NetBSD/sys/dev/usb/uhci.c

2621 lines
63 KiB
C

/* $NetBSD: uhci.c,v 1.26 1999/05/16 11:43:32 augustss Exp $ */
/*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (augustss@carlstedt.se) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB Universal Host Controller driver.
* Handles PIIX3 and PIIX4.
*
* Data sheets: ftp://download.intel.com/design/intarch/datashts/29055002.pdf
* ftp://download.intel.com/design/intarch/datashts/29056201.pdf
* UHCI spec: http://www.intel.com/design/usb/uhci11d.pdf
* USB spec: http://www.usb.org/cgi-usb/mailmerge.cgi/home/usb/docs/developers/cgiform.tpl
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#if defined(__NetBSD__)
#include <sys/device.h>
#elif defined(__FreeBSD__)
#include <sys/module.h>
#include <sys/bus.h>
#endif
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/select.h>
#include <machine/bus.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/uhcireg.h>
#include <dev/usb/uhcivar.h>
#if defined(__FreeBSD__)
#include <machine/clock.h>
#define delay(d) DELAY(d)
#endif
#define MS_TO_TICKS(ms) ((ms) * hz / 1000)
struct uhci_pipe {
struct usbd_pipe pipe;
uhci_intr_info_t *iinfo;
int newtoggle;
/* Info needed for different pipe kinds. */
union {
/* Control pipe */
struct {
uhci_soft_qh_t *sqh;
usb_dma_t reqdma;
usb_dma_t datadma;
uhci_soft_td_t *setup, *stat;
u_int length;
} ctl;
/* Interrupt pipe */
struct {
usb_dma_t datadma;
int npoll;
uhci_soft_qh_t **qhs;
} intr;
/* Bulk pipe */
struct {
uhci_soft_qh_t *sqh;
usb_dma_t datadma;
u_int length;
int isread;
} bulk;
/* Iso pipe */
struct iso {
u_int bufsize;
u_int nbuf;
usb_dma_t *bufs;
uhci_soft_td_t **stds;
} iso;
} u;
};
/*
* The uhci_intr_info free list can be global since they contain
* no dma specific data. The other free lists do.
*/
LIST_HEAD(, uhci_intr_info) uhci_ii_free;
void uhci_busreset __P((uhci_softc_t *));
usbd_status uhci_run __P((uhci_softc_t *, int run));
uhci_soft_td_t *uhci_alloc_std __P((uhci_softc_t *));
void uhci_free_std __P((uhci_softc_t *, uhci_soft_td_t *));
uhci_soft_qh_t *uhci_alloc_sqh __P((uhci_softc_t *));
void uhci_free_sqh __P((uhci_softc_t *, uhci_soft_qh_t *));
uhci_intr_info_t *uhci_alloc_intr_info __P((uhci_softc_t *));
void uhci_free_intr_info __P((uhci_intr_info_t *ii));
#if 0
void uhci_enter_ctl_q __P((uhci_softc_t *, uhci_soft_qh_t *,
uhci_intr_info_t *));
void uhci_exit_ctl_q __P((uhci_softc_t *, uhci_soft_qh_t *));
#endif
void uhci_free_std_chain __P((uhci_softc_t *,
uhci_soft_td_t *, uhci_soft_td_t *));
usbd_status uhci_alloc_std_chain __P((struct uhci_pipe *, uhci_softc_t *,
int, int, int, usb_dma_t *,
uhci_soft_td_t **,
uhci_soft_td_t **));
void uhci_timo __P((void *));
void uhci_waitintr __P((uhci_softc_t *, usbd_request_handle));
void uhci_check_intr __P((uhci_softc_t *, uhci_intr_info_t *));
void uhci_ii_done __P((uhci_intr_info_t *, int));
void uhci_timeout __P((void *));
void uhci_wakeup_ctrl __P((void *, int, int, void *, int));
void uhci_lock_frames __P((uhci_softc_t *));
void uhci_unlock_frames __P((uhci_softc_t *));
void uhci_add_ctrl __P((uhci_softc_t *, uhci_soft_qh_t *));
void uhci_add_bulk __P((uhci_softc_t *, uhci_soft_qh_t *));
void uhci_remove_ctrl __P((uhci_softc_t *, uhci_soft_qh_t *));
void uhci_remove_bulk __P((uhci_softc_t *, uhci_soft_qh_t *));
int uhci_str __P((usb_string_descriptor_t *, int, char *));
void uhci_wakeup_cb __P((usbd_request_handle reqh));
usbd_status uhci_device_ctrl_transfer __P((usbd_request_handle));
usbd_status uhci_device_ctrl_start __P((usbd_request_handle));
void uhci_device_ctrl_abort __P((usbd_request_handle));
void uhci_device_ctrl_close __P((usbd_pipe_handle));
usbd_status uhci_device_intr_transfer __P((usbd_request_handle));
usbd_status uhci_device_intr_start __P((usbd_request_handle));
void uhci_device_intr_abort __P((usbd_request_handle));
void uhci_device_intr_close __P((usbd_pipe_handle));
usbd_status uhci_device_bulk_transfer __P((usbd_request_handle));
usbd_status uhci_device_bulk_start __P((usbd_request_handle));
void uhci_device_bulk_abort __P((usbd_request_handle));
void uhci_device_bulk_close __P((usbd_pipe_handle));
usbd_status uhci_device_isoc_transfer __P((usbd_request_handle));
usbd_status uhci_device_isoc_start __P((usbd_request_handle));
void uhci_device_isoc_abort __P((usbd_request_handle));
void uhci_device_isoc_close __P((usbd_pipe_handle));
usbd_status uhci_device_isoc_setbuf __P((usbd_pipe_handle, u_int, u_int));
usbd_status uhci_root_ctrl_transfer __P((usbd_request_handle));
usbd_status uhci_root_ctrl_start __P((usbd_request_handle));
void uhci_root_ctrl_abort __P((usbd_request_handle));
void uhci_root_ctrl_close __P((usbd_pipe_handle));
usbd_status uhci_root_intr_transfer __P((usbd_request_handle));
usbd_status uhci_root_intr_start __P((usbd_request_handle));
void uhci_root_intr_abort __P((usbd_request_handle));
void uhci_root_intr_close __P((usbd_pipe_handle));
usbd_status uhci_open __P((usbd_pipe_handle));
void uhci_poll __P((struct usbd_bus *));
usbd_status uhci_device_request __P((usbd_request_handle reqh));
void uhci_ctrl_done __P((uhci_intr_info_t *ii));
void uhci_bulk_done __P((uhci_intr_info_t *ii));
void uhci_add_intr __P((uhci_softc_t *, int, uhci_soft_qh_t *));
void uhci_remove_intr __P((uhci_softc_t *, int, uhci_soft_qh_t *));
usbd_status uhci_device_setintr __P((uhci_softc_t *sc,
struct uhci_pipe *pipe, int ival));
void uhci_intr_done __P((uhci_intr_info_t *ii));
void uhci_isoc_done __P((uhci_intr_info_t *ii));
#ifdef USB_DEBUG
static void uhci_dumpregs __P((uhci_softc_t *));
void uhci_dump_tds __P((uhci_soft_td_t *));
void uhci_dump_qh __P((uhci_soft_qh_t *));
void uhci_dump __P((void));
void uhci_dump_td __P((uhci_soft_td_t *));
#endif
#if defined(__NetBSD__)
#define UWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
#define UWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
#define UREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
#define UREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
#elif defined(__FreeBSD__)
