NetBSD/sys/opencrypto/cryptosoft_xform.c
christos 4ce1278ac8 add (void *) intermediate casts to elide gcc function cast warnings. This
is the simplest solution; choices:
- add pragmas, complex and ugly (need to be gcc-specific)
- add -Wno to COPTS. Needs to be done in many makefiles because of rump
- add intermediate functions: slows down things
2019-10-12 00:49:30 +00:00

924 lines
23 KiB
C

/* $NetBSD: cryptosoft_xform.c,v 1.28 2019/10/12 00:49:30 christos Exp $ */
/* $FreeBSD: src/sys/opencrypto/xform.c,v 1.1.2.1 2002/11/21 23:34:23 sam Exp $ */
/* $OpenBSD: xform.c,v 1.19 2002/08/16 22:47:25 dhartmei Exp $ */
/*
* The authors of this code are John Ioannidis (ji@tla.org),
* Angelos D. Keromytis (kermit@csd.uch.gr) and
* Niels Provos (provos@physnet.uni-hamburg.de).
*
* This code was written by John Ioannidis for BSD/OS in Athens, Greece,
* in November 1995.
*
* Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
* by Angelos D. Keromytis.
*
* Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
* and Niels Provos.
*
* Additional features in 1999 by Angelos D. Keromytis.
*
* Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
* Angelos D. Keromytis and Niels Provos.
*
* Copyright (C) 2001, Angelos D. Keromytis.
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all copies of any software which is or includes a copy or
* modification of this software.
* You may use this code under the GNU public license if you so wish. Please
* contribute changes back to the authors under this freer than GPL license
* so that we may further the use of strong encryption without limitations to
* all.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(1, "$NetBSD: cryptosoft_xform.c,v 1.28 2019/10/12 00:49:30 christos Exp $");
#include <crypto/blowfish/blowfish.h>
#include <crypto/cast128/cast128.h>
#include <crypto/des/des.h>
#include <crypto/rijndael/rijndael.h>
#include <crypto/skipjack/skipjack.h>
#include <crypto/camellia/camellia.h>
#include <opencrypto/deflate.h>
#include <sys/md5.h>
#include <sys/rmd160.h>
#include <sys/sha1.h>
#include <sys/sha2.h>
#include <sys/cprng.h>
#include <opencrypto/aesxcbcmac.h>
#include <opencrypto/gmac.h>
struct swcr_auth_hash {
const struct auth_hash *auth_hash;
int ctxsize;
void (*Init)(void *);
void (*Setkey)(void *, const uint8_t *, uint16_t);
void (*Reinit)(void *, const uint8_t *, uint16_t);
int (*Update)(void *, const uint8_t *, uint16_t);
void (*Final)(uint8_t *, void *);
};
struct swcr_enc_xform {
const struct enc_xform *enc_xform;
void (*encrypt)(void *, uint8_t *);
void (*decrypt)(void *, uint8_t *);
int (*setkey)(uint8_t **, const uint8_t *, int);
void (*zerokey)(uint8_t **);
void (*reinit)(void *, const uint8_t *, uint8_t *);
};
struct swcr_comp_algo {
const struct comp_algo *unused_comp_algo;
uint32_t (*compress)(uint8_t *, uint32_t, uint8_t **);
uint32_t (*decompress)(uint8_t *, uint32_t, uint8_t **, int);
};
static void null_encrypt(void *, u_int8_t *);
static void null_decrypt(void *, u_int8_t *);
static int null_setkey(u_int8_t **, const u_int8_t *, int);
static void null_zerokey(u_int8_t **);
