10fe49d72c
#if NBPFILTER is no longer required in the client. This change doesn't yet add support for loading bpf as a module, since drivers can register before bpf is attached. However, callers of bpf can now be modularized. Dynamically loadable bpf could probably be done fairly easily with coordination from the stub driver and the real driver by registering attachments in the stub before the real driver is loaded and doing a handoff. ... and I'm not going to ponder the depths of unload here. Tested with i386/MONOLITHIC, modified MONOLITHIC without bpf and rump.
2203 lines
57 KiB
C
2203 lines
57 KiB
C
/* $NetBSD: cs89x0.c,v 1.30 2010/01/19 22:06:24 pooka Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2004 Christopher Gilbert
|
|
* All rights reserved.
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright 1997
|
|
* Digital Equipment Corporation. All rights reserved.
|
|
*
|
|
* This software is furnished under license and may be used and
|
|
* copied only in accordance with the following terms and conditions.
|
|
* Subject to these conditions, you may download, copy, install,
|
|
* use, modify and distribute this software in source and/or binary
|
|
* form. No title or ownership is transferred hereby.
|
|
*
|
|
* 1) Any source code used, modified or distributed must reproduce
|
|
* and retain this copyright notice and list of conditions as
|
|
* they appear in the source file.
|
|
*
|
|
* 2) No right is granted to use any trade name, trademark, or logo of
|
|
* Digital Equipment Corporation. Neither the "Digital Equipment
|
|
* Corporation" name nor any trademark or logo of Digital Equipment
|
|
* Corporation may be used to endorse or promote products derived
|
|
* from this software without the prior written permission of
|
|
* Digital Equipment Corporation.
|
|
*
|
|
* 3) This software is provided "AS-IS" and any express or implied
|
|
* warranties, including but not limited to, any implied warranties
|
|
* of merchantability, fitness for a particular purpose, or
|
|
* non-infringement are disclaimed. In no event shall DIGITAL be
|
|
* liable for any damages whatsoever, and in particular, DIGITAL
|
|
* shall not be liable for special, indirect, consequential, or
|
|
* incidental damages or damages for lost profits, loss of
|
|
* revenue or loss of use, whether such damages arise in contract,
|
|
* negligence, tort, under statute, in equity, at law or otherwise,
|
|
* even if advised of the possibility of such damage.