#define UWRITE2(sc,r,x) outw((sc)->sc_iobase + (r), (x))
#define UWRITE4(sc,r,x) outl((sc)->sc_iobase + (r), (x))
#define UREAD2(sc,r) inw((sc)->sc_iobase + (r))
#define UREAD4(sc,r) inl((sc)->sc_iobase + (r))
#endif
#define UHCICMD(sc, cmd) UWRITE2(sc, UHCI_CMD, cmd)
#define UHCISTS(sc) UREAD2(sc, UHCI_STS)
#define UHCI_RESET_TIMEOUT 100 /* reset timeout */
#define UHCI_CURFRAME(sc) (UREAD2(sc, UHCI_FRNUM) & UHCI_FRNUM_MASK)
#define UHCI_INTR_ENDPT 1
struct usbd_methods uhci_root_ctrl_methods = {
uhci_root_ctrl_transfer,
uhci_root_ctrl_start,
uhci_root_ctrl_abort,
uhci_root_ctrl_close,
0,
};
struct usbd_methods uhci_root_intr_methods = {
uhci_root_intr_transfer,
uhci_root_intr_start,
uhci_root_intr_abort,
uhci_root_intr_close,
0,
};
struct usbd_methods uhci_device_ctrl_methods = {
uhci_device_ctrl_transfer,
uhci_device_ctrl_start,
uhci_device_ctrl_abort,
uhci_device_ctrl_close,
0,
};
struct usbd_methods uhci_device_intr_methods = {
uhci_device_intr_transfer,
uhci_device_intr_start,
uhci_device_intr_abort,
uhci_device_intr_close,
0,
};
struct usbd_methods uhci_device_bulk_methods = {
uhci_device_bulk_transfer,
uhci_device_bulk_start,
uhci_device_bulk_abort,
uhci_device_bulk_close,
0,
};
struct usbd_methods uhci_device_isoc_methods = {
uhci_device_isoc_transfer,
uhci_device_isoc_start,
uhci_device_isoc_abort,
uhci_device_isoc_close,
uhci_device_isoc_setbuf,
};
void
uhci_busreset(sc)
uhci_softc_t *sc;
{
UHCICMD(sc, UHCI_CMD_GRESET); /* global reset */
usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY); /* wait a little */
UHCICMD(sc, 0); /* do nothing */
}
usbd_status
uhci_init(sc)
uhci_softc_t *sc;
{
usbd_status r;
int i, j;
uhci_soft_qh_t *csqh, *bsqh, *sqh;
uhci_soft_td_t *std;
usb_dma_t dma;
static int uhci_global_init_done = 0;
DPRINTFN(1,("uhci_init: start\n"));
if (!uhci_global_init_done) {
uhci_global_init_done = 1;
LIST_INIT(&uhci_ii_free);
}
#if defined(USB_DEBUG)
if (uhcidebug > 2)
uhci_dumpregs(sc);
#endif
uhci_run(sc, 0); /* stop the controller */
UWRITE2(sc, UHCI_INTR, 0); /* disable interrupts */
uhci_busreset(sc);
/* Allocate and initialize real frame array. */
r = usb_allocmem(sc->sc_dmatag,
UHCI_FRAMELIST_COUNT * sizeof(uhci_physaddr_t),
UHCI_FRAMELIST_ALIGN, &dma);
if (r != USBD_NORMAL_COMPLETION)
return (r);
sc->sc_pframes = KERNADDR(&dma);
UWRITE2(sc, UHCI_FRNUM, 0); /* set frame number to 0 */
UWRITE4(sc, UHCI_FLBASEADDR, DMAADDR(&dma)); /* set frame list */
/* Allocate the dummy QH where bulk traffic will be queued. */
bsqh = uhci_alloc_sqh(sc);
if (!bsqh)
return (USBD_NOMEM);
bsqh->qh->qh_hlink = UHCI_PTR_T; /* end of QH chain */
bsqh->qh->qh_elink = UHCI_PTR_T;
sc->sc_bulk_start = sc->sc_bulk_end = bsqh;
/* Allocate the dummy QH where control traffic will be queued. */
csqh = uhci_alloc_sqh(sc);
if (!csqh)
return (USBD_NOMEM);
csqh->qh->hlink = bsqh;
csqh->qh->qh_hlink = bsqh->physaddr | UHCI_PTR_Q;
csqh->qh->qh_elink = UHCI_PTR_T;
sc->sc_ctl_start = sc->sc_ctl_end = csqh;
/*
* Make all (virtual) frame list pointers point to the interrupt
* queue heads and the interrupt queue heads at the control
* queue head and point the physical frame list to the virtual.
*/
for(i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = uhci_alloc_std(sc);
sqh = uhci_alloc_sqh(sc);
if (!std || !sqh)
return (USBD_NOMEM);
std->td->link.sqh = sqh;
std->td->td_link = sqh->physaddr | UHCI_PTR_Q;
std->td->td_status = UHCI_TD_IOS; /* iso, inactive */
std->td->td_token = 0;
std->td->td_buffer = 0;
sqh->qh->hlink = csqh;
sqh->qh->qh_hlink = csqh->physaddr | UHCI_PTR_Q;
sqh->qh->elink = 0;
sqh->qh->qh_elink = UHCI_PTR_T;
sc->sc_vframes[i].htd = std;
sc->sc_vframes[i].etd = std;
sc->sc_vframes[i].hqh = sqh;
sc->sc_vframes[i].eqh = sqh;
for (j = i;
j < UHCI_FRAMELIST_COUNT;
j += UHCI_VFRAMELIST_COUNT)
sc->sc_pframes[j] = std->physaddr;
}
LIST_INIT(&sc->sc_intrhead);
/* Set up the bus struct. */
sc->sc_bus.open_pipe = uhci_open;
sc->sc_bus.pipe_size = sizeof(struct uhci_pipe);
sc->sc_bus.do_poll = uhci_poll;
DPRINTFN(1,("uhci_init: enabling\n"));
UWRITE2(sc, UHCI_INTR, UHCI_INTR_TOCRCIE | UHCI_INTR_RIE |
UHCI_INTR_IOCE | UHCI_INTR_SPIE); /* enable interrupts */
return (uhci_run(sc, 1)); /* and here we go... */
}
#ifdef USB_DEBUG
static void
uhci_dumpregs(sc)
uhci_softc_t *sc;
{
printf("%s regs: cmd=%04x, sts=%04x, intr=%04x, frnum=%04x, "
"flbase=%08x, sof=%04x, portsc1=%04x, portsc2=%04x\n",
USBDEVNAME(sc->sc_bus.bdev),
UREAD2(sc, UHCI_CMD),
UREAD2(sc, UHCI_STS),
UREAD2(sc, UHCI_INTR),
UREAD2(sc, UHCI_FRNUM),
UREAD4(sc, UHCI_FLBASEADDR),
UREAD2(sc, UHCI_SOF),
UREAD2(sc, UHCI_PORTSC1),
UREAD2(sc, UHCI_PORTSC2));
}
int uhci_longtd = 1;
void
uhci_dump_td(p)
uhci_soft_td_t *p;
{
printf("TD(%p) at %08lx = link=0x%08lx status=0x%08lx "
"token=0x%08lx buffer=0x%08lx\n",
p, (long)p->physaddr,
(long)p->td->td_link,
(long)p->td->td_status,
(long)p->td->td_token,
(long)p->td->td_buffer);
if (uhci_longtd)
printf(" %b %b,errcnt=%d,actlen=%d pid=%02x,addr=%d,endpt=%d,"
"D=%d,maxlen=%d\n",
(int)p->td->td_link,
"\20\1T\2Q\3VF",
(int)p->td->td_status,
"\20\22BITSTUFF\23CRCTO\24NAK\25BABBLE\26DBUFFER\27"
"STALLED\30ACTIVE\31IOC\32ISO\33LS\36SPD",
UHCI_TD_GET_ERRCNT(p->td->td_status),
UHCI_TD_GET_ACTLEN(p->td->td_status),
UHCI_TD_GET_PID(p->td->td_token),
UHCI_TD_GET_DEVADDR(p->td->td_token),
UHCI_TD_GET_ENDPT(p->td->td_token),
UHCI_TD_GET_DT(p->td->td_token),
UHCI_TD_GET_MAXLEN(p->td->td_token));
}
void
uhci_dump_qh(p)
uhci_soft_qh_t *p;
{
printf("QH(%p) at %08x: hlink=%08x elink=%08x\n", p, (int)p->physaddr,
p->qh->qh_hlink, p->qh->qh_elink);
}
#if 0
void
uhci_dump()
{
uhci_softc_t *sc = uhci;
uhci_dumpregs(sc);
printf("intrs=%d\n", sc->sc_intrs);
printf("framelist[i].link = %08x\n", sc->sc_framelist[0].link);
uhci_dump_qh(sc->sc_ctl_start->qh->hlink);
}
#endif
void
uhci_dump_tds(std)
uhci_soft_td_t *std;
{
uhci_soft_td_t *p;
for(p = std; p; p = p->td->link.std)
uhci_dump_td(p);
}
#endif
/*
* This routine is executed periodically and simulates interrupts
* from the root controller interrupt pipe for port status change.
