginfo.h>
#include <compat/sys/ucontext.h>
#include <compat/common/compat_sigaltstack.h>
int
netbsd32_sigaction(struct lwp *l, const struct netbsd32_sigaction_args *uap, register_t *retval)
{
/* {
syscallarg(int) signum;
syscallarg(const netbsd32_sigactionp_t) nsa;
syscallarg(netbsd32_sigactionp_t) osa;
} */
struct sigaction nsa, osa;
struct netbsd32_sigaction13 *sa32p, sa32;
int error;
if (SCARG_P32(uap, nsa)) {
sa32p = SCARG_P32(uap, nsa);
if (copyin(sa32p, &sa32, sizeof(sa32)))
return EFAULT;
nsa.sa_handler = (void *)NETBSD32PTR64(sa32.netbsd32_sa_handler);
memset(&nsa.sa_mask, 0, sizeof(nsa.sa_mask));
nsa.sa_mask.__bits[0] = sa32.netbsd32_sa_mask;
nsa.sa_flags = sa32.netbsd32_sa_flags;
}
error = sigaction1(l, SCARG(uap, signum),
SCARG_P32(uap, nsa) ? &nsa : 0,
SCARG_P32(uap, osa) ? &osa : 0,
NULL, 0);
if (error)
return error;
if (SCARG_P32(uap, osa)) {
memset(&sa32, 0, sizeof(sa32));
NETBSD32PTR32(sa32.netbsd32_sa_handler, osa.sa_handler);
sa32.netbsd32_sa_mask = osa.sa_mask.__bits[0];
sa32.netbsd32_sa_flags = osa.sa_flags;
sa32p = SCARG_P32(uap, osa);
if (copyout(&sa32, sa32p, sizeof(sa32)))
return EFAULT;
}
return 0;
}
int
netbsd32___sigaltstack14(struct lwp *l, const struct netbsd32___sigaltstack14_args *uap, register_t *retval)
{
/* {
syscallarg(const netbsd32_sigaltstackp_t) nss;
syscallarg(netbsd32_sigaltstackp_t) oss;
} */
compat_sigaltstack(uap, netbsd32_sigaltstack, SS_ONSTACK, SS_DISABLE);
}
/* ARGSUSED */
int
netbsd32___sigaction14(struct lwp *l, const struct netbsd32___sigaction14_args *uap, register_t *retval)
{
/* {
syscallarg(int) signum;
syscallarg(const struct sigaction *) nsa;
syscallarg(struct sigaction *) osa;
} */
struct netbsd32_sigaction sa32;
struct sigaction nsa, osa;
int error;
if (SCARG_P32(uap, nsa)) {
error = copyin(SCARG_P32(uap, nsa), &sa32, sizeof(sa32));
if (error)
return error;
nsa.sa_handler = NETBSD32PTR64(sa32.netbsd32_sa_handler);
nsa.sa_mask = sa32.netbsd32_sa_mask;
nsa.sa_flags = sa32.netbsd32_sa_flags;
}
error = sigaction1(l, SCARG(uap, signum),
SCARG_P32(uap, nsa) ? &nsa : 0,
SCARG_P32(uap, osa) ? &osa : 0,
NULL, 0);
if (error)
return error;
if (SCARG_P32(uap, osa)) {
memset(&sa32, 0, sizeof(sa32));
NETBSD32PTR32(sa32.netbsd32_sa_handler, osa.sa_handler);
sa32.netbsd32_sa_mask = osa.sa_mask;
sa32.netbsd32_sa_flags = osa.sa_flags;
error = copyout(&sa32, SCARG_P32(uap, osa), sizeof(sa32));
if (error)
return error;
}
return 0;
}
/* ARGSUSED */
int
netbsd32___sigaction_sigtramp(struct lwp *l, const struct netbsd32___sigaction_sigtramp_args *uap, register_t *retval)
{
/* {
syscallarg(int) signum;
syscallarg(const netbsd32_sigactionp_t) nsa;
syscallarg(netbsd32_sigactionp_t) osa;
syscallarg(netbsd32_voidp) tramp;
syscallarg(int) vers;
} */
struct netbsd32_sigaction sa32;
struct sigaction nsa, osa;
int error, vers;
if (SCARG_P32(uap, nsa)) {
error = copyin(SCARG_P32(uap, nsa), &sa32, sizeof(sa32));
if (error)
return error;
nsa.sa_handler = NETBSD32PTR64(sa32.netbsd32_sa_handler);
nsa.sa_mask = sa32.netbsd32_sa_mask;
nsa.sa_flags = sa32.netbsd32_sa_flags;
}
vers = SCARG(uap, vers);
#ifndef __HAVE_MD_NETBSD32_SENDSIG /* XXX paying for yesterday's sins */
if (vers < __SIGTRAMP_SIGINFO_VERSION_MIN) {
/*
* sigaction1() doesn't enforce sigcontext-ness for
* __SIGTRAMP_SIGCODE_VERSION because it might be
* a foreign emulation. However, we know these are
* native NetBSD 32-bit binaries, so we do.