|
|
*/
|
|
|
|
/*
|
|
**++
|
|
** FACILITY
|
|
**
|
|
** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
|
|
**
|
|
** ABSTRACT
|
|
**
|
|
** This module provides standard ethernet access for INET protocols
|
|
** only.
|
|
**
|
|
** AUTHORS
|
|
**
|
|
** Peter Dettori SEA - Software Engineering.
|
|
**
|
|
** CREATION DATE:
|
|
**
|
|
** 13-Feb-1997.
|
|
**
|
|
** MODIFICATION HISTORY (Digital):
|
|
**
|
|
** Revision 1.27 1998/01/20 17:59:40 cgd
|
|
** update for moved headers
|
|
**
|
|
** Revision 1.26 1998/01/12 19:29:36 cgd
|
|
** use arm32/isa versions of isadma code.
|
|
**
|
|
** Revision 1.25 1997/12/12 01:35:27 cgd
|
|
** convert to use new arp code (from Brini)
|
|
**
|
|
** Revision 1.24 1997/12/10 22:31:56 cgd
|
|
** trim some fat (get rid of ability to explicitly supply enet addr, since
|
|
** it was never used and added a bunch of code which really doesn't belong in
|
|
** an enet driver), and clean up slightly.
|
|
**
|
|
** Revision 1.23 1997/10/06 16:42:12 cgd
|
|
** copyright notices
|
|
**
|
|
** Revision 1.22 1997/06/20 19:38:01 chaiken
|
|
** fixes some smartcard problems
|
|
**
|
|
** Revision 1.21 1997/06/10 02:56:20 grohn
|
|
** Added call to ledNetActive
|
|
**
|
|
** Revision 1.20 1997/06/05 00:47:06 dettori
|
|
** Changed cs_process_rx_dma to reset and re-initialise the
|
|
** ethernet chip when DMA gets out of sync, or mbufs
|
|
** can't be allocated.
|
|
**
|
|
** Revision 1.19 1997/06/03 03:09:58 dettori
|
|
** Turn off sc_txbusy flag when a transmit underrun
|
|
** occurs.
|
|
**
|
|
** Revision 1.18 1997/06/02 00:04:35 dettori
|
|
** redefined the transmit table to get around the nfs_timer bug while we are
|
|
** looking into it further.
|
|
**
|
|
** Also changed interrupts from EDGE to LEVEL.
|
|
**
|
|
** Revision 1.17 1997/05/27 23:31:01 dettori
|
|
** Pulled out changes to DMAMODE defines.
|
|
**
|
|
** Revision 1.16 1997/05/23 04:25:16 cgd
|
|
** reformat log so it fits in 80cols
|
|
**
|
|
** Revision 1.15 1997/05/23 04:22:18 cgd
|
|
** remove the existing copyright notice (which Peter Dettori indicated
|
|
** was incorrect, copied from an existing NetBSD file only so that the
|
|
** file would have a copyright notice on it, and which he'd intended to
|
|
** replace). Replace it with a Digital copyright notice, cloned from
|
|
** ess.c. It's not really correct either (it indicates that the source
|
|
** is Digital confidential!), but is better than nothing and more
|
|
** correct than what was there before.
|
|
**
|
|
** Revision 1.14 1997/05/23 04:12:50 cgd
|
|
** use an adaptive transmit start algorithm: start by telling the chip
|
|
** to start transmitting after 381 bytes have been fed to it. if that
|
|
** gets transmit underruns, ramp down to 1021 bytes then "whole
|
|
** packet." If successful at a given level for a while, try the next
|
|
** more agressive level. This code doesn't ever try to start
|
|
** transmitting after 5 bytes have been sent to the NIC, because
|
|
** that underruns rather regularly. The back-off and ramp-up mechanism
|
|
** could probably be tuned a little bit, but this works well enough to
|
|
** support > 1MB/s transmit rates on a clear ethernet (which is about
|
|
** 20-25% better than the driver had previously been getting).
|
|
**
|
|
** Revision 1.13 1997/05/22 21:06:54 cgd
|
|
** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
|
|
** casting from u_int8_t * to u_int16_t * without worrying about alignment
|
|
** issues. This would cause bogus data to be spit out for mbufs with
|
|
** misaligned data. For instance, it caused the following bits to appear
|
|
** on the wire:
|
|
** ... etBND 1S2C .SHA(K) R ...
|
|
** 11112222333344445555
|
|
** which should have appeared as:
|
|
** ... NetBSD 1.2C (SHARK) ...
|
|
** 11112222333344445555
|
|
** Note the apparent 'rotate' of the bytes in the word, which was due to
|
|
** incorrect unaligned accesses. This data corruption was the cause of
|
|
** incoming telnet/rlogin hangs.
|
|
**
|
|
** Revision 1.12 1997/05/22 01:55:32 cgd
|
|
** reformat log so it fits in 80cols
|
|
**
|
|
** Revision 1.11 1997/05/22 01:50:27 cgd
|
|
** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
|
|
** so packets aimed at other hosts don't get sent to ether_input().
|
|
** * Add a static const char *rcsid initialized with an RCS Id tag, so that
|
|
** you can easily tell (`strings`) what version of the driver is in your
|
|
** kernel binary.
|
|
** * get rid of ether_cmp(). It was inconsistently used, not necessarily
|
|
** safe, and not really a performance win anyway. (It was only used when
|
|
** setting up the multicast logical address filter, which is an
|
|
** infrequent event. It could have been used in the IFF_PROMISCUOUS
|
|
** address check above, but the benefit of it vs. memcmp would be
|
|
** inconsequential, there.) Use memcmp() instead.
|
|
** * restructure csStartOuput to avoid the following bugs in the case where
|
|
** txWait was being set:
|
|
** * it would accidentally drop the outgoing packet if told to wait
|
|
** but the outgoing packet queue was empty.
|
|
** * it would bpf_mtap() the outgoing packet multiple times (once for
|
|
** each time it was told to wait), and would also recalculate
|
|
** the length of the outgoing packet each time it was told to
|
|
** wait.
|
|
** While there, rename txWait to txLoop, since with the new structure of
|
|
** the code, the latter name makes more sense.
|
|
**
|
|
** Revision 1.10 1997/05/19 02:03:20 cgd
|
|
** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
|
|
** is the only caller of cs_set_ladr_filt(), and always calls it, so this
|
|
** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
|
|
** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
|
|
** as before.
|
|
**
|
|
** Revision 1.9 1997/05/19 01:45:37 cgd
|
|
** create a new function, cs_ether_input(), which does received-packet
|
|
** BPF and ether_input processing. This code used to be in three places,
|
|
** and centralizing it will make adding IFF_PROMISC support much easier.
|
|
** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
|
|
** do copies with bus_space_write_region_2(). It's more correct, and
|
|
** potentially more efficient. That function needs to be gutted (to
|
|
** deal properly with alignment issues, which it currently does wrong),
|
|
** however, and the change doesn't gain much, so there's no point in
|
|
** enabling it now.
|
|
**
|
|
** Revision 1.8 1997/05/19 01:17:10 cgd
|
|
** fix a comment re: the setting of the TxConfig register. Clean up
|
|
** interface counter maintenance (make it use standard idiom).
|
|
**
|
|
**--
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.30 2010/01/19 22:06:24 pooka Exp $");
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/device.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
|
|
#include "rnd.h"
|
|
#if NRND > 0
|
|
#include <sys/rnd.h>
|
|
#endif
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_media.h>
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_inarp.h>
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/bpfdesc.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <dev/ic/cs89x0reg.h>
|
|
#include <dev/ic/cs89x0var.h>
|
|
|
|
#ifdef SHARK
|
|
#include <shark/shark/sequoia.h>
|
|
#endif
|
|
|
|
/*
|
|
* MACRO DEFINITIONS
|
|
*/
|
|
#define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
|
|
|
|
/*
|
|
* FUNCTION PROTOTYPES
|
|
*/
|
|
static void cs_get_default_media(struct cs_softc *);
|
|
static int cs_get_params(struct cs_softc *);
|
|
static int cs_get_enaddr(struct cs_softc *);
|
|
static int cs_reset_chip(struct cs_softc *);
|
|
static void cs_reset(struct cs_softc *);
|
|
static int cs_ioctl(struct ifnet *, u_long, void *);
|
|
static void cs_initChip(struct cs_softc *);
|
|
static void cs_buffer_event(struct cs_softc *, u_int16_t);
|
|
static void cs_transmit_event(struct cs_softc *, u_int16_t);
|
|
static void cs_receive_event(struct cs_softc *, u_int16_t);
|
|
static void cs_process_receive(struct cs_softc *);
|
|
static void cs_process_rx_early(struct cs_softc *);
|
|
static void cs_start_output(struct ifnet *);
|
|
static void cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
|
|
static void cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
|
|
static u_int16_t cs_hash_index(char *);
|
|
static void cs_counter_event(struct cs_softc *, u_int16_t);
|
|
|
|
static int cs_mediachange(struct ifnet *);
|
|
static void cs_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
static bool cs_shutdown(device_t, int);
|
|
static int cs_enable(struct cs_softc *);
|
|
static void cs_disable(struct cs_softc *);
|
|
static void cs_stop(struct ifnet *, int);
|
|
static int cs_scan_eeprom(struct cs_softc *);
|
|
static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
|
|
|
|
|
|
/*
|
|
* GLOBAL DECLARATIONS
|
|
*/
|
|
|
|
/*
|
|
* Xmit-early table.
|
|
*
|
|
* To get better performance, we tell the chip to start packet
|
|
* transmission before the whole packet is copied to the chip.
|
|
* However, this can fail under load. When it fails, we back off
|
|
* to a safer setting for a little while.
|
|
*
|
|
* txcmd is the value of txcmd used to indicate when to start transmission.
|
|
* better is the next 'better' state in the table.
|
|
* better_count is the number of output packets before transition to the
|
|
* better state.
|
|
* worse is the next 'worse' state in the table.
|
|
*
|
|
* Transition to the next worse state happens automatically when a
|
|
* transmittion underrun occurs.
|
|
*/
|
|
struct cs_xmit_early {
|
|
u_int16_t txcmd;
|
|
int better;
|
|
int better_count;
|
|
int worse;
|
|
} cs_xmit_early_table[3] = {
|
|
{ TX_CMD_START_381, 0, INT_MAX, 1, },
|
|
{ TX_CMD_START_1021, 0, 50000, 2, },
|
|
{ TX_CMD_START_ALL, 1, 5000, 2, },
|
|
};
|
|
|
|
int cs_default_media[] = {
|
|
IFM_ETHER|IFM_10_2,
|
|
IFM_ETHER|IFM_10_5,
|
|
IFM_ETHER|IFM_10_T,
|
|
IFM_ETHER|IFM_10_T|IFM_FDX,
|
|
};
|
|
int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
|
|
|
|
int
|
|
cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
|
|
int nmedia, int defmedia)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
const char *chipname, *medname;
|
|
u_int16_t reg;
|
|
int i;
|
|
|
|
/* Start out in IO mode */
|
|
sc->sc_memorymode = FALSE;
|
|
|
|
/* make sure we're right */
|
|
for (i = 0; i < 10000; i++) {
|
|
reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
|
|
if (reg == EISA_NUM_CRYSTAL) {
|
|
break;
|
|
}
|
|
}
|
|
if (i == 10000) {
|
|
aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
|
|
return 1; /* XXX should panic? */
|
|
}
|
|
|
|
reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
|
|
sc->sc_prodid = reg & PROD_ID_MASK;
|
|
sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
|
|
|
|
switch (sc->sc_prodid) {
|
|
case PROD_ID_CS8900:
|
|
chipname = "CS8900";
|
|
break;
|
|
case PROD_ID_CS8920:
|
|
chipname = "CS8920";
|
|
break;
|
|
case PROD_ID_CS8920M:
|
|
chipname = "CS8920M";
|
|
break;
|
|
default:
|
|
panic("cs_attach: impossible");
|
|
}
|
|
|
|
/*
|
|
* the first thing to do is check that the mbuf cluster size is
|
|
* greater than the MTU for an ethernet frame. The code depends on
|
|
* this and to port this to a OS where this was not the case would
|
|
* not be straightforward.
|
|
*
|
|
* we need 1 byte spare because our
|
|
* packet read loop can overrun.
|
|
* and we may need pad bytes to align ip header.