*/
void
uhci_timo(addr)
void *addr;
{
usbd_request_handle reqh = addr;
usbd_pipe_handle pipe = reqh->pipe;
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
int s;
u_char *p;
DPRINTFN(15, ("uhci_timo\n"));
p = KERNADDR(&upipe->u.intr.datadma);
p[0] = 0;
if (UREAD2(sc, UHCI_PORTSC1) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC))
p[0] |= 1<<1;
if (UREAD2(sc, UHCI_PORTSC2) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC))
p[0] |= 1<<2;
s = splusb();
if (p[0] != 0) {
reqh->actlen = 1;
reqh->status = USBD_NORMAL_COMPLETION;
reqh->xfercb(reqh);
}
if (reqh->pipe->intrreqh == reqh) {
usb_timeout(uhci_timo, reqh, sc->sc_ival, reqh->timo_handle);
} else {
usb_freemem(sc->sc_dmatag, &upipe->u.intr.datadma);
usb_start_next(reqh->pipe);
}
splx(s);
}
void
uhci_lock_frames(sc)
uhci_softc_t *sc;
{
int s = splusb();
while (sc->sc_vflock) {
sc->sc_vflock |= UHCI_WANT_LOCK;
tsleep(&sc->sc_vflock, PRIBIO, "uhcqhl", 0);
}
sc->sc_vflock = UHCI_HAS_LOCK;
splx(s);
}
void
uhci_unlock_frames(sc)
uhci_softc_t *sc;
{
int s = splusb();
sc->sc_vflock &= ~UHCI_HAS_LOCK;
if (sc->sc_vflock & UHCI_WANT_LOCK)
wakeup(&sc->sc_vflock);
splx(s);
}
/*
* Allocate an interrupt information struct. A free list is kept
* for fast allocation.
*/
uhci_intr_info_t *
uhci_alloc_intr_info(sc)
uhci_softc_t *sc;
{
uhci_intr_info_t *ii;
ii = LIST_FIRST(&uhci_ii_free);
if (ii)
LIST_REMOVE(ii, list);
else {
ii = malloc(sizeof(uhci_intr_info_t), M_USBDEV, M_NOWAIT);
}
ii->sc = sc;
return ii;
}
void
uhci_free_intr_info(ii)
uhci_intr_info_t *ii;
{
LIST_INSERT_HEAD(&uhci_ii_free, ii, list); /* and put on free list */
}
/* Add control QH, called at splusb(). */
void
uhci_add_ctrl(sc, sqh)
uhci_softc_t *sc;
uhci_soft_qh_t *sqh;
{
uhci_qh_t *eqh;
DPRINTFN(10, ("uhci_add_ctrl: sqh=%p\n", sqh));
eqh = sc->sc_ctl_end->qh;
sqh->qh->hlink = eqh->hlink;
sqh->qh->qh_hlink = eqh->qh_hlink;
eqh->hlink = sqh;
eqh->qh_hlink = sqh->physaddr | UHCI_PTR_Q;
sc->sc_ctl_end = sqh;
}
/* Remove control QH, called at splusb(). */
void
uhci_remove_ctrl(sc, sqh)
uhci_softc_t *sc;
uhci_soft_qh_t *sqh;
{
uhci_soft_qh_t *pqh;
DPRINTFN(10, ("uhci_remove_ctrl: sqh=%p\n", sqh));
for (pqh = sc->sc_ctl_start; pqh->qh->hlink != sqh; pqh=pqh->qh->hlink)
#if defined(DIAGNOSTIC) || defined(USB_DEBUG)
if (pqh->qh->qh_hlink & UHCI_PTR_T) {
printf("uhci_remove_ctrl: QH not found\n");
return;
}
#else
;
#endif
pqh->qh->hlink = sqh->qh->hlink;
pqh->qh->qh_hlink = sqh->qh->qh_hlink;
if (sc->sc_ctl_end == sqh)
sc->sc_ctl_end = pqh;
}
/* Add bulk QH, called at splusb(). */
void
uhci_add_bulk(sc, sqh)
uhci_softc_t *sc;
uhci_soft_qh_t *sqh;
{
uhci_qh_t *eqh;
DPRINTFN(10, ("uhci_add_bulk: sqh=%p\n", sqh));
eqh = sc->sc_bulk_end->qh;
sqh->qh->hlink = eqh->hlink;
sqh->qh->qh_hlink = eqh->qh_hlink;
eqh->hlink = sqh;
eqh->qh_hlink = sqh->physaddr | UHCI_PTR_Q;
sc->sc_bulk_end = sqh;
}
/* Remove bulk QH, called at splusb(). */
void
uhci_remove_bulk(sc, sqh)
uhci_softc_t *sc;
uhci_soft_qh_t *sqh;
{
uhci_soft_qh_t *pqh;
DPRINTFN(10, ("uhci_remove_bulk: sqh=%p\n", sqh));
for (pqh = sc->sc_bulk_start;
pqh->qh->hlink != sqh;
pqh = pqh->qh->hlink)
#if defined(DIAGNOSTIC) || defined(USB_DEBUG)
if (pqh->qh->qh_hlink & UHCI_PTR_T) {
printf("uhci_remove_bulk: QH not found\n");
return;
}
#else
;
#endif
pqh->qh->hlink = sqh->qh->hlink;
pqh->qh->qh_hlink = sqh->qh->qh_hlink;
if (sc->sc_bulk_end == sqh)
sc->sc_bulk_end = pqh;
}
int
uhci_intr(p)
void *p;
{
uhci_softc_t *sc = p;
int status, ret;
uhci_intr_info_t *ii;
sc->sc_intrs++;
#if defined(USB_DEBUG)
if (uhcidebug > 9) {
printf("uhci_intr %p\n", sc);
uhci_dumpregs(sc);
}
#endif
status = UREAD2(sc, UHCI_STS);
ret = 0;
if (status & UHCI_STS_USBINT) {
UWRITE2(sc, UHCI_STS, UHCI_STS_USBINT); /* acknowledge */
ret = 1;
}
if (status & UHCI_STS_USBEI) {
UWRITE2(sc, UHCI_STS, UHCI_STS_USBEI); /* acknowledge */
ret = 1;
}
if (status & UHCI_STS_RD) {
UWRITE2(sc, UHCI_STS, UHCI_STS_RD); /* acknowledge */
printf("%s: resume detect\n", USBDEVNAME(sc->sc_bus.bdev));
ret = 1;
}
if (status & UHCI_STS_HSE) {
UWRITE2(sc, UHCI_STS, UHCI_STS_HSE); /* acknowledge */
printf("%s: Host System Error\n", USBDEVNAME(sc->sc_bus.bdev));
ret = 1;
}
if (status & UHCI_STS_HCPE) {
UWRITE2(sc, UHCI_STS, UHCI_STS_HCPE); /* acknowledge */
printf("%s: Host System Error\n", USBDEVNAME(sc->sc_bus.bdev));
ret = 1;
}
if (status & UHCI_STS_HCH)
printf("%s: controller halted\n", USBDEVNAME(sc->sc_bus.bdev));
if (!ret)
return 0;
/*
* Interrupts on UHCI really suck. When the host controller
* interrupts because a transfer is completed there is no
* way of knowing which transfer it was. You can scan down
* the TDs and QHs of the previous frame to limit the search,
* but that assumes that the interrupt was not delayed by more
* than 1 ms, which may not always be true (e.g. after debug
* output on a slow console).
* We scan all interrupt descriptors to see if any have
* completed.
*/
for (ii = LIST_FIRST(&sc->sc_intrhead); ii; ii = LIST_NEXT(ii, list))
uhci_check_intr(sc, ii);
DPRINTFN(10, ("uhci_intr: exit\n"));
return 1;
}
/* Check for an interrupt. */
void
uhci_check_intr(sc, ii)
uhci_softc_t *sc;
uhci_intr_info_t *ii;
{
struct uhci_pipe *upipe;
uhci_soft_td_t *std, *lstd;
u_int32_t status;
DPRINTFN(15, ("uhci_check_intr: ii=%p\n", ii));
#ifdef DIAGNOSTIC
if (!ii) {
printf("uhci_check_intr: no ii? %p\n", ii);
return;
}
#endif
if (!ii->stdstart)
return;
lstd = ii->stdend;
#ifdef DIAGNOSTIC
if (!lstd) {
printf("uhci_check_intr: std==0\n");
return;
}
#endif
/*
* If the last TD is still active we need to check whether there
* is a an error somewhere in the middle, or whether there was a
* short packet (SPD and not ACTIVE).