*/
#ifdef __HAVE_STRUCT_SIGCONTEXT
struct proc *p = l->l_proc;
bool sigcontext_valid = false;
/*
* We need to ensure the compat_netbsd32_16 module
* is loaded, because sigaction1() gives a free pass
* to processes marked PK_32 (it can't be sure which
* 32-bit compat module is needed).
*/
if ((p->p_lflag & PL_SIGCOMPAT) == 0) {
kernconfig_lock();
(void)module_autoload("compat_netbsd32_16",
MODULE_CLASS_ANY);
if (netbsd32_sendsig_sigcontext_16_hook.hooked) {
sigcontext_valid = true;
}
mutex_enter(&proc_lock);
/*
* Prevent unload of compat module while
* this process remains.
*/
p->p_lflag |= PL_SIGCOMPAT;
mutex_exit(&proc_lock);
kernconfig_unlock();
}
if (!sigcontext_valid) {
return EINVAL;
}
#else /* ! __HAVE_STRUCT_SIGCONTEXT */
return EINVAL;
#endif /* __HAVE_STRUCT_SIGCONTEXT */
}
#endif /* __HAVE_MD_NETBSD32_SENDSIG */
error = sigaction1(l, SCARG(uap, signum),
SCARG_P32(uap, nsa) ? &nsa : 0,
SCARG_P32(uap, osa) ? &osa : 0,
SCARG_P32(uap, tramp), vers);
if (error)
return error;
if (SCARG_P32(uap, osa)) {
memset(&sa32, 0, sizeof(sa32));
NETBSD32PTR32(sa32.netbsd32_sa_handler, osa.sa_handler);
sa32.netbsd32_sa_mask = osa.sa_mask;
sa32.netbsd32_sa_flags = osa.sa_flags;
error = copyout(&sa32, SCARG_P32(uap, osa), sizeof(sa32));
if (error)
return error;
}
return 0;
}
#ifndef __HAVE_MD_NETBSD32_SENDSIG /* XXX paying for yesterday's sins */
#ifdef __HAVE_STRUCT_SIGCONTEXT
struct netbsd32_sendsig_sigcontext_16_hook_t netbsd32_sendsig_sigcontext_16_hook;
#endif
void
netbsd32_sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
{
struct sigacts *sa;
int sig;
sig = ksi->ksi_signo;
sa = curproc->p_sigacts;
switch (sa->sa_sigdesc[sig].sd_vers) {
#ifdef __HAVE_STRUCT_SIGCONTEXT
case __SIGTRAMP_SIGCODE_VERSION:
case __SIGTRAMP_SIGCONTEXT_VERSION_MIN ...
__SIGTRAMP_SIGCONTEXT_VERSION_MAX:
/* Compat for 1.6 and earlier. */
MODULE_HOOK_CALL_VOID(netbsd32_sendsig_sigcontext_16_hook,
(ksi, mask), break);
return;
#endif /* __HAVE_STRUCT_SIGCONTEXT */
case __SIGTRAMP_SIGINFO_VERSION_MIN ...