|
|
*/
|
|
if (MCLBYTES < ETHER_MAX_LEN + 1 +
|
|
ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
|
|
printf("%s: MCLBYTES too small for Ethernet frame\n",
|
|
device_xname(sc->sc_dev));
|
|
return 1;
|
|
}
|
|
|
|
/* Start out not transmitting */
|
|
sc->sc_txbusy = FALSE;
|
|
|
|
/* Set up early transmit threshhold */
|
|
sc->sc_xe_ent = 0;
|
|
sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
|
|
|
|
/* Initialize ifnet structure. */
|
|
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_start = cs_start_output;
|
|
ifp->if_init = cs_init;
|
|
ifp->if_ioctl = cs_ioctl;
|
|
ifp->if_stop = cs_stop;
|
|
ifp->if_watchdog = NULL; /* no watchdog at this stage */
|
|
ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
|
|
IFF_BROADCAST | IFF_MULTICAST;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/* Initialize ifmedia structures. */
|
|
ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
|
|
|
|
if (media != NULL) {
|
|
for (i = 0; i < nmedia; i++)
|
|
ifmedia_add(&sc->sc_media, media[i], 0, NULL);
|
|
ifmedia_set(&sc->sc_media, defmedia);
|
|
} else {
|
|
for (i = 0; i < cs_default_nmedia; i++)
|
|
ifmedia_add(&sc->sc_media, cs_default_media[i],
|
|
0, NULL);
|
|
cs_get_default_media(sc);
|
|
}
|
|
|
|
if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
|
|
if (cs_scan_eeprom(sc) == CS_ERROR) {
|
|
/* failed to scan the eeprom, pretend there isn't an eeprom */
|
|
aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
|
|
sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
|
|
}
|
|
}
|
|
|
|
if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
|
|
/* Get parameters from the EEPROM */
|
|
if (cs_get_params(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to get settings from EEPROM\n");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (enaddr != NULL)
|
|
memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
|
|
else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
|
|
/* Get and store the Ethernet address */
|
|
if (cs_get_enaddr(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to read Ethernet address\n");
|
|
return 1;
|
|
}
|
|
} else {
|
|
#if 1
|
|
int j;
|
|
uint v;
|
|
|
|
for (j = 0; j < 6; j += 2) {
|
|
v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
|
|
sc->sc_enaddr[j + 0] = v;
|
|
sc->sc_enaddr[j + 1] = v >> 8;
|
|
}
|
|
#else
|
|
printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
|
|
case IFM_10_2:
|
|
medname = "BNC";
|
|
break;
|
|
case IFM_10_5:
|
|
medname = "AUI";
|
|
break;
|
|
case IFM_10_T:
|
|
if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
|
|
medname = "UTP <full-duplex>";
|
|
else
|
|
medname = "UTP";
|
|
break;
|
|
default:
|
|
panic("cs_attach: impossible");
|
|
}
|
|
printf("%s: %s rev. %c, address %s, media %s\n",
|
|
device_xname(sc->sc_dev),
|
|
chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
|
|
medname);
|
|
|
|
if (sc->sc_dma_attach)
|
|
(*sc->sc_dma_attach)(sc);
|
|
|
|
/* Attach the interface. */
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, sc->sc_enaddr);
|
|
|
|
#if NRND > 0
|
|
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
|
|
RND_TYPE_NET, 0);
|
|
#endif
|
|
sc->sc_cfgflags |= CFGFLG_ATTACHED;
|
|
|
|
if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
|
|
pmf_class_network_register(sc->sc_dev, ifp);
|
|
else
|
|
aprint_error_dev(sc->sc_dev,
|
|
"couldn't establish power handler\n");
|
|
|
|
/* Reset the chip */
|
|
if (cs_reset_chip(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev, "reset failed\n");
|
|
cs_detach(sc);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
cs_detach(struct cs_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
|
|
#if NRND > 0
|
|
rnd_detach_source(&sc->rnd_source);
|
|
#endif
|
|
ether_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* XXX not necessary
|
|
*/
|
|
if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
|
|
isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
|
|
isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
|
|
isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
|
|
sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
|
|
}
|
|
#endif
|
|
|
|
pmf_device_deregister(sc->sc_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool
|
|
cs_shutdown(device_t self, int howto)
|
|
{
|
|
struct cs_softc *sc;
|
|
|
|
sc = device_private(self);
|
|
cs_reset(sc);
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
cs_get_default_media(struct cs_softc *sc)
|
|
{
|
|
u_int16_t adp_cfg, xmit_ctl;
|
|
|
|
if (cs_verify_eeprom(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_get_default_media: EEPROM missing or bad\n");
|
|
goto fakeit;
|
|
}
|
|
|
|
if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to read adapter config from EEPROM\n");
|
|
goto fakeit;
|
|
}
|
|
|
|
if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to read transmit control from EEPROM\n");
|
|
goto fakeit;
|
|
}
|
|
|
|
switch (adp_cfg & ADPTR_CFG_MEDIA) {
|
|
case ADPTR_CFG_AUI:
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
|
|
break;
|
|
case ADPTR_CFG_10BASE2:
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
|
|
break;
|
|
case ADPTR_CFG_10BASET:
|
|
default:
|
|
if (xmit_ctl & XMIT_CTL_FDX)
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
|
|
else
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
|
|
break;
|
|
}
|
|
return;
|
|
|
|
fakeit:
|
|
aprint_error_dev(sc->sc_dev,
|
|
"WARNING: default media setting may be inaccurate\n");
|
|
/* XXX Arbitrary... */
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
|
|
}
|
|
|
|
/*
|
|
* cs_scan_eeprom
|
|
*
|
|
* Attempt to take a complete copy of the eeprom into main memory.
|
|
* this will allow faster parsing of the eeprom data.
|
|
*
|
|
* Only tested against a 8920M's eeprom, but the data sheet for the
|
|
* 8920A indicates that is uses the same layout.
|
|
*/
|
|
int
|
|
cs_scan_eeprom(struct cs_softc *sc)
|
|
{
|
|
u_int16_t result;
|
|
int i;
|
|
int eeprom_size;
|
|
u_int8_t checksum = 0;
|
|
|
|
if (cs_verify_eeprom(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_scan_params: EEPROM missing or bad\n");
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
/*
|
|
* read the 0th word from the eeprom, it will tell us the length
|
|
* and if the eeprom is valid
|
|
*/
|
|
cs_read_eeprom(sc, 0, &result);
|
|
|
|
/* check the eeprom signature */
|
|
if ((result & 0xE000) != 0xA000) {
|
|
/* empty eeprom */
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
/*
|
|
* take the eeprom size (note the read value doesn't include the header
|
|
* word)
|
|
*/
|
|
eeprom_size = (result & 0xff) + 2;
|
|
|
|
sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
|
|
if (sc->eeprom_data == NULL) {
|
|
/* no memory, treat this as if there's no eeprom */
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
sc->eeprom_size = eeprom_size;
|
|
|
|
/* read the eeprom into the buffer, also calculate the checksum */
|
|
for (i = 0; i < (eeprom_size >> 1); i++) {
|
|
cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
|
|
checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
|
|
checksum += (sc->eeprom_data[i] & 0x00ff);
|
|
}
|
|
|
|
/*
|
|
* validate checksum calculation, the sum of all the bytes should be 0,
|
|
* as the high byte of the last word is the 2's complement of the
|
|
* sum to that point.