*/
if (lstd->td->td_status & UHCI_TD_ACTIVE) {
DPRINTFN(15, ("uhci_check_intr: active ii=%p\n", ii));
for (std = ii->stdstart; std != lstd; std = std->td->link.std){
status = std->td->td_status;
if ((status & UHCI_TD_STALLED) ||
(status & (UHCI_TD_SPD | UHCI_TD_ACTIVE)) ==
UHCI_TD_SPD)
goto done;
}
DPRINTFN(15, ("uhci_check_intr: ii=%p std=%p still active\n",
ii, ii->stdstart));
return;
}
done:
usb_untimeout(uhci_timeout, ii, ii->timeout_handle);
upipe = (struct uhci_pipe *)ii->reqh->pipe;
upipe->pipe.endpoint->toggle = upipe->newtoggle;
uhci_ii_done(ii, 0);
}
void
uhci_ii_done(ii, timo)
uhci_intr_info_t *ii;
int timo;
{
usbd_request_handle reqh = ii->reqh;
uhci_soft_td_t *std;
u_int32_t status;
int actlen;
DPRINTFN(10, ("uhci_ii_done: ii=%p ready %d\n", ii, timo));
#ifdef DIAGNOSTIC
{
int s = splhigh();
if (ii->isdone) {
splx(s);
printf("uhci_ii_done: is done!\n");
return;
}
ii->isdone = 1;
splx(s);
}
#endif
/* The transfer is done, compute actual length and status. */
/* XXX Should stop at first inactive to get toggle right. */
/* XXX Is this correct for control xfers? */
actlen = 0;
for (std = ii->stdstart; std; std = std->td->link.std) {
status = std->td->td_status;
if (status & UHCI_TD_ACTIVE)
break;
if (UHCI_TD_GET_PID(std->td->td_token) != UHCI_TD_PID_SETUP)
actlen += UHCI_TD_GET_ACTLEN(status);
}
status &= UHCI_TD_ERROR;
DPRINTFN(10, ("uhci_check_intr: actlen=%d, status=0x%x\n",
actlen, status));
reqh->actlen = actlen;
if (status != 0) {
DPRINTFN(-1+(status==UHCI_TD_STALLED),
("uhci_ii_done: error, addr=%d, endpt=0x%02x, "
"status 0x%b\n",
reqh->pipe->device->address,
reqh->pipe->endpoint->edesc->bEndpointAddress,
(int)status,
"\20\22BITSTUFF\23CRCTO\24NAK\25BABBLE\26DBUFFER\27"
"STALLED\30ACTIVE"));
if (status == UHCI_TD_STALLED)
reqh->status = USBD_STALLED;
else
reqh->status = USBD_IOERROR; /* more info XXX */
} else {
reqh->status = USBD_NORMAL_COMPLETION;
}
if (timo) {
/* We got a timeout. Make sure transaction is not active. */
reqh->status = USBD_TIMEOUT;
for (std = ii->stdstart; std != 0; std = std->td->link.std)
std->td->td_status &= ~UHCI_TD_ACTIVE;
/* XXX should we wait 1 ms */
}
DPRINTFN(5, ("uhci_ii_done: calling handler ii=%p\n", ii));
switch (reqh->pipe->endpoint->edesc->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
uhci_ctrl_done(ii);
usb_start_next(reqh->pipe);
break;
case UE_ISOCHRONOUS:
uhci_isoc_done(ii);
usb_start_next(reqh->pipe);
break;
case UE_BULK:
uhci_bulk_done(ii);
usb_start_next(reqh->pipe);
break;
case UE_INTERRUPT:
uhci_intr_done(ii);
break;
}
/* And finally execute callback. */
reqh->xfercb(reqh);
}
/*
* Called when a request does not complete.
*/
void
uhci_timeout(addr)
void *addr;
{
uhci_intr_info_t *ii = addr;
int s;
DPRINTF(("uhci_timeout: ii=%p\n", ii));
s = splusb();
uhci_ii_done(ii, 1);
splx(s);
}
/*
* Wait here until controller claims to have an interrupt.
* Then call uhci_intr and return. Use timeout to avoid waiting
* too long.
* Only used during boot when interrupts are not enabled yet.
*/
void
uhci_waitintr(sc, reqh)
uhci_softc_t *sc;
usbd_request_handle reqh;
{
int timo = reqh->timeout;
uhci_intr_info_t *ii;
DPRINTFN(10,("uhci_waitintr: timeout = %dms\n", timo));
reqh->status = USBD_IN_PROGRESS;
for (; timo >= 0; timo--) {
usb_delay_ms(&sc->sc_bus, 1);
DPRINTFN(20,("uhci_waitintr: 0x%04x\n", UREAD2(sc, UHCI_STS)));
if (UREAD2(sc, UHCI_STS) & UHCI_STS_USBINT) {
uhci_intr(sc);
if (reqh->status != USBD_IN_PROGRESS)
return;
}
}
/* Timeout */
DPRINTF(("uhci_waitintr: timeout\n"));
for (ii = LIST_FIRST(&sc->sc_intrhead);
ii && ii->reqh != reqh;
ii = LIST_NEXT(ii, list))
;
if (ii)
uhci_ii_done(ii, 1);
else
panic("uhci_waitintr: lost intr_info\n");
}
void
uhci_poll(bus)
struct usbd_bus *bus;
{
uhci_softc_t *sc = (uhci_softc_t *)bus;
if (UREAD2(sc, UHCI_STS) & UHCI_STS_USBINT)
uhci_intr(sc);
}
#if 0
void
uhci_reset(p)
void *p;
{
uhci_softc_t *sc = p;
int n;
UHCICMD(sc, UHCI_CMD_HCRESET);
/* The reset bit goes low when the controller is done. */
for (n = 0; n < UHCI_RESET_TIMEOUT &&
(UREAD2(sc, UHCI_CMD) & UHCI_CMD_HCRESET); n++)
delay(100);
if (n >= UHCI_RESET_TIMEOUT)
printf("%s: controller did not reset\n",
USBDEVNAME(sc->sc_bus.bdev));
}
#endif
usbd_status
uhci_run(sc, run)
uhci_softc_t *sc;
int run;
{
int s, n, running;
run = run != 0;
s = splusb();
running = !(UREAD2(sc, UHCI_STS) & UHCI_STS_HCH);
if (run == running) {
splx(s);
return (USBD_NORMAL_COMPLETION);
}
UWRITE2(sc, UHCI_CMD, run ? UHCI_CMD_RS : 0);
for(n = 0; n < 10; n++) {
running = !(UREAD2(sc, UHCI_STS) & UHCI_STS_HCH);
/* return when we've entered the state we want */
if (run == running) {
splx(s);
return (USBD_NORMAL_COMPLETION);
}
usb_delay_ms(&sc->sc_bus, 1);
}
splx(s);
printf("%s: cannot %s\n", USBDEVNAME(sc->sc_bus.bdev),
run ? "start" : "stop");
return (USBD_IOERROR);
}
/*
* Memory management routines.
* uhci_alloc_std allocates TDs
* uhci_alloc_sqh allocates QHs
* These two routines do their own free list management,
* partly for speed, partly because allocating DMAable memory
* has page size granularaity so much memory would be wasted if
* only one TD/QH (32 bytes) was placed in each allocated chunk.
*/
uhci_soft_td_t *
uhci_alloc_std(sc)
uhci_softc_t *sc;
{
uhci_soft_td_t *std;
usbd_status r;
int i;
usb_dma_t dma;
if (!sc->sc_freetds) {
DPRINTFN(2,("uhci_alloc_std: allocating chunk\n"));
std = malloc(sizeof(uhci_soft_td_t) * UHCI_TD_CHUNK,
M_USBDEV, M_NOWAIT);
if (!std)
return (0);
r = usb_allocmem(sc->sc_dmatag, UHCI_TD_SIZE * UHCI_TD_CHUNK,
UHCI_TD_ALIGN, &dma);
if (r != USBD_NORMAL_COMPLETION) {
free(std, M_USBDEV);
return (0);
}
for(i = 0; i < UHCI_TD_CHUNK; i++, std++) {
std->physaddr = DMAADDR(&dma) + i * UHCI_TD_SIZE;
std->td = (uhci_td_t *)
((char *)KERNADDR(&dma) + i * UHCI_TD_SIZE);
std->td->link.std = sc->sc_freetds;
sc->sc_freetds = std;
}
}
std = sc->sc_freetds;
sc->sc_freetds = std->td->link.std;
memset(std->td, 0, UHCI_TD_SIZE);
return std;
}
void
uhci_free_std(sc, std)
uhci_softc_t *sc;
uhci_soft_td_t *std;
{
#ifdef DIAGNOSTIC
#define TD_IS_FREE 0x12345678
if (std->td->td_token == TD_IS_FREE) {
printf("uhci_free_std: freeing free TD %p\n", std);
return;
}
std->td->td_token = TD_IS_FREE;
#endif
std->td->link.std = sc->sc_freetds;
sc->sc_freetds = std;
}
uhci_soft_qh_t *
uhci_alloc_sqh(sc)
uhci_softc_t *sc;
{
uhci_soft_qh_t *sqh;
usbd_status r;
int i, offs;
usb_dma_t dma;
if (!sc->sc_freeqhs) {
DPRINTFN(2, ("uhci_alloc_sqh: allocating chunk\n"));
sqh = malloc(sizeof(uhci_soft_qh_t) * UHCI_QH_CHUNK,
M_USBDEV, M_NOWAIT);
if (!sqh)
return 0;
r = usb_allocmem(sc->sc_dmatag, UHCI_QH_SIZE * UHCI_QH_CHUNK,
UHCI_QH_ALIGN, &dma);
if (r != USBD_NORMAL_COMPLETION) {
free(sqh, M_USBDEV);
return 0;
}
for(i = 0; i < UHCI_QH_CHUNK; i++, sqh++) {
offs = i * UHCI_QH_SIZE;
sqh->physaddr = DMAADDR(&dma) + offs;
sqh->qh = (uhci_qh_t *)
((char *)KERNADDR(&dma) + offs);
sqh->qh->hlink = sc->sc_freeqhs;
sc->sc_freeqhs = sqh;
}
}
sqh = sc->sc_freeqhs;
sc->sc_freeqhs = sqh->qh->hlink;
memset(sqh->qh, 0, UHCI_QH_SIZE);
return (sqh);
}
void
uhci_free_sqh(sc, sqh)
uhci_softc_t *sc;
uhci_soft_qh_t *sqh;
{
sqh->qh->hlink = sc->sc_freeqhs;
sc->sc_freeqhs = sqh;
}
#if 0
/*
* Enter a list of transfers onto a control queue.