__SIGTRAMP_SIGINFO_VERSION_MAX:
netbsd32_sendsig_siginfo(ksi, mask);
return;
default:
break;
}
printf("%s: bad version %d\n", __func__, sa->sa_sigdesc[sig].sd_vers);
sigexit(curlwp, SIGILL);
}
#endif /* __HAVE_MD_NETBSD32_SENDSIG */
void
netbsd32_ksi32_to_ksi(struct _ksiginfo *si, const struct __ksiginfo32 *si32)
{
size_t i;
memset(si, 0, sizeof (*si));
si->_signo = si32->_signo;
si->_code = si32->_code;
si->_errno = si32->_errno;
if (si32->_code == SI_NOINFO)
return;
else if (si32->_code <= 0) /* codes described in siginfo(2) */
goto fill_rt;
switch (si32->_signo) {
case SIGILL:
case SIGFPE:
case SIGBUS:
case SIGSEGV:
fill_fault:
si->_reason._fault._addr =
NETBSD32IPTR64(si32->_reason._fault._addr);
si->_reason._fault._trap = si32->_reason._fault._trap;
break;
case SIGTRAP:
switch (si32->_code) {
case TRAP_EXEC:
break;
case TRAP_CHLD:
case TRAP_LWP:
si->_reason._ptrace_state._pe_report_event =
si32->_reason._ptrace_state._pe_report_event;
CTASSERT(sizeof(si->_reason._ptrace_state._option._pe_other_pid) ==
sizeof(si->_reason._ptrace_state._option._pe_lwp));
si->_reason._ptrace_state._option._pe_other_pid =
si32->_reason._ptrace_state._option._pe_other_pid;
break;
case TRAP_SCE:
case TRAP_SCX:
si->_reason._syscall._sysnum =
si32->_reason._syscall._sysnum;
si->_reason._syscall._retval[0] =
si32->_reason._syscall._retval[0];
si->_reason._syscall._retval[1] =
si32->_reason._syscall._retval[1];
si->_reason._syscall._error =
si32->_reason._syscall._error;
for (i = 0;
i < __arraycount(si->_reason._syscall._args); i++)
si->_reason._syscall._args[i] =
si32->_reason._syscall._args[i];
break;
default:
goto fill_fault;
}
break;
case SIGALRM:
case SIGVTALRM:
case SIGPROF:
default: /* see sigqueue() and kill1() */
fill_rt:
si->_reason._rt._pid = si32->_reason._rt._pid;
si->_reason._rt._uid = si32->_reason._rt._uid;
si->_reason._rt._value.sival_int =
si32->_reason._rt._value.sival_int;
break;
case SIGURG:
case SIGIO:
si->_reason._poll._band = si32->_reason._poll._band;
si->_reason._poll._fd = si32->_reason._poll._fd;
break;
case SIGCHLD:
si->_reason._child._pid = si32->_reason._child._pid;
si->_reason._child._uid = si32->_reason._child._uid;
si->_reason._child._status = si32->_reason._child._status;
si->_reason._child._utime = si32->_reason._child._utime;
si->_reason._child._stime = si32->_reason._child._stime;
break;
}
}
void
netbsd32_si32_to_si(siginfo_t *si, const siginfo32_t *si32)
{
memset(si, 0, sizeof (*si));
netbsd32_ksi32_to_ksi(&si->_info, &si32->_info);
}
static void
netbsd32_ksi_to_ksi32(struct __ksiginfo32 *si32, const struct _ksiginfo *si)
{
size_t i;
memset(si32, 0, sizeof (*si32));
si32->_signo = si->_signo;
si32->_code = si->_code;
si32->_errno = si->_errno;
if (si->_code == SI_NOINFO)
return;
else if (si->_code <= 0) /* codes described in siginfo(2) */
goto fill_rt;
switch (si->_signo) {
case SIGILL:
case SIGFPE:
case SIGBUS:
case SIGSEGV:
fill_fault:
si32->_reason._fault._addr =
NETBSD32PTR32I(si->_reason._fault._addr);
si32->_reason._fault._trap = si->_reason._fault._trap;
break;
case SIGTRAP:
switch (si->_code) {
case TRAP_EXEC:
break;
case TRAP_CHLD:
case TRAP_LWP:
si32->_reason._ptrace_state._pe_report_event =
si->_reason._ptrace_state._pe_report_event;
CTASSERT(sizeof(si32->_reason._ptrace_state._option._pe_other_pid) ==