|
|
*/
|
|
if (checksum != 0) {
|
|
aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
return (CS_OK);
|
|
}
|
|
|
|
static int
|
|
cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
|
|
{
|
|
int x, maxword;
|
|
|
|
/* Check that we have eeprom data */
|
|
if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
|
|
return (CS_ERROR);
|
|
|
|
/*
|
|
* We only want to read the data words, the last word contains the
|
|
* checksum
|
|
*/
|
|
maxword = (sc->eeprom_size - 2) >> 1;
|
|
|
|
/* start 1 word in, as the first word is the length and signature */
|
|
x = 1;
|
|
|
|
while ( x < (maxword)) {
|
|
u_int16_t header;
|
|
int group_size;
|
|
int offset;
|
|
int offset_max;
|
|
|
|
/* read in the group header word */
|
|
header = sc->eeprom_data[x];
|
|
x++; /* skip group header */
|
|
|
|
/*
|
|
* size of group in words is in the top 4 bits, note that it
|
|
* is one less than the number of words
|
|
*/
|
|
group_size = header & 0xF000;
|
|
|
|
/*
|
|
* CS8900 Data sheet says this should be 0x01ff,
|
|
* but my cs8920 eeprom has higher offsets,
|
|
* perhaps the 8920 allows higher offsets, otherwise
|
|
* it's writing to places that it shouldn't
|
|
*/
|
|
/* work out the offsets this group covers */
|
|
offset = header & 0x0FFF;
|
|
offset_max = offset + (group_size << 1);
|
|
|
|
/* check if the pkgpg we're after is in this group */
|
|
if ((offset <= pktpg) && (pktpg <= offset_max)) {
|
|
/* the pkgpg value we want is in here */
|
|
int eeprom_location;
|
|
|
|
eeprom_location = ((pktpg - offset) >> 1) ;
|
|
|
|
*pValue = sc->eeprom_data[x + eeprom_location];
|
|
return (CS_OK);
|
|
} else {
|
|
/* skip this group (+ 1 for first entry) */
|
|
x += group_size + 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if we've fallen out here then we don't have a value in the EEPROM
|
|
* for this pktpg so return an error
|
|
*/
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
int
|
|
cs_get_params(struct cs_softc *sc)
|
|
{
|
|
u_int16_t isaConfig;
|
|
u_int16_t adapterConfig;
|
|
|
|
if (cs_verify_eeprom(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_get_params: EEPROM missing or bad\n");
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
|
|
/* Get ISA configuration from the EEPROM */
|
|
if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
|
|
== CS_ERROR) {
|
|
/* eeprom doesn't have this value, use data sheet default */
|
|
isaConfig = 0x0017;
|
|
}
|
|
|
|
/* Get adapter configuration from the EEPROM */
|
|
if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
|
|
== CS_ERROR) {
|
|
/* eeprom doesn't have this value, use data sheet default */
|
|
adapterConfig = 0x0015;
|
|
}
|
|
|
|
/* Copy the USE_SA flag */
|
|
if (isaConfig & BUS_CTL_USE_SA)
|
|
sc->sc_cfgflags |= CFGFLG_USE_SA;
|
|
|
|
/* Copy the IO Channel Ready flag */
|
|
if (isaConfig & BUS_CTL_IOCHRDY)
|
|
sc->sc_cfgflags |= CFGFLG_IOCHRDY;
|
|
|
|
/* Copy the DC/DC Polarity flag */
|
|
if (adapterConfig & SELF_CTL_HCB1)
|
|
sc->sc_cfgflags |= CFGFLG_DCDC_POL;
|
|
} else {
|
|
/* Get ISA configuration from the EEPROM */
|
|
if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
|
|
goto eeprom_bad;
|
|
|
|
/* Get adapter configuration from the EEPROM */
|
|
if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
|
|
goto eeprom_bad;
|
|
|
|
/* Copy the USE_SA flag */
|
|
if (isaConfig & ISA_CFG_USE_SA)
|
|
sc->sc_cfgflags |= CFGFLG_USE_SA;
|
|
|
|
/* Copy the IO Channel Ready flag */
|
|
if (isaConfig & ISA_CFG_IOCHRDY)
|
|
sc->sc_cfgflags |= CFGFLG_IOCHRDY;
|
|
|
|
/* Copy the DC/DC Polarity flag */
|
|
if (adapterConfig & ADPTR_CFG_DCDC_POL)
|
|
sc->sc_cfgflags |= CFGFLG_DCDC_POL;
|
|
}
|
|
|
|
return (CS_OK);
|
|
eeprom_bad:
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_get_params: unable to read from EEPROM\n");
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
int
|
|
cs_get_enaddr(struct cs_softc *sc)
|
|
{
|
|
uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
|
|
int i;
|
|
|
|
if (cs_verify_eeprom(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_get_enaddr: EEPROM missing or bad\n");
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
/* Get Ethernet address from the EEPROM */
|
|
if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
|
|
if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
|
|
== CS_ERROR)
|
|
goto eeprom_bad;
|
|
if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
|
|
== CS_ERROR)
|
|
goto eeprom_bad;
|
|
if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
|
|
== CS_ERROR)
|
|
goto eeprom_bad;
|
|
} else {
|
|
if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
|
|
goto eeprom_bad;
|
|
if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
|
|
goto eeprom_bad;
|
|
if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
|
|
goto eeprom_bad;
|
|
}
|
|
|
|
for (i = 0; i < __arraycount(myea); i++) {
|
|
sc->sc_enaddr[i * 2 + 0] = myea[i];
|
|
sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
|
|
}
|
|
|
|
return (CS_OK);
|
|
|
|
eeprom_bad:
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_get_enaddr: unable to read from EEPROM\n");
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
int
|
|
cs_reset_chip(struct cs_softc *sc)
|
|
{
|
|
int intState;
|
|
int x;
|
|
|
|
/* Disable interrupts at the CPU so reset command is atomic */
|
|
intState = splnet();
|
|
|
|
/*
|
|
* We are now resetting the chip
|
|
*
|
|
* A spurious interrupt is generated by the chip when it is reset. This
|
|
* variable informs the interrupt handler to ignore this interrupt.
|
|
*/
|
|
sc->sc_resetting = TRUE;
|
|
|
|
/* Issue a reset command to the chip */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
|
|
|
|
/* Re-enable interrupts at the CPU */
|
|
splx(intState);
|
|
|
|
/* The chip is always in IO mode after a reset */
|
|
sc->sc_memorymode = FALSE;
|
|
|
|
/* If transmission was in progress, it is not now */
|
|
sc->sc_txbusy = FALSE;
|
|
|
|
/*
|
|
* there was a delay(125); here, but it seems uneccesary 125 usec is
|
|
* 1/8000 of a second, not 1/8 of a second. the data sheet advises
|
|
* 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
|
|
* should be sufficient.
|
|
*/
|
|
|
|
/* Transition SBHE to switch chip from 8-bit to 16-bit */
|
|
IO_READ_1(sc, PORT_PKTPG_PTR + 0);
|
|
IO_READ_1(sc, PORT_PKTPG_PTR + 1);
|
|
IO_READ_1(sc, PORT_PKTPG_PTR + 0);
|
|
IO_READ_1(sc, PORT_PKTPG_PTR + 1);
|
|
|
|
/* Wait until the EEPROM is not busy */
|
|
for (x = 0; x < MAXLOOP; x++) {
|
|
if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (x == MAXLOOP)
|
|
return CS_ERROR;
|
|
|
|
/* Wait until initialization is done */
|
|
for (x = 0; x < MAXLOOP; x++) {
|
|
if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
|
|
break;
|
|
}
|
|
|
|
if (x == MAXLOOP)
|
|
return CS_ERROR;
|
|
|
|
/* Reset is no longer in progress */
|
|
sc->sc_resetting = FALSE;
|
|
|
|
return CS_OK;
|
|
}
|
|
|
|
int
|
|
cs_verify_eeprom(struct cs_softc *sc)
|
|
{
|
|
u_int16_t self_status;
|
|
|
|
/* Verify that the EEPROM is present and OK */
|
|
self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
|
|
if (((self_status & SELF_ST_EEP_PRES) &&
|
|
(self_status & SELF_ST_EEP_OK)) == 0)
|
|
return (CS_ERROR);
|
|
|
|
return (CS_OK);
|
|
}
|
|
|
|
int
|
|
cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
|
|
{
|
|
int x;
|
|
|
|
/* Ensure that the EEPROM is not busy */
|
|
for (x = 0; x < MAXLOOP; x++) {
|
|
if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
|
|
SELF_ST_SI_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (x == MAXLOOP)
|
|
return (CS_ERROR);
|
|
|
|
/* Issue the command to read the offset within the EEPROM */
|
|
CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
|
|
offset | EEPROM_CMD_READ);
|
|
|
|
/* Wait until the command is completed */
|
|
for (x = 0; x < MAXLOOP; x++) {
|
|
if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
|
|
SELF_ST_SI_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (x == MAXLOOP)
|
|
return (CS_ERROR);
|
|
|
|
/* Get the EEPROM data from the EEPROM Data register */
|
|
*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
|
|
|
|
return (CS_OK);
|
|
}
|
|
|
|
void
|
|
cs_initChip(struct cs_softc *sc)
|
|
{
|
|
u_int16_t busCtl;
|
|
u_int16_t selfCtl;
|
|
u_int16_t v;
|
|
u_int16_t isaId;
|
|
int i;
|
|
int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
|
|
|
|
/* Disable reception and transmission of frames */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
|
|
~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
|
|
|
|
/* Disable interrupt at the chip */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
|
|
|
|
/* If IOCHRDY is enabled then clear the bit in the busCtl register */
|
|
busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
|
|
if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
|
|
busCtl & ~BUS_CTL_IOCHRDY);
|
|
} else {
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
|
|
busCtl | BUS_CTL_IOCHRDY);
|
|
}
|
|
|
|
/* Set the Line Control register to match the media type */
|
|
if (media == IFM_10_T)
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
|
|
else
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
|
|
|
|
/*
|
|
* Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
|
|
* enable the DC/DC converter
|
|
*/
|
|
selfCtl = SELF_CTL_HC1E;
|
|
|
|
/* If the media type is 10Base2 */
|
|
if (media == IFM_10_2) {
|
|
/*
|
|
* Enable the DC/DC converter if it has a low enable.