* Called at splusb()
*/
void
uhci_enter_ctl_q(sc, sqh, ii)
uhci_softc_t *sc;
uhci_soft_qh_t *sqh;
uhci_intr_info_t *ii;
{
DPRINTFN(5, ("uhci_enter_ctl_q: sqh=%p\n", sqh));
}
#endif
void
uhci_free_std_chain(sc, std, stdend)
uhci_softc_t *sc;
uhci_soft_td_t *std;
uhci_soft_td_t *stdend;
{
uhci_soft_td_t *p;
for (; std != stdend; std = p) {
p = std->td->link.std;
uhci_free_std(sc, std);
}
}
usbd_status
uhci_alloc_std_chain(upipe, sc, len, rd, spd, dma, sp, ep)
struct uhci_pipe *upipe;
uhci_softc_t *sc;
int len, rd, spd;
usb_dma_t *dma;
uhci_soft_td_t **sp, **ep;
{
uhci_soft_td_t *p, *lastp;
uhci_physaddr_t lastlink;
int i, ntd, l, tog, maxp;
u_int32_t status;
int addr = upipe->pipe.device->address;
int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
DPRINTFN(15, ("uhci_alloc_std_chain: addr=%d endpt=%d len=%d ls=%d "
"spd=%d\n", addr, UE_GET_ADDR(endpt), len,
upipe->pipe.device->lowspeed, spd));
if (len == 0) {
*sp = *ep = 0;
DPRINTFN(-1,("uhci_alloc_std_chain: len=0\n"));
return (USBD_NORMAL_COMPLETION);
}
maxp = UGETW(upipe->pipe.endpoint->edesc->wMaxPacketSize);
if (maxp == 0) {
printf("uhci_alloc_std_chain: maxp=0\n");
return (USBD_INVAL);
}
ntd = (len + maxp - 1) / maxp;
tog = upipe->pipe.endpoint->toggle;
if (ntd % 2 == 0)
tog ^= 1;
upipe->newtoggle = tog ^ 1;
lastp = 0;
lastlink = UHCI_PTR_T;
ntd--;
status = UHCI_TD_SET_ERRCNT(3) | UHCI_TD_ACTIVE;
if (upipe->pipe.device->lowspeed)
status |= UHCI_TD_LS;
if (spd)
status |= UHCI_TD_SPD;
for (i = ntd; i >= 0; i--) {
p = uhci_alloc_std(sc);
if (!p) {
uhci_free_std_chain(sc, lastp, 0);
return (USBD_NOMEM);
}
p->td->link.std = lastp;
p->td->td_link = lastlink;
lastp = p;
lastlink = p->physaddr;
p->td->td_status = status;
if (i == ntd) {
/* last TD */
l = len % maxp;
if (l == 0) l = maxp;
*ep = p;
} else
l = maxp;
p->td->td_token =
rd ? UHCI_TD_IN (l, endpt, addr, tog) :
UHCI_TD_OUT(l, endpt, addr, tog);
p->td->td_buffer = DMAADDR(dma) + i * maxp;
tog ^= 1;
}
*sp = lastp;
/*upipe->pipe.endpoint->toggle = tog;*/
DPRINTFN(10, ("uhci_alloc_std_chain: oldtog=%d newtog=%d\n",
upipe->pipe.endpoint->toggle, upipe->newtoggle));
return (USBD_NORMAL_COMPLETION);
}
usbd_status
uhci_device_bulk_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status r;
s = splusb();
r = usb_insert_transfer(reqh);
splx(s);
if (r != USBD_NORMAL_COMPLETION)
return (r);
else
return (uhci_device_bulk_start(reqh));
}
usbd_status
uhci_device_bulk_start(reqh)
usbd_request_handle reqh;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_intr_info_t *ii = upipe->iinfo;
uhci_soft_td_t *xfer, *xferend;
uhci_soft_qh_t *sqh;
usb_dma_t *dmap;
usbd_status r;
int len, isread;
int s;
DPRINTFN(3, ("uhci_device_bulk_transfer: reqh=%p buf=%p len=%d "
"flags=%d\n",
reqh, reqh->buffer, reqh->length, reqh->flags));
if (reqh->isreq)
panic("uhci_device_bulk_transfer: a request\n");
len = reqh->length;
dmap = &upipe->u.bulk.datadma;
isread = reqh->pipe->endpoint->edesc->bEndpointAddress & UE_IN;
sqh = upipe->u.bulk.sqh;
upipe->u.bulk.isread = isread;
upipe->u.bulk.length = len;
r = usb_allocmem(sc->sc_dmatag, len, 0, dmap);
if (r != USBD_NORMAL_COMPLETION)
goto ret1;
r = uhci_alloc_std_chain(upipe, sc, len, isread,
reqh->flags & USBD_SHORT_XFER_OK,
dmap, &xfer, &xferend);
if (r != USBD_NORMAL_COMPLETION)
goto ret2;
xferend->td->td_status |= UHCI_TD_IOC;
if (!isread && len != 0)
memcpy(KERNADDR(dmap), reqh->buffer, len);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
printf("uhci_device_bulk_transfer: xfer(1)\n");
uhci_dump_tds(xfer);
}
#endif
/* Set up interrupt info. */
ii->reqh = reqh;
ii->stdstart = xfer;
ii->stdend = xferend;
#ifdef DIAGNOSTIC
ii->isdone = 0;
#endif
sqh->qh->elink = xfer;
sqh->qh->qh_elink = xfer->physaddr;
sqh->intr_info = ii;
s = splusb();
uhci_add_bulk(sc, sqh);
LIST_INSERT_HEAD(&sc->sc_intrhead, ii, list);
if (reqh->timeout && !sc->sc_bus.use_polling) {
usb_timeout(uhci_timeout, ii,
MS_TO_TICKS(reqh->timeout), ii->timeout_handle);
}
splx(s);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
printf("uhci_device_bulk_transfer: xfer(2)\n");
uhci_dump_tds(xfer);
}
#endif
if (sc->sc_bus.use_polling)
uhci_waitintr(sc, reqh);
return (USBD_IN_PROGRESS);
ret2:
if (len != 0)
usb_freemem(sc->sc_dmatag, dmap);
ret1:
return (r);
}
/* Abort a device bulk request. */
void
uhci_device_bulk_abort(reqh)
usbd_request_handle reqh;
{
/* XXX inactivate */
usb_delay_ms(reqh->pipe->device->bus, 1);/* make sure it is done */
/* XXX call done */
}
/* Close a device bulk pipe. */
void
uhci_device_bulk_close(pipe)
usbd_pipe_handle pipe;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_free_sqh(sc, upipe->u.bulk.sqh);
uhci_free_intr_info(upipe->iinfo);
/* XXX free other resources */
}
usbd_status
uhci_device_ctrl_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status r;
s = splusb();
r = usb_insert_transfer(reqh);
splx(s);
if (r != USBD_NORMAL_COMPLETION)
return (r);
else
return (uhci_device_ctrl_start(reqh));
}
usbd_status
uhci_device_ctrl_start(reqh)
usbd_request_handle reqh;
{
uhci_softc_t *sc = (uhci_softc_t *)reqh->pipe->device->bus;
usbd_status r;
if (!reqh->isreq)
panic("uhci_device_ctrl_transfer: not a request\n");
r = uhci_device_request(reqh);
if (r != USBD_NORMAL_COMPLETION)
return (r);
if (sc->sc_bus.use_polling)
uhci_waitintr(sc, reqh);
return (USBD_IN_PROGRESS);
}
usbd_status
uhci_device_intr_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status r;
s = splusb();
r = usb_insert_transfer(reqh);
splx(s);
if (r != USBD_NORMAL_COMPLETION)
return (r);
else
return (uhci_device_intr_start(reqh));
}
usbd_status
uhci_device_intr_start(reqh)
usbd_request_handle reqh;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_intr_info_t *ii = upipe->iinfo;
uhci_soft_td_t *xfer, *xferend;
uhci_soft_qh_t *sqh;
usb_dma_t *dmap;
usbd_status r;
int len, i;
int s;
DPRINTFN(3, ("uhci_device_intr_transfer: reqh=%p buf=%p len=%d "
"flags=%d\n",
reqh, reqh->buffer, reqh->length, reqh->flags));
if (reqh->isreq)
panic("uhci_device_intr_transfer: a request\n");
len = reqh->length;
dmap = &upipe->u.intr.datadma;
if (len == 0)
return (USBD_INVAL); /* XXX should it be? */
r = usb_allocmem(sc->sc_dmatag, len, 0, dmap);
if (r != USBD_NORMAL_COMPLETION)
goto ret1;
r = uhci_alloc_std_chain(upipe, sc, len, 1,
reqh->flags & USBD_SHORT_XFER_OK,
dmap, &xfer, &xferend);
if (r != USBD_NORMAL_COMPLETION)
goto ret2;
xferend->td->td_status |= UHCI_TD_IOC;
#ifdef USB_DEBUG
if (uhcidebug > 10) {
printf("uhci_device_intr_transfer: xfer(1)\n");