static int des1_setkey(u_int8_t **, const u_int8_t *, int);
static int des3_setkey(u_int8_t **, const u_int8_t *, int);
static int blf_setkey(u_int8_t **, const u_int8_t *, int);
static int cast5_setkey(u_int8_t **, const u_int8_t *, int);
static int skipjack_setkey(u_int8_t **, const u_int8_t *, int);
static int rijndael128_setkey(u_int8_t **, const u_int8_t *, int);
static int cml_setkey(u_int8_t **, const u_int8_t *, int);
static int aes_ctr_setkey(u_int8_t **, const u_int8_t *, int);
static int aes_gmac_setkey(u_int8_t **, const u_int8_t *, int);
static void des1_encrypt(void *, u_int8_t *);
static void des3_encrypt(void *, u_int8_t *);
static void blf_encrypt(void *, u_int8_t *);
static void cast5_encrypt(void *, u_int8_t *);
static void skipjack_encrypt(void *, u_int8_t *);
static void rijndael128_encrypt(void *, u_int8_t *);
static void cml_encrypt(void *, u_int8_t *);
static void des1_decrypt(void *, u_int8_t *);
static void des3_decrypt(void *, u_int8_t *);
static void blf_decrypt(void *, u_int8_t *);
static void cast5_decrypt(void *, u_int8_t *);
static void skipjack_decrypt(void *, u_int8_t *);
static void rijndael128_decrypt(void *, u_int8_t *);
static void cml_decrypt(void *, u_int8_t *);
static void aes_ctr_crypt(void *, u_int8_t *);
static void des1_zerokey(u_int8_t **);
static void des3_zerokey(u_int8_t **);
static void blf_zerokey(u_int8_t **);
static void cast5_zerokey(u_int8_t **);
static void skipjack_zerokey(u_int8_t **);
static void rijndael128_zerokey(u_int8_t **);
static void cml_zerokey(u_int8_t **);
static void aes_ctr_zerokey(u_int8_t **);
static void aes_gmac_zerokey(u_int8_t **);
static void aes_ctr_reinit(void *, const u_int8_t *, u_int8_t *);
static void aes_gcm_reinit(void *, const u_int8_t *, u_int8_t *);
static void aes_gmac_reinit(void *, const u_int8_t *, u_int8_t *);
static void null_init(void *);
static int null_update(void *, const u_int8_t *, u_int16_t);
static void null_final(u_int8_t *, void *);
static int MD5Update_int(void *, const u_int8_t *, u_int16_t);
static void SHA1Init_int(void *);
static int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
static void SHA1Final_int(u_int8_t *, void *);
static int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
static int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
static void SHA1Final_int(u_int8_t *, void *);
static int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
static int SHA256Update_int(void *, const u_int8_t *, u_int16_t);
static int SHA384Update_int(void *, const u_int8_t *, u_int16_t);
static int SHA512Update_int(void *, const u_int8_t *, u_int16_t);
static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **, int);
static u_int32_t gzip_compress(u_int8_t *, u_int32_t, u_int8_t **);
static u_int32_t gzip_decompress(u_int8_t *, u_int32_t, u_int8_t **, int);
/* Encryption instances */
static const struct swcr_enc_xform swcr_enc_xform_null = {
&enc_xform_null,
null_encrypt,
null_decrypt,
null_setkey,
null_zerokey,
NULL
};
static const struct swcr_enc_xform swcr_enc_xform_des = {
&enc_xform_des,