|
|
*/
|
|
if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
|
|
/*
|
|
* Set the HCB1 bit, which causes the HC1 pin to go
|
|
* low.
|
|
*/
|
|
selfCtl |= SELF_CTL_HCB1;
|
|
} else { /* Media type is 10BaseT or AUI */
|
|
/*
|
|
* Disable the DC/DC converter if it has a high enable.
|
|
*/
|
|
if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
|
|
/*
|
|
* Set the HCB1 bit, which causes the HC1 pin to go
|
|
* low.
|
|
*/
|
|
selfCtl |= SELF_CTL_HCB1;
|
|
}
|
|
}
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
|
|
|
|
/* enable normal link pulse */
|
|
if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
|
|
|
|
/* Enable full-duplex, if appropriate */
|
|
if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
|
|
|
|
/* RX_CTL set in cs_set_ladr_filt(), below */
|
|
|
|
/* enable all transmission interrupts */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
|
|
|
|
/* Accept all receive interrupts */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
|
|
|
|
/*
|
|
* Configure Operational Modes
|
|
*
|
|
* I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
|
|
* a better way to do it because the card has a counter which can be
|
|
* read to update the RX_MISS counter. This saves many interrupts.
|
|
*
|
|
* I have turned on the tx and rx overflow interrupts to counter using
|
|
* the receive miss interrupt. This is a better estimate of errors
|
|
* and requires lower system overhead.
|
|
*/
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
|
|
BUF_CFG_RX_DMA_IE);
|
|
|
|
if (sc->sc_dma_chipinit)
|
|
(*sc->sc_dma_chipinit)(sc);
|
|
|
|
/* If memory mode is enabled */
|
|
if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
|
|
/* If external logic is present for address decoding */
|
|
if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
|
|
/*
|
|
* Program the external logic to decode address bits
|
|
* SA20-SA23
|
|
*/
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
|
|
((sc->sc_pktpgaddr & 0xffffff) >> 20) |
|
|
EEPROM_CMD_ELSEL);
|
|
}
|
|
|
|
/*
|
|
* Write the packet page base physical address to the memory
|
|
* base register.
|
|
*/
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
|
|
sc->sc_pktpgaddr & 0xFFFF);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
|
|
sc->sc_pktpgaddr >> 16);
|
|
busCtl = BUS_CTL_MEM_MODE;
|
|
|
|
/* tell the chip to read the addresses off the SA pins */
|
|
if (sc->sc_cfgflags & CFGFLG_USE_SA) {
|
|
busCtl |= BUS_CTL_USE_SA;
|
|
}
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
|
|
|
|
/* We are in memory mode now! */
|
|
sc->sc_memorymode = TRUE;
|
|
|
|
/*
|
|
* wait here (10ms) for the chip to swap over. this is the
|
|
* maximum time that this could take.
|
|
*/
|
|
delay(10000);
|
|
|
|
/* Verify that we can read from the chip */
|
|
isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
|
|
|
|
/*
|
|
* As a last minute sanity check before actually using mapped
|
|
* memory we verify that we can read the isa number from the
|
|
* chip in memory mode.
|
|
*/
|
|
if (isaId != EISA_NUM_CRYSTAL) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"failed to enable memory mode\n");
|
|
sc->sc_memorymode = FALSE;
|
|
} else {
|
|
/*
|
|
* we are in memory mode so if we aren't using DMA,
|
|
* then program the chip to interrupt early.
|
|
*/
|
|
if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
|
|
BUF_CFG_RX_DEST_IE |
|
|
BUF_CFG_RX_MISS_OVER_IE |
|
|
BUF_CFG_TX_COL_OVER_IE);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* Put Ethernet address into the Individual Address register */
|
|
for (i = 0; i < 6; i += 2) {
|
|
v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
|
|
}
|
|
|
|
if (sc->sc_irq != -1) {
|
|
/* Set the interrupt level in the chip */
|
|
if (sc->sc_prodid == PROD_ID_CS8900) {
|
|
if (sc->sc_irq == 5) {
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
|
|
} else {
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
|
|
}
|
|
}
|
|
else { /* CS8920 */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
|
|
}
|
|
}
|
|
|
|
/* write the multicast mask to the address filter register */
|
|
cs_set_ladr_filt(sc, &sc->sc_ethercom);
|
|
|
|
/* Enable reception and transmission of frames */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
|
|
LINE_CTL_RX_ON | LINE_CTL_TX_ON);
|
|
|
|
/* Enable interrupt at the chip */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
|
|
}
|
|
|
|
int
|
|
cs_init(struct ifnet *ifp)
|
|
{
|
|
int intState;
|
|
int error = CS_OK;
|
|
struct cs_softc *sc = ifp->if_softc;
|
|
|
|
if (cs_enable(sc))
|
|
goto out;
|
|
|
|
cs_stop(ifp, 0);
|
|
|
|
intState = splnet();
|
|
|
|
#if 0
|
|
/* Mark the interface as down */
|
|
sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
|
|
#endif
|
|
|
|
#ifdef CS_DEBUG
|
|
/* Enable debugging */
|
|
sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
|
|
#endif
|
|
|
|
/* Reset the chip */
|
|
if ((error = cs_reset_chip(sc)) == CS_OK) {
|
|
/* Initialize the chip */
|
|
cs_initChip(sc);
|
|
|
|
/* Mark the interface as running */
|
|
sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
|
|
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
|
|
sc->sc_ethercom.ec_if.if_timer = 0;
|
|
|
|
/* Assume we have carrier until we are told otherwise. */
|
|
sc->sc_carrier = 1;
|
|
} else {
|
|
aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
|
|
}
|
|
|
|
splx(intState);
|
|
out:
|
|
if (error == CS_OK)
|
|
return 0;
|
|
return EIO;
|
|
}
|
|
|
|
void
|
|
cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
|
|
{
|
|
struct ifnet *ifp = &ec->ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
u_int16_t af[4];
|
|
u_int16_t port, mask, index;
|
|
|
|
/*
|
|
* Set up multicast address filter by passing all multicast addresses
|
|
* through a crc generator, and then using the high order 6 bits as an
|
|
* index into the 64 bit logical address filter. The high order bit
|
|
* selects the word, while the rest of the bits select the bit within
|
|
* the word.
|
|
*/
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
/* accept all valid frames. */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
|
|
RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
|
|
RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* accept frames if a. crc valid, b. individual address match c.
|
|
* broadcast address,and d. multicast addresses matched in the hash
|
|
* filter
|
|
*/
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
|
|
RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
|
|
|
|
|
|
/*
|
|
* start off with all multicast flag clear, set it if we need to
|
|
* later, otherwise we will leave it.
|
|
*/
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
af[0] = af[1] = af[2] = af[3] = 0x0000;
|
|
|
|
/*
|
|
* Loop through all the multicast addresses unless we get a range of
|
|
* addresses, in which case we will just accept all packets.
|
|
* Justification for this is given in the next comment.
|
|
*/
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
|
|
sizeof enm->enm_addrlo)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
af[0] = af[1] = af[2] = af[3] = 0xffff;
|
|
break;
|
|
} else {
|
|
/*
|
|
* we have got an individual address so just set that
|
|
* bit.