uhci_dump_tds(xfer);
uhci_dump_qh(upipe->u.intr.qhs[0]);
}
#endif
s = splusb();
/* Set up interrupt info. */
ii->reqh = reqh;
ii->stdstart = xfer;
ii->stdend = xferend;
#ifdef DIAGNOSTIC
ii->isdone = 0;
#endif
DPRINTFN(10,("uhci_device_intr_transfer: qhs[0]=%p\n",
upipe->u.intr.qhs[0]));
for (i = 0; i < upipe->u.intr.npoll; i++) {
sqh = upipe->u.intr.qhs[i];
sqh->qh->elink = xfer;
sqh->qh->qh_elink = xfer->physaddr;
}
splx(s);
#ifdef USB_DEBUG
if (uhcidebug > 10) {
printf("uhci_device_intr_transfer: xfer(2)\n");
uhci_dump_tds(xfer);
uhci_dump_qh(upipe->u.intr.qhs[0]);
}
#endif
return (USBD_IN_PROGRESS);
ret2:
if (len != 0)
usb_freemem(sc->sc_dmatag, dmap);
ret1:
return (r);
}
/* Abort a device control request. */
void
uhci_device_ctrl_abort(reqh)
usbd_request_handle reqh;
{
/* XXX inactivate */
usb_delay_ms(reqh->pipe->device->bus, 1); /* make sure it is done */
/* XXX call done */
}
/* Close a device control pipe. */
void
uhci_device_ctrl_close(pipe)
usbd_pipe_handle pipe;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
uhci_free_intr_info(upipe->iinfo);
/* XXX free other resources */
}
/* Abort a device interrupt request. */
void
uhci_device_intr_abort(reqh)
usbd_request_handle reqh;
{
struct uhci_pipe *upipe;
DPRINTFN(1, ("uhci_device_intr_abort: reqh=%p\n", reqh));
/* XXX inactivate */
usb_delay_ms(reqh->pipe->device->bus, 2); /* make sure it is done */
if (reqh->pipe->intrreqh == reqh) {
DPRINTF(("uhci_device_intr_abort: remove\n"));
reqh->pipe->intrreqh = 0;
upipe = (struct uhci_pipe *)reqh->pipe;
uhci_intr_done(upipe->u.intr.qhs[0]->intr_info);
}
}
/* Close a device interrupt pipe. */
void
uhci_device_intr_close(pipe)
usbd_pipe_handle pipe;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
int i, s, npoll;
upipe->iinfo->stdstart = 0; /* inactive */
/* Unlink descriptors from controller data structures. */
npoll = upipe->u.intr.npoll;
uhci_lock_frames(sc);
for (i = 0; i < npoll; i++)
uhci_remove_intr(sc, upipe->u.intr.qhs[i]->pos,
upipe->u.intr.qhs[i]);
uhci_unlock_frames(sc);
/*
* We now have to wait for any activity on the physical
* descriptors to stop.
*/
usb_delay_ms(&sc->sc_bus, 2);
for(i = 0; i < npoll; i++)
uhci_free_sqh(sc, upipe->u.intr.qhs[i]);
free(upipe->u.intr.qhs, M_USB);
s = splusb();
LIST_REMOVE(upipe->iinfo, list); /* remove from active list */
splx(s);
uhci_free_intr_info(upipe->iinfo);
/* XXX free other resources */
}
usbd_status
uhci_device_request(reqh)
usbd_request_handle reqh;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
usb_device_request_t *req = &reqh->request;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
int addr = dev->address;
int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
uhci_intr_info_t *ii = upipe->iinfo;
uhci_soft_td_t *setup, *xfer, *stat, *next, *xferend;
uhci_soft_qh_t *sqh;
usb_dma_t *dmap;
int len;
u_int32_t ls;
usbd_status r;
int isread;
int s;
DPRINTFN(3,("uhci_device_control type=0x%02x, request=0x%02x, "
"wValue=0x%04x, wIndex=0x%04x len=%d, addr=%d, endpt=%d\n",
req->bmRequestType, req->bRequest, UGETW(req->wValue),
UGETW(req->wIndex), UGETW(req->wLength),
addr, endpt));
ls = dev->lowspeed ? UHCI_TD_LS : 0;
isread = req->bmRequestType & UT_READ;
len = UGETW(req->wLength);
setup = upipe->u.ctl.setup;
stat = upipe->u.ctl.stat;
sqh = upipe->u.ctl.sqh;
dmap = &upipe->u.ctl.datadma;
/* Set up data transaction */
if (len != 0) {
r = usb_allocmem(sc->sc_dmatag, len, 0, dmap);
if (r != USBD_NORMAL_COMPLETION)
goto ret1;
upipe->pipe.endpoint->toggle = 1;
r = uhci_alloc_std_chain(upipe, sc, len, isread,
reqh->flags & USBD_SHORT_XFER_OK,
dmap, &xfer, &xferend);
if (r != USBD_NORMAL_COMPLETION)
goto ret2;
next = xfer;
xferend->td->link.std = stat;
xferend->td->td_link = stat->physaddr;
} else {
next = stat;
}
upipe->u.ctl.length = len;
memcpy(KERNADDR(&upipe->u.ctl.reqdma), req, sizeof *req);
if (!isread && len != 0)
memcpy(KERNADDR(dmap), reqh->buffer, len);
setup->td->link.std = next;
setup->td->td_link = next->physaddr;
setup->td->td_status = UHCI_TD_SET_ERRCNT(2) | ls | UHCI_TD_ACTIVE;
setup->td->td_token = UHCI_TD_SETUP(sizeof *req, endpt, addr);
setup->td->td_buffer = DMAADDR(&upipe->u.ctl.reqdma);
stat->td->link.std = 0;
stat->td->td_link = UHCI_PTR_T;
stat->td->td_status = UHCI_TD_SET_ERRCNT(2) | ls |
UHCI_TD_ACTIVE | UHCI_TD_IOC;
stat->td->td_token =
isread ? UHCI_TD_OUT(0, endpt, addr, 1) :
UHCI_TD_IN (0, endpt, addr, 1);
stat->td->td_buffer = 0;
#ifdef USB_DEBUG
if (uhcidebug > 20) {
printf("uhci_device_request: setup\n");
uhci_dump_td(setup);
printf("uhci_device_request: stat\n");
uhci_dump_td(stat);
}
#endif
/* Set up interrupt info. */
ii->reqh = reqh;
ii->stdstart = setup;
ii->stdend = stat;
#ifdef DIAGNOSTIC
ii->isdone = 0;
#endif
sqh->qh->elink = setup;
sqh->qh->qh_elink = setup->physaddr;
sqh->intr_info = ii;
s = splusb();
uhci_add_ctrl(sc, sqh);
LIST_INSERT_HEAD(&sc->sc_intrhead, ii, list);
#ifdef USB_DEBUG
if (uhcidebug > 12) {
uhci_soft_td_t *std;
uhci_soft_qh_t *xqh;
uhci_soft_qh_t *sxqh;
int maxqh = 0;
uhci_physaddr_t link;
printf("uhci_enter_ctl_q: follow from [0]\n");
for (std = sc->sc_vframes[0].htd, link = 0;
(link & UHCI_PTR_Q) == 0;
std = std->td->link.std) {
link = std->td->td_link;
uhci_dump_td(std);
}
for (sxqh = xqh = (uhci_soft_qh_t *)std;
xqh;
xqh = (maxqh++ == 5 || xqh->qh->hlink==sxqh ||
xqh->qh->hlink==xqh ? NULL : xqh->qh->hlink)) {
uhci_dump_qh(xqh);
uhci_dump_qh(sxqh);
}
printf("Enqueued QH:\n");
uhci_dump_qh(sqh);
uhci_dump_tds(sqh->qh->elink);
}
#endif
if (reqh->timeout && !sc->sc_bus.use_polling) {
usb_timeout(uhci_timeout, ii,
MS_TO_TICKS(reqh->timeout), ii->timeout_handle);
}
splx(s);
return (USBD_NORMAL_COMPLETION);
ret2:
if (len != 0)
usb_freemem(sc->sc_dmatag, dmap);
ret1:
return (r);
}
usbd_status
uhci_device_isoc_transfer(reqh)
usbd_request_handle reqh;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
#ifdef USB_DEBUG
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
#endif
DPRINTFN(1,("uhci_device_isoc_transfer: sc=%p\n", sc));
if (upipe->u.iso.bufsize == 0)
return (USBD_INVAL);
/* XXX copy data */
return (USBD_XXX);
}
usbd_status
uhci_device_isoc_start(reqh)
usbd_request_handle reqh;
{
return (USBD_XXX);
}
void
uhci_device_isoc_abort(reqh)
usbd_request_handle reqh;
{
/* XXX Can't abort a single request. */
}
void
uhci_device_isoc_close(pipe)
usbd_pipe_handle pipe;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
struct iso *iso;
int i;
/*
* Make sure all TDs are marked as inactive.