sizeof(si32->_reason._ptrace_state._option._pe_lwp));
si32->_reason._ptrace_state._option._pe_other_pid =
si->_reason._ptrace_state._option._pe_other_pid;
break;
case TRAP_SCE:
case TRAP_SCX:
si32->_reason._syscall._sysnum =
si->_reason._syscall._sysnum;
si32->_reason._syscall._retval[0] =
si->_reason._syscall._retval[0];
si32->_reason._syscall._retval[1] =
si->_reason._syscall._retval[1];
si32->_reason._syscall._error =
si->_reason._syscall._error;
for (i = 0;
i < __arraycount(si->_reason._syscall._args); i++)
si32->_reason._syscall._args[i] =
si->_reason._syscall._args[i];
break;
default:
goto fill_fault;
}
break;
case SIGALRM:
case SIGVTALRM:
case SIGPROF:
default: /* see sigqueue() and kill1() */
fill_rt:
si32->_reason._rt._pid = si->_reason._rt._pid;
si32->_reason._rt._uid = si->_reason._rt._uid;
si32->_reason._rt._value.sival_int =
si->_reason._rt._value.sival_int;
break;
case SIGURG:
case SIGIO:
si32->_reason._poll._band = si->_reason._poll._band;
si32->_reason._poll._fd = si->_reason._poll._fd;
break;
case SIGCHLD:
si32->_reason._child._pid = si->_reason._child._pid;
si32->_reason._child._uid = si->_reason._child._uid;
si32->_reason._child._status = si->_reason._child._status;
si32->_reason._child._utime = si->_reason._child._utime;
si32->_reason._child._stime = si->_reason._child._stime;
break;
}
}
void
netbsd32_si_to_si32(siginfo32_t *si32, const siginfo_t *si)
{
memset(si32, 0, sizeof (*si32));
netbsd32_ksi_to_ksi32(&si32->_info, &si->_info);
}
void
getucontext32(struct lwp *l, ucontext32_t *ucp)
{
struct proc *p = l->l_proc;
KASSERT(mutex_owned(p->p_lock));
ucp->uc_flags = 0;
ucp->uc_link = (uint32_t)(intptr_t)l->l_ctxlink;
ucp->uc_sigmask = l->l_sigmask;
ucp->uc_flags |= _UC_SIGMASK;
/*
* The (unsupplied) definition of the `current execution stack'
* in the System V Interface Definition appears to allow returning
* the main context stack.
*/
if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
ucp->uc_stack.ss_sp = USRSTACK32;
ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
} else {
/* Simply copy alternate signal execution stack. */
ucp->uc_stack.ss_sp =
(uint32_t)(intptr_t)l->l_sigstk.ss_sp;
ucp->uc_stack.ss_size = l->l_sigstk.ss_size;
ucp->uc_stack.ss_flags = l->l_sigstk.ss_flags;
}
ucp->uc_flags |= _UC_STACK;
mutex_exit(p->p_lock);
cpu_getmcontext32(l, &ucp->uc_mcontext, &ucp->uc_flags);
mutex_enter(p->p_lock);
}
int
netbsd32_getcontext(struct lwp *l, const struct netbsd32_getcontext_args *uap, register_t *retval)
{
/* {
syscallarg(netbsd32_ucontextp) ucp;
} */
struct proc *p = l->l_proc;
ucontext32_t uc;
memset(&uc, 0, sizeof(uc));
mutex_enter(p->p_lock);
getucontext32(l, &uc);
mutex_exit(p->p_lock);
return copyout(&uc, SCARG_P32(uap, ucp), sizeof (ucontext32_t));
}
int
setucontext32(struct lwp *l, const ucontext32_t *ucp)
{
struct proc *p = l->l_proc;
int error;
KASSERT(mutex_owned(p->p_lock));
if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
if (error != 0)
return error;
}
mutex_exit(p->p_lock);
error = cpu_setmcontext32(l, &ucp->uc_mcontext, ucp->uc_flags);
mutex_enter(p->p_lock);
if (error != 0)
return error;
l->l_ctxlink = (void *)(intptr_t)ucp->uc_link;
/*
* If there was stack information, update whether or not we are
* still running on an alternate signal stack.