|
|
*/
|
|
index = cs_hash_index(enm->enm_addrlo);
|
|
|
|
/* Set the bit the Logical address filter. */
|
|
port = (u_int16_t) (index >> 4);
|
|
mask = (u_int16_t) (1 << (index & 0xf));
|
|
af[port] |= mask;
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
}
|
|
|
|
/* now program the chip with the addresses */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
|
|
return;
|
|
}
|
|
|
|
u_int16_t
|
|
cs_hash_index(char *addr)
|
|
{
|
|
uint32_t crc;
|
|
uint16_t hash_code;
|
|
|
|
crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
|
|
|
|
hash_code = crc >> 26;
|
|
return (hash_code);
|
|
}
|
|
|
|
void
|
|
cs_reset(struct cs_softc *sc)
|
|
{
|
|
|
|
/* Mark the interface as down */
|
|
sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
|
|
|
|
/* Reset the chip */
|
|
cs_reset_chip(sc);
|
|
}
|
|
|
|
int
|
|
cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct cs_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = data;
|
|
int state;
|
|
int result;
|
|
|
|
state = splnet();
|
|
|
|
result = 0; /* only set if something goes wrong */
|
|
|
|
switch (cmd) {
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
|
|
break;
|
|
|
|
default:
|
|
result = ether_ioctl(ifp, cmd, data);
|
|
if (result == ENETRESET) {
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
/*
|
|
* Multicast list has changed. Set the
|
|
* hardware filter accordingly.
|
|
*/
|
|
cs_set_ladr_filt(sc, &sc->sc_ethercom);
|
|
}
|
|
result = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
splx(state);
|
|
|
|
return result;
|
|
}
|
|
|
|
int
|
|
cs_mediachange(struct ifnet *ifp)
|
|
{
|
|
|
|
/*
|
|
* Current media is already set up. Just reset the interface
|
|
* to let the new value take hold.
|
|
*/
|
|
cs_init(ifp);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct cs_softc *sc = ifp->if_softc;
|
|
|
|
/*
|
|
* The currently selected media is always the active media.
|
|
*/
|
|
ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
|
|
|
|
if (ifp->if_flags & IFF_UP) {
|
|
/* Interface up, status is valid. */
|
|
ifmr->ifm_status = IFM_AVALID |
|
|
(sc->sc_carrier ? IFM_ACTIVE : 0);
|
|
}
|
|
else ifmr->ifm_status = 0;
|
|
}
|
|
|
|
int
|
|
cs_intr(void *arg)
|
|
{
|
|
struct cs_softc *sc = arg;
|
|
u_int16_t Event;
|
|
#if NRND > 0
|
|
u_int16_t rndEvent;
|
|
#endif
|
|
|
|
/*printf("cs_intr %p\n", sc);*/
|
|
/* Ignore any interrupts that happen while the chip is being reset */
|
|
if (sc->sc_resetting) {
|
|
printf("%s: cs_intr: reset in progress\n",
|
|
device_xname(sc->sc_dev));
|
|
return 1;
|
|
}
|
|
|
|
/* Read an event from the Interrupt Status Queue */
|
|
if (sc->sc_memorymode)
|
|
Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
|
|
else
|
|
Event = CS_READ_PORT(sc, PORT_ISQ);
|
|
|
|
if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
|
|
return 0; /* not ours */
|
|
|
|
#if NRND > 0
|
|
rndEvent = Event;
|
|
#endif
|
|
|
|
/* Process all the events in the Interrupt Status Queue */
|
|
while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
|
|
/* Dispatch to an event handler based on the register number */
|
|
switch (Event & REG_NUM_MASK) {
|
|
case REG_NUM_RX_EVENT:
|
|
cs_receive_event(sc, Event);
|
|
break;
|
|
case REG_NUM_TX_EVENT:
|
|
cs_transmit_event(sc, Event);
|
|
break;
|
|
case REG_NUM_BUF_EVENT:
|
|
cs_buffer_event(sc, Event);
|
|
break;
|
|
case REG_NUM_TX_COL:
|
|
case REG_NUM_RX_MISS:
|
|
cs_counter_event(sc, Event);
|
|
break;
|
|
default:
|
|
printf("%s: unknown interrupt event 0x%x\n",
|
|
device_xname(sc->sc_dev), Event);
|
|
break;
|
|
}
|
|
|
|
/* Read another event from the Interrupt Status Queue */
|
|
if (sc->sc_memorymode)
|
|
Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
|
|
else
|
|
Event = CS_READ_PORT(sc, PORT_ISQ);
|
|
}
|
|
|
|
/* have handled the interrupt */
|
|
#if NRND > 0
|
|
rnd_add_uint32(&sc->rnd_source, rndEvent);
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
|
|
{
|
|
struct ifnet *ifp;
|
|
u_int16_t errorCount;
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
switch (cntEvent & REG_NUM_MASK) {
|
|
case REG_NUM_TX_COL:
|
|
/*
|
|
* the count should be read before an overflow occurs.
|
|
*/
|
|
errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
|
|
/*
|
|
* the tramsit event routine always checks the number of
|
|
* collisions for any packet so we don't increment any
|
|
* counters here, as they should already have been
|
|
* considered.
|
|
*/
|
|
break;
|
|
case REG_NUM_RX_MISS:
|
|
/*
|
|
* the count should be read before an overflow occurs.
|
|
*/
|
|
errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
|
|
/*
|
|
* Increment the input error count, the first 6bits are the
|
|
* register id.
|
|
*/
|
|
ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
|
|
break;
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
|
|
{
|
|
|
|
/*
|
|
* multiple events can be in the buffer event register at one time so
|
|
* a standard switch statement will not suffice, here every event
|
|
* must be checked.
|
|
*/
|
|
|
|
/*
|
|
* if 128 bits have been rxed by the time we get here, the dest event
|
|
* will be cleared and 128 event will be set.
|
|
*/
|
|
if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
|
|
cs_process_rx_early(sc);
|
|
}
|
|
|
|
if (bufEvent & BUF_EVENT_RX_DMA) {
|
|
/* process the receive data */
|
|
if (sc->sc_dma_process_rx)
|
|
(*sc->sc_dma_process_rx)(sc);
|
|
else
|
|
/* should panic? */
|
|
aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
|
|
}
|
|
|
|
if (bufEvent & BUF_EVENT_TX_UNDR) {
|
|
#if 0
|
|
/*
|
|
* This can happen occasionally, and it's not worth worrying
|
|
* about.
|
|
*/
|
|
printf("%s: transmit underrun (%d -> %d)\n",
|
|
device_xname(sc->sc_dev), sc->sc_xe_ent,
|
|
cs_xmit_early_table[sc->sc_xe_ent].worse);
|
|
#endif
|
|
sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
|
|
sc->sc_xe_togo =
|
|
cs_xmit_early_table[sc->sc_xe_ent].better_count;
|
|
|
|
/* had an underrun, transmit is finished */
|
|
sc->sc_txbusy = FALSE;
|
|
}
|
|
|
|
if (bufEvent & BUF_EVENT_SW_INT) {
|
|
printf("%s: software initiated interrupt\n",
|
|
device_xname(sc->sc_dev));
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/* If there were any errors transmitting this frame */
|
|
if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
|
|
TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
|
|
/* Increment the output error count */
|
|
ifp->if_oerrors++;
|
|
|
|
/* Note carrier loss. */
|
|
if (txEvent & TX_EVENT_LOSS_CRS)
|
|
sc->sc_carrier = 0;
|
|
|
|
/* If debugging is enabled then log error messages */
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
if (txEvent & TX_EVENT_LOSS_CRS) {
|
|
aprint_error_dev(sc->sc_dev, "lost carrier\n");
|
|
}
|
|
if (txEvent & TX_EVENT_SQE_ERR) {
|
|
aprint_error_dev(sc->sc_dev, "SQE error\n");
|
|
}
|
|
if (txEvent & TX_EVENT_OUT_WIN) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"out-of-window collision\n");
|
|
}
|
|
if (txEvent & TX_EVENT_JABBER) {
|
|
aprint_error_dev(sc->sc_dev, "jabber\n");
|
|
}
|
|
if (txEvent & TX_EVENT_16_COLL) {
|
|
aprint_error_dev(sc->sc_dev, "16 collisions\n");
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* Transmission successful, carrier is up. */
|
|
sc->sc_carrier = 1;
|
|
#ifdef SHARK
|
|
ledNetActive();
|
|
#endif
|
|
}
|
|
|
|
/* Add the number of collisions for this frame */
|
|
if (txEvent & TX_EVENT_16_COLL) {
|
|
ifp->if_collisions += 16;
|
|
} else {
|
|
ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
|
|
}
|
|
|
|
ifp->if_opackets++;
|
|
|
|
/* Transmission is no longer in progress */
|
|
sc->sc_txbusy = FALSE;
|
|
|
|
/* If there is more to transmit */
|
|
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
|
|
/* Start the next transmission */
|
|
cs_start_output(ifp);
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
|
|
{
|
|
|
|
if (rxEvent & RX_EVENT_RUNT)
|
|
aprint_error_dev(sc->sc_dev, "runt\n");
|
|
|
|
if (rxEvent & RX_EVENT_X_DATA)
|
|
aprint_error_dev(sc->sc_dev, "extra data\n");
|
|
|
|
if (rxEvent & RX_EVENT_CRC_ERR) {
|
|
if (rxEvent & RX_EVENT_DRIBBLE)
|
|
aprint_error_dev(sc->sc_dev, "alignment error\n");
|
|
else
|
|
aprint_error_dev(sc->sc_dev, "CRC error\n");
|
|
} else {
|
|
if (rxEvent & RX_EVENT_DRIBBLE)
|
|
aprint_error_dev(sc->sc_dev, "dribble bits\n");
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/* If the frame was not received OK */
|
|
if (!(rxEvent & RX_EVENT_RX_OK)) {
|
|
/* Increment the input error count */
|
|
ifp->if_ierrors++;
|
|
|
|
/*
|
|
* If debugging is enabled then log error messages.