* Wait for completion.
* Unschedule.
* Deallocate.
*/
iso = &upipe->u.iso;
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++)
iso->stds[i]->td->td_status &= ~UHCI_TD_ACTIVE;
usb_delay_ms(&sc->sc_bus, 2); /* wait for completion */
uhci_lock_frames(sc);
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
uhci_soft_td_t *std, *vstd;
std = iso->stds[i];
for (vstd = sc->sc_vframes[i % UHCI_VFRAMELIST_COUNT].htd;
vstd && vstd->td->link.std != std;
vstd = vstd->td->link.std)
;
if (!vstd) {
/*panic*/
printf("uhci_device_isoc_close: %p not found\n", std);
uhci_unlock_frames(sc);
return;
}
vstd->td->link = std->td->link;
vstd->td->td_link = std->td->td_link;
uhci_free_std(sc, std);
}
uhci_unlock_frames(sc);
for (i = 0; i < iso->nbuf; i++)
usb_freemem(sc->sc_dmatag, &iso->bufs[i]);
free(iso->stds, M_USB);
free(iso->bufs, M_USB);
/* XXX what else? */
}
usbd_status
uhci_device_isoc_setbuf(pipe, bufsize, nbuf)
usbd_pipe_handle pipe;
u_int bufsize;
u_int nbuf;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
int addr = upipe->pipe.device->address;
int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
int rd = upipe->pipe.endpoint->edesc->bEndpointAddress & UE_IN;
struct iso *iso;
int i;
usbd_status r;
/*
* For simplicity the number of buffers must fit nicely in the frame
* list.
*/
if (UHCI_VFRAMELIST_COUNT % nbuf != 0)
return (USBD_INVAL);
iso = &upipe->u.iso;
iso->bufsize = bufsize;
iso->nbuf = nbuf;
/* Allocate memory for buffers. */
iso->bufs = malloc(nbuf * sizeof(usb_dma_t), M_USB, M_WAITOK);
iso->stds = malloc(UHCI_VFRAMELIST_COUNT * sizeof (uhci_soft_td_t *),
M_USB, M_WAITOK);
for (i = 0; i < nbuf; i++) {
r = usb_allocmem(sc->sc_dmatag, bufsize, 0, &iso->bufs[i]);
if (r != USBD_NORMAL_COMPLETION) {
nbuf = i;
goto bad1;
}
}
/* Allocate the TDs. */
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
iso->stds[i] = uhci_alloc_std(sc);
if (iso->stds[i] == 0)
goto bad2;
}
/* XXX check schedule */
/* XXX interrupts */
/* Insert TDs into schedule, all marked inactive. */
uhci_lock_frames(sc);
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
uhci_soft_td_t *std, *vstd;
std = iso->stds[i];
std->td->td_status = UHCI_TD_IOS; /* iso, inactive */
std->td->td_token =
rd ? UHCI_TD_IN (0, endpt, addr, 0) :
UHCI_TD_OUT(0, endpt, addr, 0);
std->td->td_buffer = DMAADDR(&iso->bufs[i % nbuf]);
vstd = sc->sc_vframes[i % UHCI_VFRAMELIST_COUNT].htd;
std->td->link = vstd->td->link;
std->td->td_link = vstd->td->td_link;
vstd->td->link.std = std;
vstd->td->td_link = std->physaddr;
}
uhci_unlock_frames(sc);
return (USBD_NORMAL_COMPLETION);
bad2:
while (--i >= 0)
uhci_free_std(sc, iso->stds[i]);
bad1:
for (i = 0; i < nbuf; i++)
usb_freemem(sc->sc_dmatag, &iso->bufs[i]);
free(iso->stds, M_USB);
free(iso->bufs, M_USB);
return (USBD_NOMEM);
}
void
uhci_isoc_done(ii)
uhci_intr_info_t *ii;
{
}
void
uhci_intr_done(ii)
uhci_intr_info_t *ii;
{
uhci_softc_t *sc = ii->sc;
usbd_request_handle reqh = ii->reqh;
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
usb_dma_t *dma;
uhci_soft_qh_t *sqh;
int i, npoll;
DPRINTFN(5, ("uhci_intr_done: length=%d\n", reqh->actlen));
dma = &upipe->u.intr.datadma;
memcpy(reqh->buffer, KERNADDR(dma), reqh->actlen);
npoll = upipe->u.intr.npoll;
for(i = 0; i < npoll; i++) {
sqh = upipe->u.intr.qhs[i];
sqh->qh->elink = 0;
sqh->qh->qh_elink = UHCI_PTR_T;
}
uhci_free_std_chain(sc, ii->stdstart, 0);
/* XXX Wasteful. */
if (reqh->pipe->intrreqh == reqh) {
uhci_soft_td_t *xfer, *xferend;
/* This alloc cannot fail since we freed the chain above. */
uhci_alloc_std_chain(upipe, sc, reqh->length, 1,
reqh->flags & USBD_SHORT_XFER_OK,
dma, &xfer, &xferend);
xferend->td->td_status |= UHCI_TD_IOC;
#ifdef USB_DEBUG
if (uhcidebug > 10) {
printf("uhci_device_intr_done: xfer(1)\n");
uhci_dump_tds(xfer);
uhci_dump_qh(upipe->u.intr.qhs[0]);
}
#endif
ii->stdstart = xfer;
ii->stdend = xferend;
#ifdef DIAGNOSTIC
ii->isdone = 0;
#endif
for (i = 0; i < npoll; i++) {
sqh = upipe->u.intr.qhs[i];
sqh->qh->elink = xfer;
sqh->qh->qh_elink = xfer->physaddr;
}
} else {
usb_freemem(sc->sc_dmatag, dma);
ii->stdstart = 0; /* mark as inactive */
usb_start_next(reqh->pipe);
}
}
/* Deallocate request data structures */
void
uhci_ctrl_done(ii)
uhci_intr_info_t *ii;
{
uhci_softc_t *sc = ii->sc;
usbd_request_handle reqh = ii->reqh;
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
u_int len = upipe->u.ctl.length;
usb_dma_t *dma;
uhci_td_t *htd = ii->stdstart->td;
#ifdef DIAGNOSTIC
if (!reqh->isreq)
panic("uhci_ctrl_done: not a request\n");
#endif
LIST_REMOVE(ii, list); /* remove from active list */
uhci_remove_ctrl(sc, upipe->u.ctl.sqh);
if (len != 0) {
dma = &upipe->u.ctl.datadma;
if (reqh->request.bmRequestType & UT_READ)
memcpy(reqh->buffer, KERNADDR(dma), len);
uhci_free_std_chain(sc, htd->link.std, ii->stdend);
usb_freemem(sc->sc_dmatag, dma);
}
DPRINTFN(5, ("uhci_ctrl_done: length=%d\n", reqh->actlen));
}
/* Deallocate request data structures */
void
uhci_bulk_done(ii)
uhci_intr_info_t *ii;
{
uhci_softc_t *sc = ii->sc;
usbd_request_handle reqh = ii->reqh;
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
u_int len = upipe->u.bulk.length;
usb_dma_t *dma;
uhci_td_t *htd = ii->stdstart->td;
LIST_REMOVE(ii, list); /* remove from active list */
uhci_remove_bulk(sc, upipe->u.bulk.sqh);
if (len != 0) {
dma = &upipe->u.bulk.datadma;
if (upipe->u.bulk.isread && len != 0)
memcpy(reqh->buffer, KERNADDR(dma), len);