des1_encrypt,
des1_decrypt,
des1_setkey,
des1_zerokey,
NULL
};
static const struct swcr_enc_xform swcr_enc_xform_3des = {
&enc_xform_3des,
des3_encrypt,
des3_decrypt,
des3_setkey,
des3_zerokey,
NULL
};
static const struct swcr_enc_xform swcr_enc_xform_blf = {
&enc_xform_blf,
blf_encrypt,
blf_decrypt,
blf_setkey,
blf_zerokey,
NULL
};
static const struct swcr_enc_xform swcr_enc_xform_cast5 = {
&enc_xform_cast5,
cast5_encrypt,
cast5_decrypt,
cast5_setkey,
cast5_zerokey,
NULL
};
static const struct swcr_enc_xform swcr_enc_xform_skipjack = {
&enc_xform_skipjack,
skipjack_encrypt,
skipjack_decrypt,
skipjack_setkey,
skipjack_zerokey,
NULL
};
static const struct swcr_enc_xform swcr_enc_xform_rijndael128 = {
&enc_xform_rijndael128,
rijndael128_encrypt,
rijndael128_decrypt,
rijndael128_setkey,
rijndael128_zerokey,
NULL
};
static const struct swcr_enc_xform swcr_enc_xform_aes_ctr = {
&enc_xform_aes_ctr,
aes_ctr_crypt,
aes_ctr_crypt,
aes_ctr_setkey,
aes_ctr_zerokey,
aes_ctr_reinit
};
static const struct swcr_enc_xform swcr_enc_xform_aes_gcm = {
&enc_xform_aes_gcm,
aes_ctr_crypt,
aes_ctr_crypt,
aes_ctr_setkey,
aes_ctr_zerokey,
aes_gcm_reinit
};
static const struct swcr_enc_xform swcr_enc_xform_aes_gmac = {
&enc_xform_aes_gmac,
NULL,
NULL,
aes_gmac_setkey,
aes_gmac_zerokey,
aes_gmac_reinit
};
static const struct swcr_enc_xform swcr_enc_xform_camellia = {
&enc_xform_camellia,
cml_encrypt,
cml_decrypt,
cml_setkey,
cml_zerokey,
NULL
};
/* Authentication instances */
static const struct swcr_auth_hash swcr_auth_hash_null = {
&auth_hash_null, sizeof(int), /* NB: context isn't used */
null_init, NULL, NULL, null_update, null_final
};
static const struct swcr_auth_hash swcr_auth_hash_hmac_md5 = {
&auth_hash_hmac_md5, sizeof(MD5_CTX),
(void (*) (void *)) MD5Init, NULL, NULL, MD5Update_int,
(void (*) (u_int8_t *, void *)) MD5Final
};
static const struct swcr_auth_hash swcr_auth_hash_hmac_sha1 = {
&auth_hash_hmac_sha1, sizeof(SHA1_CTX),
SHA1Init_int, NULL, NULL, SHA1Update_int, SHA1Final_int
};
static const struct swcr_auth_hash swcr_auth_hash_hmac_ripemd_160 = {
&auth_hash_hmac_ripemd_160, sizeof(RMD160_CTX),
(void (*)(void *)) RMD160Init, NULL, NULL, RMD160Update_int,
(void (*)(u_int8_t *, void *)) RMD160Final
};
static const struct swcr_auth_hash swcr_auth_hash_hmac_md5_96 = {
&auth_hash_hmac_md5_96, sizeof(MD5_CTX),
(void (*) (void *)) MD5Init, NULL, NULL, MD5Update_int,
(void (*) (u_int8_t *, void *)) MD5Final
};
static const struct swcr_auth_hash swcr_auth_hash_hmac_sha1_96 = {
&auth_hash_hmac_sha1_96, sizeof(SHA1_CTX),
SHA1Init_int, NULL, NULL, SHA1Update_int, SHA1Final_int
};
static const struct swcr_auth_hash swcr_auth_hash_hmac_ripemd_160_96 = {
&auth_hash_hmac_ripemd_160_96, sizeof(RMD160_CTX),
(void (*)(void *)) RMD160Init, NULL, NULL, RMD160Update_int,
(void (*)(u_int8_t *, void *)) RMD160Final
};
static const struct swcr_auth_hash swcr_auth_hash_key_md5 = {
&auth_hash_key_md5, sizeof(MD5_CTX),
(void (*)(void *)) MD5Init, NULL, NULL, MD5Update_int,
(void (*)(u_int8_t *, void *)) MD5Final
};
static const struct swcr_auth_hash swcr_auth_hash_key_sha1 = {