|
|
*/
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
if (rxEvent != REG_NUM_RX_EVENT) {
|
|
cs_print_rx_errors(sc, rxEvent);
|
|
|
|
/*
|
|
* Must read the length of all received
|
|
* frames
|
|
*/
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
|
|
|
|
/* Skip the received frame */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
|
|
RX_CFG_SKIP);
|
|
} else {
|
|
aprint_error_dev(sc->sc_dev, "implied skip\n");
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* process the received frame and pass it up to the upper
|
|
* layers.
|
|
*/
|
|
cs_process_receive(sc);
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_ether_input(struct cs_softc *sc, struct mbuf *m)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
ifp->if_ipackets++;
|
|
|
|
/*
|
|
* Check if there's a BPF listener on this interface.
|
|
* If so, hand off the raw packet to BPF.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_ops->bpf_mtap(ifp->if_bpf, m);
|
|
|
|
/* Pass the packet up. */
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
void
|
|
cs_process_receive(struct cs_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
int totlen;
|
|
u_int16_t *pBuff, *pBuffLimit;
|
|
int pad;
|
|
unsigned int frameOffset = 0; /* XXX: gcc */
|
|
|
|
#ifdef SHARK
|
|
ledNetActive();
|
|
#endif
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/* Received a packet; carrier is up. */
|
|
sc->sc_carrier = 1;
|
|
|
|
if (sc->sc_memorymode) {
|
|
/* Initialize the frame offset */
|
|
frameOffset = PKTPG_RX_LENGTH;
|
|
|
|
/* Get the length of the received frame */
|
|
totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
|
|
frameOffset += 2;
|
|
}
|
|
else {
|
|
/* drop status */
|
|
CS_READ_PORT(sc, PORT_RXTX_DATA);
|
|
|
|
/* Get the length of the received frame */
|
|
totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
|
|
}
|
|
|
|
if (totlen > ETHER_MAX_LEN) {
|
|
aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
|
|
totlen);
|
|
|
|
/* skip the received frame */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
|
|
return;
|
|
}
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_process_receive: unable to allocate mbuf\n");
|
|
ifp->if_ierrors++;
|
|
/*
|
|
* couldn't allocate an mbuf so things are not good, may as
|
|
* well drop the packet I think.
|
|
*
|
|
* have already read the length so we should be right to skip
|
|
* the packet.
|
|
*/
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
|
|
return;
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = totlen;
|
|
|
|
/* number of bytes to align ip header on word boundary for ipintr */
|
|
pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
|
|
|
|
/*
|
|
* alloc mbuf cluster if we need.
|
|
* we need 1 byte spare because following
|
|
* packet read loop can overrun.
|
|
*/
|
|
if (totlen + pad + 1 > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
/* couldn't allocate an mbuf cluster */
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_process_receive: "
|
|
"unable to allocate a cluster\n");
|
|
m_freem(m);
|
|
|
|
/* skip the received frame */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* align ip header on word boundary for ipintr */
|
|
m->m_data += pad;
|
|
|
|
m->m_len = totlen;
|
|
pBuff = mtod(m, u_int16_t *);
|
|
|
|
/* now read the data from the chip */
|
|
if (sc->sc_memorymode) {
|
|
pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */
|
|
while (pBuff < pBuffLimit) {
|
|
*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
|
|
frameOffset += 2;
|
|
}
|
|
}
|
|
else {
|
|
IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
|
|
}
|
|
|
|
cs_ether_input(sc, m);
|
|
}
|
|
|
|
void
|
|
cs_process_rx_early(struct cs_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
u_int16_t frameCount, oldFrameCount;
|
|
u_int16_t rxEvent;
|
|
u_int16_t *pBuff;
|
|
int pad;
|
|
unsigned int frameOffset;
|
|
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/* Initialize the frame offset */
|
|
frameOffset = PKTPG_RX_FRAME;
|
|
frameCount = 0;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_process_rx_early: unable to allocate mbuf\n");
|
|
ifp->if_ierrors++;
|
|
/*
|
|
* couldn't allocate an mbuf so things are not good, may as
|
|
* well drop the packet I think.
|
|
*
|
|
* have already read the length so we should be right to skip
|
|
* the packet.
|
|
*/
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
|
|
return;
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
/*
|
|
* save processing by always using a mbuf cluster, guaranteed to fit
|
|
* packet
|
|
*/
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
/* couldn't allocate an mbuf cluster */
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_process_rx_early: unable to allocate a cluster\n");
|
|
m_freem(m);
|
|
/* skip the frame */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
|
|
return;
|
|
}
|
|
|
|
/* align ip header on word boundary for ipintr */
|
|
pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
|
|
m->m_data += pad;
|
|
|
|
/* set up the buffer pointer to point to the data area */
|
|
pBuff = mtod(m, u_int16_t *);
|
|
|
|
/*
|
|
* now read the frame byte counter until we have finished reading the
|
|
* frame
|
|
*/
|
|
oldFrameCount = 0;
|
|
frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
|
|
while ((frameCount != 0) && (frameCount < MCLBYTES)) {
|
|
for (; oldFrameCount < frameCount; oldFrameCount += 2) {
|
|
*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
|
|
frameOffset += 2;
|
|
}
|
|
|
|
/* read the new count from the chip */
|
|
frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
|
|
}
|
|
|
|
/* update the mbuf counts */
|
|
m->m_len = oldFrameCount;
|
|
m->m_pkthdr.len = oldFrameCount;
|
|
|
|
/* now check the Rx Event register */
|
|
rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
|
|
|
|
if ((rxEvent & RX_EVENT_RX_OK) != 0) {
|
|
/*
|
|
* do an implied skip, it seems to be more reliable than a
|
|
* forced skip.
|
|
*/
|
|
rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
|
|
rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
|
|
|
|
/*
|
|
* now read the RX_EVENT register to perform an implied skip.
