NetBSD/sys/dev/pci/dpt_pci.c
bouyer 937a7a3ed9 Pull up the thorpej_scsipi branch to main branch.
This is a completely rewritten scsipi_xfer execution engine, and the
associated changes to HBA drivers. Overview of changes & features:
- All xfers are queued in the mid-layer, rather than doing so in an
  ad-hoc fashion in individual adapter drivers.
- Adapter/channel resource management in the mid-layer, avoids even trying
  to start running an xfer if the adapter/channel doesn't have the resources.
- Better communication between the mid-layer and the adapters.
- Asynchronous event notification mechanism from adapter to mid-layer and
  peripherals.
- Better peripheral queue management: freeze/thaw, sorted requeueing during
  recovery, etc.
- Clean separation of peripherals, adapters, and adapter channels (no more
  scsipi_link).
- Kernel thread for each scsipi_channel makes error recovery much easier
  (no more dealing with interrupt context when recovering from an error).
- Mid-layer support for tagged queueing: commands can have the tag type
  set explicitly, tag IDs are allocated in the mid-layer (thus eliminating
  the need to use buggy tag ID allocation schemes in many adapter drivers).
- support for QUEUE FULL and CHECK CONDITION status in mid-layer; the command
  will be requeued, or a REQUEST SENSE will be sent as appropriate.

Just before the merge syssrc has been tagged with thorpej_scsipi_beforemerge
2001-04-25 17:53:04 +00:00

135 lines
3.8 KiB
C

/* $NetBSD: dpt_pci.c,v 1.8 2001/04/25 17:53:36 bouyer Exp $ */
/*
* Copyright (c) 1999, 2000, 2001 Andrew Doran <ad@netbsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* PCI front-end for DPT EATA SCSI driver.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <dev/ic/dptreg.h>
#include <dev/ic/dptvar.h>
#define PCI_CBMA 0x14 /* Configuration base memory address */
#define PCI_CBIO 0x10 /* Configuration base I/O address */
static int dpt_pci_match(struct device *, struct cfdata *, void *);
static void dpt_pci_attach(struct device *, struct device *, void *);
struct cfattach dpt_pci_ca = {
sizeof(struct dpt_softc), dpt_pci_match, dpt_pci_attach
};
static int
dpt_pci_match(struct device *parent, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa;
pa = (struct pci_attach_args *)aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_DPT &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_DPT_SC_RAID)
return (1);
return (0);
}
static void
dpt_pci_attach(struct device *parent, struct device *self, void *aux)
{
struct pci_attach_args *pa;
struct dpt_softc *sc;
pci_chipset_tag_t pc;
pci_intr_handle_t ih;
bus_space_handle_t ioh;
const char *intrstr;
pcireg_t csr;
sc = (struct dpt_softc *)self;
pa = (struct pci_attach_args *)aux;
pc = pa->pa_pc;
printf(": ");
if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, &sc->sc_iot,
&ioh, NULL, NULL)) {
printf("can't map i/o space\n");
return;
}
/* Need to map in by 16 registers. */
if (bus_space_subregion(sc->sc_iot, ioh, 16, 16, &sc->sc_ioh)) {
printf("can't map i/o subregion\n");
return;
}
sc->sc_dmat = pa->pa_dmat;
/* Enable the device. */
csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MASTER_ENABLE);
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
printf("can't map interrupt\n");
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, dpt_intr, sc);
if (sc->sc_ih == NULL) {
printf("can't establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
/* Read the EATA configuration. */
if (dpt_readcfg(sc)) {
printf("%s: readcfg failed - see dpt(4)\n",
sc->sc_dv.dv_xname);
return;
}
/* Now attach to the bus-independent code. */
dpt_init(sc, intrstr);
}