&auth_hash_key_sha1, sizeof(SHA1_CTX),
SHA1Init_int, NULL, NULL, SHA1Update_int, SHA1Final_int
};
static const struct swcr_auth_hash swcr_auth_hash_md5 = {
&auth_hash_md5, sizeof(MD5_CTX),
(void (*) (void *)) MD5Init, NULL, NULL, MD5Update_int,
(void (*) (u_int8_t *, void *)) MD5Final
};
static const struct swcr_auth_hash swcr_auth_hash_sha1 = {
&auth_hash_sha1, sizeof(SHA1_CTX),
(void (*)(void *)) SHA1Init, NULL, NULL, SHA1Update_int,
(void (*)(u_int8_t *, void *)) SHA1Final
};
static const struct swcr_auth_hash swcr_auth_hash_hmac_sha2_256 = {
&auth_hash_hmac_sha2_256, sizeof(SHA256_CTX),
(void (*)(void *))(void *)SHA256_Init, NULL, NULL, SHA256Update_int,
(void (*)(u_int8_t *, void *))(void *)SHA256_Final
};
static const struct swcr_auth_hash swcr_auth_hash_hmac_sha2_384 = {
&auth_hash_hmac_sha2_384, sizeof(SHA384_CTX),
(void (*)(void *))(void *)SHA384_Init, NULL, NULL, SHA384Update_int,
(void (*)(u_int8_t *, void *))(void *)SHA384_Final
};
static const struct swcr_auth_hash swcr_auth_hash_hmac_sha2_512 = {
&auth_hash_hmac_sha2_512, sizeof(SHA512_CTX),
(void (*)(void *))(void *)SHA512_Init, NULL, NULL, SHA512Update_int,
(void (*)(u_int8_t *, void *))(void *)SHA512_Final
};
static const struct swcr_auth_hash swcr_auth_hash_aes_xcbc_mac = {
&auth_hash_aes_xcbc_mac_96, sizeof(aesxcbc_ctx),
null_init,
(void (*)(void *, const u_int8_t *, u_int16_t))(void *)aes_xcbc_mac_init,
NULL, aes_xcbc_mac_loop, aes_xcbc_mac_result
};
static const struct swcr_auth_hash swcr_auth_hash_gmac_aes_128 = {
&auth_hash_gmac_aes_128, sizeof(AES_GMAC_CTX),
(void (*)(void *))AES_GMAC_Init,
(void (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Setkey,
(void (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Reinit,
(int (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Update,
(void (*)(u_int8_t *, void *))AES_GMAC_Final
};
static const struct swcr_auth_hash swcr_auth_hash_gmac_aes_192 = {
&auth_hash_gmac_aes_192, sizeof(AES_GMAC_CTX),
(void (*)(void *))AES_GMAC_Init,
(void (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Setkey,
(void (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Reinit,
(int (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Update,
(void (*)(u_int8_t *, void *))AES_GMAC_Final
};
static const struct swcr_auth_hash swcr_auth_hash_gmac_aes_256 = {
&auth_hash_gmac_aes_256, sizeof(AES_GMAC_CTX),
(void (*)(void *))AES_GMAC_Init,
(void (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Setkey,
(void (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Reinit,
(int (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Update,
(void (*)(u_int8_t *, void *))AES_GMAC_Final
};
/* Compression instance */
static const struct swcr_comp_algo swcr_comp_algo_deflate = {
&comp_algo_deflate,
deflate_compress,
deflate_decompress
};
static const struct swcr_comp_algo swcr_comp_algo_deflate_nogrow = {
&comp_algo_deflate_nogrow,
deflate_compress,
deflate_decompress
};
static const struct swcr_comp_algo swcr_comp_algo_gzip = {
&comp_algo_deflate,
gzip_compress,
gzip_decompress
};
/*
* Encryption wrapper routines.