|
|
*/
|
|
rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
|
|
|
|
cs_ether_input(sc, m);
|
|
} else {
|
|
m_freem(m);
|
|
ifp->if_ierrors++;
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_start_output(struct ifnet *ifp)
|
|
{
|
|
struct cs_softc *sc;
|
|
struct mbuf *pMbuf;
|
|
struct mbuf *pMbufChain;
|
|
u_int16_t BusStatus;
|
|
u_int16_t Length;
|
|
int txLoop = 0;
|
|
int dropout = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
/* check that the interface is up and running */
|
|
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
|
|
return;
|
|
}
|
|
|
|
/* Don't interrupt a transmission in progress */
|
|
if (sc->sc_txbusy) {
|
|
return;
|
|
}
|
|
|
|
/* this loop will only run through once if transmission is successful */
|
|
/*
|
|
* While there are packets to transmit and a transmit is not in
|
|
* progress
|
|
*/
|
|
while (sc->sc_txbusy == 0 && dropout == 0) {
|
|
IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
|
|
if (pMbufChain == NULL)
|
|
break;
|
|
|
|
/*
|
|
* If BPF is listening on this interface, let it see the packet
|
|
* before we commit it to the wire.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_ops->bpf_mtap(ifp->if_bpf, pMbufChain);
|
|
|
|
/* Find the total length of the data to transmit */
|
|
Length = 0;
|
|
for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
|
|
Length += pMbuf->m_len;
|
|
|
|
do {
|
|
/*
|
|
* Request that the transmit be started after all
|
|
* data has been copied
|
|
*
|
|
* In IO mode must write to the IO port not the packet
|
|
* page address
|
|
*
|
|
* If this is changed to start transmission after a
|
|
* small amount of data has been copied you tend to
|
|
* get packet missed errors i think because the ISA
|
|
* bus is too slow. Or possibly the copy routine is
|
|
* not streamlined enough.
|
|
*/
|
|
if (sc->sc_memorymode) {
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
|
|
cs_xmit_early_table[sc->sc_xe_ent].txcmd);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
|
|
}
|
|
else {
|
|
CS_WRITE_PORT(sc, PORT_TX_CMD,
|
|
cs_xmit_early_table[sc->sc_xe_ent].txcmd);
|
|
CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
|
|
}
|
|
|
|
/*
|
|
* Adjust early-transmit machinery.
|
|
*/
|
|
if (--sc->sc_xe_togo == 0) {
|
|
sc->sc_xe_ent =
|
|
cs_xmit_early_table[sc->sc_xe_ent].better;
|
|
sc->sc_xe_togo =
|
|
cs_xmit_early_table[sc->sc_xe_ent].better_count;
|
|
}
|
|
/*
|
|
* Read the BusStatus register which indicates
|
|
* success of the request
|
|
*/
|
|
BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
|
|
|
|
/*
|
|
* If there was an error in the transmit bid free the
|
|
* mbuf and go on. This is presuming that mbuf is
|
|
* corrupt.
|
|
*/
|
|
if (BusStatus & BUS_ST_TX_BID_ERR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"transmit bid error (too big)");
|
|
|
|
/* Discard the bad mbuf chain */
|
|
m_freem(pMbufChain);
|
|
sc->sc_ethercom.ec_if.if_oerrors++;
|
|
|
|
/* Loop up to transmit the next chain */
|
|
txLoop = 0;
|
|
} else {
|
|
if (BusStatus & BUS_ST_RDY4TXNOW) {
|
|
/*
|
|
* The chip is ready for transmission
|
|
* now
|
|
*/
|
|
/*
|
|
* Copy the frame to the chip to
|
|
* start transmission
|
|
*/
|
|
cs_copy_tx_frame(sc, pMbufChain);
|
|
|
|
/* Free the mbuf chain */
|
|
m_freem(pMbufChain);
|
|
|
|
/* Transmission is now in progress */
|
|
sc->sc_txbusy = TRUE;
|
|
txLoop = 0;
|
|
} else {
|
|
/*
|
|
* if we get here we want to try
|
|
* again with the same mbuf, until
|
|
* the chip lets us transmit.
|
|
*/
|
|
txLoop++;
|
|
if (txLoop > CS_OUTPUT_LOOP_MAX) {
|
|
/* Free the mbuf chain */
|
|
m_freem(pMbufChain);
|
|
/*
|
|
* Transmission is not in
|
|
* progress
|
|
*/
|
|
sc->sc_txbusy = FALSE;
|
|
/*
|
|
* Increment the output error
|
|
* count
|
|
*/
|
|
ifp->if_oerrors++;
|
|
/*
|
|
* exit the routine and drop
|
|
* the packet.
|
|
*/
|
|
txLoop = 0;
|
|
dropout = 1;
|
|
}
|
|
}
|
|
}
|
|
} while (txLoop);
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
|
|
{
|
|
struct mbuf *m;
|
|
int len, leftover, frameoff;
|
|
u_int16_t dbuf;
|
|
u_int8_t *p;
|
|
#ifdef DIAGNOSTIC
|
|
u_int8_t *lim;
|
|
#endif
|
|
|
|
/* Initialize frame pointer and data port address */
|
|
frameoff = PKTPG_TX_FRAME;
|
|
|
|
/* start out with no leftover data */
|
|
leftover = 0;
|
|
dbuf = 0;
|
|
|
|
/* Process the chain of mbufs */
|
|
for (m = m0; m != NULL; m = m->m_next) {
|
|
/*
|
|
* Process all of the data in a single mbuf.
|
|
*/
|
|
p = mtod(m, u_int8_t *);
|
|
len = m->m_len;
|
|
#ifdef DIAGNOSTIC
|
|
lim = p + len;
|
|
#endif
|
|
|
|
while (len > 0) {
|
|
if (leftover) {
|
|
/*
|
|
* Data left over (from mbuf or realignment).
|
|
* Buffer the next byte, and write it and
|
|
* the leftover data out.
|
|
*/
|
|
dbuf |= *p++ << 8;
|
|
len--;
|
|
if (sc->sc_memorymode) {
|
|
CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
|
|
frameoff += 2;
|
|
}
|
|
else {
|
|
CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
|
|
}
|
|
leftover = 0;
|
|
} else if ((long) p & 1) {
|
|
/*
|
|
* Misaligned data. Buffer the next byte.
|
|
*/
|
|
dbuf = *p++;
|
|
len--;
|
|
leftover = 1;
|
|
} else {
|
|
/*
|
|
* Aligned data. This is the case we like.
|
|
*
|
|
* Write-region out as much as we can, then
|
|
* buffer the remaining byte (if any).
|
|
*/
|
|
leftover = len & 1;
|
|
len &= ~1;
|
|
if (sc->sc_memorymode) {
|
|
MEM_WRITE_REGION_2(sc, frameoff,
|
|
(u_int16_t *) p, len >> 1);
|
|
frameoff += len;
|
|
}
|
|
else {
|
|
IO_WRITE_MULTI_2(sc,
|
|
PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
|
|
}
|
|
p += len;
|
|
|
|
if (leftover)
|
|
dbuf = *p++;
|
|
len = 0;
|
|
}
|
|
}
|
|
if (len < 0)
|
|
panic("cs_copy_tx_frame: negative len");
|
|
#ifdef DIAGNOSTIC
|
|
if (p != lim)
|
|
panic("cs_copy_tx_frame: p != lim");
|
|
#endif
|
|
}
|
|
if (leftover) {
|
|
if (sc->sc_memorymode) {
|
|
CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
|
|
}
|
|
else {
|
|
CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
cs_enable(struct cs_softc *sc)
|
|
{
|
|
|
|
if (CS_IS_ENABLED(sc) == 0) {
|
|
if (sc->sc_enable != NULL) {
|
|
int error;
|
|
|
|
error = (*sc->sc_enable)(sc);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
sc->sc_cfgflags |= CFGFLG_ENABLED;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cs_disable(struct cs_softc *sc)
|
|
{
|
|
|
|
if (CS_IS_ENABLED(sc)) {
|
|
if (sc->sc_disable != NULL)
|
|
(*sc->sc_disable)(sc);
|
|
|
|
sc->sc_cfgflags &= ~CFGFLG_ENABLED;
|
|
}
|
|
}
|
|
|
|
static void
|
|
cs_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct cs_softc *sc = ifp->if_softc;
|
|
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
|
|
|
|
if (disable) {
|
|
cs_disable(sc);
|
|
}
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
}
|
|
|
|
int
|
|
cs_activate(device_t self, enum devact act)
|
|
{
|
|
struct cs_softc *sc = device_private(self);
|
|
|
|
switch (act) {
|
|
case DVACT_DEACTIVATE:
|
|
if_deactivate(&sc->sc_ethercom.ec_if);
|
|
return 0;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
}
|
|
}
|