*/
if ((ucp->uc_flags & _UC_STACK) != 0) {
if (ucp->uc_stack.ss_flags & SS_ONSTACK)
l->l_sigstk.ss_flags |= SS_ONSTACK;
else
l->l_sigstk.ss_flags &= ~SS_ONSTACK;
}
return 0;
}
/* ARGSUSED */
int
netbsd32_setcontext(struct lwp *l, const struct netbsd32_setcontext_args *uap, register_t *retval)
{
/* {
syscallarg(netbsd32_ucontextp) ucp;
} */
ucontext32_t uc;
int error;
struct proc *p = l->l_proc;
error = copyin(SCARG_P32(uap, ucp), &uc, sizeof (uc));
if (error)
return error;
if (!(uc.uc_flags & _UC_CPU))
return EINVAL;
mutex_enter(p->p_lock);
error = setucontext32(l, &uc);
mutex_exit(p->p_lock);
if (error)
return error;
return EJUSTRETURN;
}
static int
netbsd32_sigtimedwait_put_info(const void *src, void *dst, size_t size)
{
const siginfo_t *info = src;
siginfo32_t info32;
netbsd32_si_to_si32(&info32, info);
return copyout(&info32, dst, sizeof(info32));
}
static int
netbsd32_sigtimedwait_fetch_timeout(const void *src, void *dst, size_t size)
{
struct timespec *ts = dst;
struct netbsd32_timespec ts32;
int error;
error = copyin(src, &ts32, sizeof(ts32));
if (error)
return error;
netbsd32_to_timespec(&ts32, ts);
return 0;
}
static int
netbsd32_sigtimedwait_put_timeout(const void *src, void *dst, size_t size)
{
const struct timespec *ts = src;
struct netbsd32_timespec ts32;
netbsd32_from_timespec(ts, &ts32);
return copyout(&ts32, dst, sizeof(ts32));
}
int
netbsd32_____sigtimedwait50(struct lwp *l, const struct netbsd32_____sigtimedwait50_args *uap, register_t *retval)
{
/* {
syscallarg(netbsd32_sigsetp_t) set;
syscallarg(netbsd32_siginfop_t) info;
syscallarg(netbsd32_timespec50p_t) timeout;
} */
struct sys_____sigtimedwait50_args ua;
NETBSD32TOP_UAP(set, const sigset_t);
NETBSD32TOP_UAP(info, siginfo_t);
NETBSD32TOP_UAP(timeout, struct timespec);
return sigtimedwait1(l, &ua, retval,
copyin,
netbsd32_sigtimedwait_put_info,
netbsd32_sigtimedwait_fetch_timeout,
netbsd32_sigtimedwait_put_timeout);
}
int
netbsd32_sigqueueinfo(struct lwp *l,
const struct netbsd32_sigqueueinfo_args *uap, register_t *retval)
{
/* {
syscallarg(pid_t) pid;
syscallarg(const netbsd32_siginfop_t) info;
} */
struct __ksiginfo32 ksi32;
ksiginfo_t ksi;
int error;
if ((error = copyin(SCARG_P32(uap, info), &ksi32,
sizeof(ksi32))) != 0)
return error;
KSI_INIT(&ksi);
netbsd32_ksi32_to_ksi(&ksi.ksi_info, &ksi32);
return kill1(l, SCARG(uap, pid), &ksi, retval);
}
struct netbsd32_ktr_psig {
int signo;
netbsd32_pointer_t action;
sigset_t mask;
int code;
/* and optional siginfo_t */
};
#ifdef notyet
#ifdef KTRACE
void
netbsd32_ktrpsig(int sig, sig_t action, const sigset_t *mask,
const ksiginfo_t *ksi)
{
struct ktrace_entry *kte;
lwp_t *l = curlwp;
struct {
struct netbsd32_ktr_psig kp;
siginfo32_t si;
} *kbuf;
if (!KTRPOINT(l->l_proc, KTR_PSIG))
return;
if (ktealloc(&kte, (void *)&kbuf, l, KTR_PSIG, sizeof(*kbuf)))
return;
kbuf->kp.signo = (char)sig;
NETBSD32PTR32(kbuf->kp.action, action);
kbuf->kp.mask = *mask;
if (ksi) {
kbuf->kp.code = KSI_TRAPCODE(ksi);
(void)memset(&kbuf->si, 0, sizeof(kbuf->si));
netbsd32_ksi_to_ksi32(&kbuf->si._info, &ksi->ksi_info);
ktesethdrlen(kte, sizeof(*kbuf));
} else {
kbuf->kp.code = 0;
ktesethdrlen(kte, sizeof(struct netbsd32_ktr_psig));
}
ktraddentry(l, kte, KTA_WAITOK);
}
#endif
#endif