*/
static void
null_encrypt(void *key, u_int8_t *blk)
{
}
static void
null_decrypt(void *key, u_int8_t *blk)
{
}
static int
null_setkey(u_int8_t **sched, const u_int8_t *key, int len)
{
*sched = NULL;
return 0;
}
static void
null_zerokey(u_int8_t **sched)
{
*sched = NULL;
}
static void
des1_encrypt(void *key, u_int8_t *blk)
{
des_cblock *cb = (des_cblock *) blk;
des_key_schedule *p = (des_key_schedule *) key;
des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
}
static void
des1_decrypt(void *key, u_int8_t *blk)
{
des_cblock *cb = (des_cblock *) blk;
des_key_schedule *p = (des_key_schedule *) key;
des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
}
static int
des1_setkey(u_int8_t **sched, const u_int8_t *key, int len)
{
des_key_schedule *p;
p = malloc(sizeof (des_key_schedule),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
*sched = (u_int8_t *) p;
if (p == NULL)
return ENOMEM;
des_set_key((des_cblock *)__UNCONST(key), p[0]);
return 0;
}
static void
des1_zerokey(u_int8_t **sched)
{
memset(*sched, 0, sizeof (des_key_schedule));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
des3_encrypt(void *key, u_int8_t *blk)
{
des_cblock *cb = (des_cblock *) blk;
des_key_schedule *p = (des_key_schedule *) key;
des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
}
static void
des3_decrypt(void *key, u_int8_t *blk)
{
des_cblock *cb = (des_cblock *) blk;
des_key_schedule *p = (des_key_schedule *) key;
des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
}
static int
des3_setkey(u_int8_t **sched, const u_int8_t *key, int len)
{
des_key_schedule *p;
p = malloc(3*sizeof (des_key_schedule),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
*sched = (u_int8_t *) p;
if (p == NULL)
return ENOMEM;
des_set_key((des_cblock *)__UNCONST(key + 0), p[0]);
des_set_key((des_cblock *)__UNCONST(key + 8), p[1]);
des_set_key((des_cblock *)__UNCONST(key + 16), p[2]);
return 0;
}
static void
des3_zerokey(u_int8_t **sched)
{
memset(*sched, 0, 3*sizeof (des_key_schedule));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
blf_encrypt(void *key, u_int8_t *blk)
{
BF_ecb_encrypt(blk, blk, (BF_KEY *)key, 1);
}
static void
blf_decrypt(void *key, u_int8_t *blk)
{
BF_ecb_encrypt(blk, blk, (BF_KEY *)key, 0);
}
static int
blf_setkey(u_int8_t **sched, const u_int8_t *key, int len)
{
*sched = malloc(sizeof(BF_KEY),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (*sched == NULL)
return ENOMEM;
BF_set_key((BF_KEY *) *sched, len, key);
return 0;
}
static void
blf_zerokey(u_int8_t **sched)
{
memset(*sched, 0, sizeof(BF_KEY));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
cast5_encrypt(void *key, u_int8_t *blk)
{
cast128_encrypt((cast128_key *) key, blk, blk);
}
static void
cast5_decrypt(void *key, u_int8_t *blk)
{
cast128_decrypt((cast128_key *) key, blk, blk);
}
static int
cast5_setkey(u_int8_t **sched, const u_int8_t *key, int len)
{
*sched = malloc(sizeof(cast128_key), M_CRYPTO_DATA,
M_NOWAIT|M_ZERO);
if (*sched == NULL)
return ENOMEM;
cast128_setkey((cast128_key *)*sched, key, len);
return 0;
}
static void
cast5_zerokey(u_int8_t **sched)
{
memset(*sched, 0, sizeof(cast128_key));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
skipjack_encrypt(void *key, u_int8_t *blk)
{
skipjack_forwards(blk, blk, (u_int8_t **) key);
}
static void
skipjack_decrypt(void *key, u_int8_t *blk)
{
skipjack_backwards(blk, blk, (u_int8_t **) key);
}
static int
skipjack_setkey(u_int8_t **sched, const u_int8_t *key, int len)
{
/* NB: allocate all the memory that's needed at once */
/* XXX assumes bytes are aligned on sizeof(u_char) == 1 boundaries.
* Will this break a pdp-10, Cray-1, or GE-645 port?
*/
*sched = malloc(10 * (sizeof(u_int8_t *) + 0x100),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (*sched == NULL)
return ENOMEM;
u_int8_t** key_tables = (u_int8_t**) *sched;
u_int8_t* table = (u_int8_t*) &key_tables[10];
int k;
for (k = 0; k < 10; k++) {
key_tables[k] = table;
table += 0x100;
}
subkey_table_gen(key, (u_int8_t **) *sched);
return 0;
}
static void
skipjack_zerokey(u_int8_t **sched)
{
memset(*sched, 0, 10 * (sizeof(u_int8_t *) + 0x100));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
rijndael128_encrypt(void *key, u_int8_t *blk)
{
rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
}
static void
rijndael128_decrypt(void *key, u_int8_t *blk)
{
rijndael_decrypt((rijndael_ctx *) key, (u_char *) blk,
(u_char *) blk);
}
static int
rijndael128_setkey(u_int8_t **sched, const u_int8_t *key, int len)
{
if (len != 16 && len != 24 && len != 32)
return EINVAL;
*sched = malloc(sizeof(rijndael_ctx), M_CRYPTO_DATA,
M_NOWAIT|M_ZERO);
if (*sched == NULL)
return ENOMEM;
rijndael_set_key((rijndael_ctx *) *sched, key, len * 8);
return 0;
}
static void
rijndael128_zerokey(u_int8_t **sched)
{
memset(*sched, 0, sizeof(rijndael_ctx));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
cml_encrypt(void *key, u_int8_t *blk)
{
camellia_encrypt(key, blk, blk);
}
static void
cml_decrypt(void *key, u_int8_t *blk)
{
camellia_decrypt(key, blk, blk);
}
static int
cml_setkey(u_int8_t **sched, const u_int8_t *key, int len)
{
if (len != 16 && len != 24 && len != 32)
return (EINVAL);
*sched = malloc(sizeof(camellia_ctx), M_CRYPTO_DATA,
M_NOWAIT|M_ZERO);
if (*sched == NULL)
return ENOMEM;
camellia_set_key((camellia_ctx *) *sched, key, len * 8);
return 0;
}
static void
cml_zerokey(u_int8_t **sched)
{
memset(*sched, 0, sizeof(camellia_ctx));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
#define AESCTR_NONCESIZE 4
#define AESCTR_IVSIZE 8
#define AESCTR_BLOCKSIZE 16
struct aes_ctr_ctx {
/* need only encryption half */
u_int32_t ac_ek[4*(RIJNDAEL_MAXNR + 1)];
u_int8_t ac_block[AESCTR_BLOCKSIZE];
int ac_nr;
struct {
u_int64_t lastiv;
} ivgenctx;
};
static void
aes_ctr_crypt(void *key, u_int8_t *blk)
{
struct aes_ctr_ctx *ctx;
u_int8_t keystream[AESCTR_BLOCKSIZE];
int i;
ctx = key;
/* increment counter */
for (i = AESCTR_BLOCKSIZE - 1;
i >= AESCTR_NONCESIZE + AESCTR_IVSIZE; i--)
if (++ctx->ac_block[i]) /* continue on overflow */
break;
rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, ctx->ac_block, keystream);
for (i = 0; i < AESCTR_BLOCKSIZE; i++)
blk[i] ^= keystream[i];
memset(keystream, 0, sizeof(keystream));
}
int
aes_ctr_setkey(u_int8_t **sched, const u_int8_t *key, int len)
{
struct aes_ctr_ctx *ctx;
if (len < AESCTR_NONCESIZE)
return EINVAL;
ctx = malloc(sizeof(struct aes_ctr_ctx), M_CRYPTO_DATA,
M_NOWAIT|M_ZERO);
if (!ctx)
return ENOMEM;
ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (const u_char *)key,
(len - AESCTR_NONCESIZE) * 8);
if (!ctx->ac_nr) { /* wrong key len */
aes_ctr_zerokey((u_int8_t **)&ctx);
return EINVAL;
}
memcpy(ctx->ac_block, key + len - AESCTR_NONCESIZE, AESCTR_NONCESIZE);
/* random start value for simple counter */
cprng_fast(&ctx->ivgenctx.lastiv, sizeof(ctx->ivgenctx.lastiv));
*sched = (void *)ctx;
return 0;
}
void
aes_ctr_zerokey(u_int8_t **sched)
{
memset(*sched, 0, sizeof(struct aes_ctr_ctx));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
void
aes_ctr_reinit(void *key, const u_int8_t *iv, u_int8_t *ivout)
{
struct aes_ctr_ctx *ctx = key;
if (!iv) {
ctx->ivgenctx.lastiv++;
iv = (const u_int8_t *)&ctx->ivgenctx.lastiv;
}
if (ivout)
memcpy(ivout, iv, AESCTR_IVSIZE);
memcpy(ctx->ac_block + AESCTR_NONCESIZE, iv, AESCTR_IVSIZE);
/* reset counter */
memset(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 0, 4);
}
void
aes_gcm_reinit(void *key, const u_int8_t *iv, u_int8_t *ivout)
{
struct aes_ctr_ctx *ctx = key;
if (!iv) {
ctx->ivgenctx.lastiv++;
iv = (const u_int8_t *)&ctx->ivgenctx.lastiv;
}
if (ivout)
memcpy(ivout, iv, AESCTR_IVSIZE);
memcpy(ctx->ac_block + AESCTR_NONCESIZE, iv, AESCTR_IVSIZE);
/* reset counter */
memset(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 0, 4);
ctx->ac_block[AESCTR_BLOCKSIZE - 1] = 1; /* GCM starts with 1 */
}
struct aes_gmac_ctx {
struct {
u_int64_t lastiv;
} ivgenctx;
};
int
aes_gmac_setkey(u_int8_t **sched, const u_int8_t *key, int len)
{
struct aes_gmac_ctx *ctx;
ctx = malloc(sizeof(struct aes_gmac_ctx), M_CRYPTO_DATA,
M_NOWAIT|M_ZERO);
if (!ctx)
return ENOMEM;
/* random start value for simple counter */
cprng_fast(&ctx->ivgenctx.lastiv, sizeof(ctx->ivgenctx.lastiv));
*sched = (void *)ctx;
return 0;
}
void
aes_gmac_zerokey(u_int8_t **sched)
{
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
void
aes_gmac_reinit(void *key, const u_int8_t *iv, u_int8_t *ivout)
{
struct aes_gmac_ctx *ctx = key;
if (!iv) {
ctx->ivgenctx.lastiv++;
iv = (const u_int8_t *)&ctx->ivgenctx.lastiv;
}
if (ivout)
memcpy(ivout, iv, AESCTR_IVSIZE);
}
/*
* And now for auth.
*/
static void
null_init(void *ctx)
{
}
static int
null_update(void *ctx, const u_int8_t *buf,
u_int16_t len)
{
return 0;
}
static void
null_final(u_int8_t *buf, void *ctx)
{
if (buf != (u_int8_t *) 0)
memset(buf, 0, 12);
}
static int
RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
RMD160Update(ctx, buf, len);
return 0;
}
static int
MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
MD5Update(ctx, buf, len);
return 0;
}
static void
SHA1Init_int(void *ctx)
{
SHA1Init(ctx);
}
static int
SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
SHA1Update(ctx, buf, len);
return 0;
}
static void
SHA1Final_int(u_int8_t *blk, void *ctx)
{
SHA1Final(blk, ctx);
}
static int
SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
SHA256_Update(ctx, buf, len);
return 0;
}
static int
SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
SHA384_Update(ctx, buf, len);
return 0;
}
static int
SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
SHA512_Update(ctx, buf, len);
return 0;
}
/*
* And compression
*/
static u_int32_t
deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
{
return deflate_global(data, size, 0, out, 0);
}
static u_int32_t
deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out,
int size_hint)
{
return deflate_global(data, size, 1, out, size_hint);
}
static u_int32_t
gzip_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
{
return gzip_global(data, size, 0, out, 0);
}
static u_int32_t
gzip_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out,
int size_hint)
{
return gzip_global(data, size, 1, out, size_hint);
}