uhci_free_std_chain(sc, htd->link.std, 0);
usb_freemem(sc->sc_dmatag, dma);
}
DPRINTFN(4, ("uhci_bulk_done: length=%d\n", reqh->actlen));
/* XXX compute new toggle */
}
/* Add interrupt QH, called with vflock. */
void
uhci_add_intr(sc, n, sqh)
uhci_softc_t *sc;
int n;
uhci_soft_qh_t *sqh;
{
struct uhci_vframe *vf = &sc->sc_vframes[n];
uhci_qh_t *eqh;
DPRINTFN(4, ("uhci_add_intr: n=%d sqh=%p\n", n, sqh));
eqh = vf->eqh->qh;
sqh->qh->hlink = eqh->hlink;
sqh->qh->qh_hlink = eqh->qh_hlink;
eqh->hlink = sqh;
eqh->qh_hlink = sqh->physaddr | UHCI_PTR_Q;
vf->eqh = sqh;
vf->bandwidth++;
}
/* Remove interrupt QH, called with vflock. */
void
uhci_remove_intr(sc, n, sqh)
uhci_softc_t *sc;
int n;
uhci_soft_qh_t *sqh;
{
struct uhci_vframe *vf = &sc->sc_vframes[n];
uhci_soft_qh_t *pqh;
DPRINTFN(4, ("uhci_remove_intr: n=%d sqh=%p\n", n, sqh));
for (pqh = vf->hqh; pqh->qh->hlink != sqh; pqh = pqh->qh->hlink)
#if defined(DIAGNOSTIC) || defined(USB_DEBUG)
if (pqh->qh->qh_hlink & UHCI_PTR_T) {
printf("uhci_remove_intr: QH not found\n");
return;
}
#else
;
#endif
pqh->qh->hlink = sqh->qh->hlink;
pqh->qh->qh_hlink = sqh->qh->qh_hlink;
if (vf->eqh == sqh)
vf->eqh = pqh;
vf->bandwidth--;
}
usbd_status
uhci_device_setintr(sc, upipe, ival)
uhci_softc_t *sc;
struct uhci_pipe *upipe;
int ival;
{
uhci_soft_qh_t *sqh;
int i, npoll, s;
u_int bestbw, bw, bestoffs, offs;
DPRINTFN(2, ("uhci_setintr: pipe=%p\n", upipe));
if (ival == 0) {
printf("uhci_setintr: 0 interval\n");
return (USBD_INVAL);
}
if (ival > UHCI_VFRAMELIST_COUNT)
ival = UHCI_VFRAMELIST_COUNT;
npoll = (UHCI_VFRAMELIST_COUNT + ival - 1) / ival;
DPRINTFN(2, ("uhci_setintr: ival=%d npoll=%d\n", ival, npoll));
upipe->u.intr.npoll = npoll;
upipe->u.intr.qhs =
malloc(npoll * sizeof(uhci_soft_qh_t *), M_USB, M_WAITOK);
/*
* Figure out which offset in the schedule that has most
* bandwidth left over.
*/
#define MOD(i) ((i) & (UHCI_VFRAMELIST_COUNT-1))
for (bestoffs = offs = 0, bestbw = ~0; offs < ival; offs++) {
for (bw = i = 0; i < npoll; i++)
bw += sc->sc_vframes[MOD(i * ival + offs)].bandwidth;
if (bw < bestbw) {
bestbw = bw;
bestoffs = offs;
}
}
DPRINTFN(1, ("uhci_setintr: bw=%d offs=%d\n", bestbw, bestoffs));
upipe->iinfo->stdstart = 0;
for(i = 0; i < npoll; i++) {
upipe->u.intr.qhs[i] = sqh = uhci_alloc_sqh(sc);
sqh->qh->elink = 0;
sqh->qh->qh_elink = UHCI_PTR_T;
sqh->pos = MOD(i * ival + bestoffs);
sqh->intr_info = upipe->iinfo;
}
#undef MOD
s = splusb();
LIST_INSERT_HEAD(&sc->sc_intrhead, upipe->iinfo, list);
splx(s);
uhci_lock_frames(sc);
/* Enter QHs into the controller data structures. */
for(i = 0; i < npoll; i++)
uhci_add_intr(sc, upipe->u.intr.qhs[i]->pos,
upipe->u.intr.qhs[i]);
uhci_unlock_frames(sc);
DPRINTFN(5, ("uhci_setintr: returns %p\n", upipe));
return (USBD_NORMAL_COMPLETION);
}
/* Open a new pipe. */
usbd_status
uhci_open(pipe)
usbd_pipe_handle pipe;
{
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc;
usbd_status r;
DPRINTFN(1, ("uhci_open: pipe=%p, addr=%d, endpt=%d (%d)\n",
pipe, pipe->device->address,
ed->bEndpointAddress, sc->sc_addr));
if (pipe->device->address == sc->sc_addr) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
pipe->methods = &uhci_root_ctrl_methods;
break;
case UE_IN | UHCI_INTR_ENDPT:
pipe->methods = &uhci_root_intr_methods;
break;
default:
return (USBD_INVAL);
}
} else {
upipe->iinfo = uhci_alloc_intr_info(sc);
if (upipe->iinfo == 0)
return (USBD_NOMEM);
switch (ed->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
pipe->methods = &uhci_device_ctrl_methods;
upipe->u.ctl.sqh = uhci_alloc_sqh(sc);
if (upipe->u.ctl.sqh == 0)
goto bad;
upipe->u.ctl.setup = uhci_alloc_std(sc);
if (upipe->u.ctl.setup == 0) {
uhci_free_sqh(sc, upipe->u.ctl.sqh);
goto bad;
}
upipe->u.ctl.stat = uhci_alloc_std(sc);
if (upipe->u.ctl.stat == 0) {
uhci_free_sqh(sc, upipe->u.ctl.sqh);
uhci_free_std(sc, upipe->u.ctl.setup);
goto bad;
}
r = usb_allocmem(sc->sc_dmatag,
sizeof(usb_device_request_t),
0, &upipe->u.ctl.reqdma);
if (r != USBD_NORMAL_COMPLETION) {
uhci_free_sqh(sc, upipe->u.ctl.sqh);
uhci_free_std(sc, upipe->u.ctl.setup);
uhci_free_std(sc, upipe->u.ctl.stat);
goto bad;
}
break;
case UE_INTERRUPT:
pipe->methods = &uhci_device_intr_methods;
return (uhci_device_setintr(sc, upipe, ed->bInterval));
case UE_ISOCHRONOUS:
pipe->methods = &uhci_device_isoc_methods;
upipe->u.iso.nbuf = 0;
return (USBD_NORMAL_COMPLETION);
case UE_BULK:
pipe->methods = &uhci_device_bulk_methods;
upipe->u.bulk.sqh = uhci_alloc_sqh(sc);
if (upipe->u.bulk.sqh == 0)
goto bad;
break;
}
}
return (USBD_NORMAL_COMPLETION);
bad:
uhci_free_intr_info(upipe->iinfo);
return (USBD_NOMEM);
}
/*
* Data structures and routines to emulate the root hub.
*/
usb_device_descriptor_t uhci_devd = {
USB_DEVICE_DESCRIPTOR_SIZE,
UDESC_DEVICE, /* type */
{0x00, 0x01}, /* USB version */
UCLASS_HUB, /* class */
USUBCLASS_HUB, /* subclass */
0, /* protocol */
64, /* max packet */
{0},{0},{0x00,0x01}, /* device id */
1,2,0, /* string indicies */
1 /* # of configurations */
};
usb_config_descriptor_t uhci_confd = {
USB_CONFIG_DESCRIPTOR_SIZE,
UDESC_CONFIG,
{USB_CONFIG_DESCRIPTOR_SIZE +
USB_INTERFACE_DESCRIPTOR_SIZE +
USB_ENDPOINT_DESCRIPTOR_SIZE},
1,
1,
0,
UC_SELF_POWERED,
0 /* max power */
};
usb_interface_descriptor_t uhci_ifcd = {
USB_INTERFACE_DESCRIPTOR_SIZE,
UDESC_INTERFACE,
0,
0,
1,
UCLASS_HUB,
USUBCLASS_HUB,
0,
0
};
usb_endpoint_descriptor_t uhci_endpd = {
USB_ENDPOINT_DESCRIPTOR_SIZE,
UDESC_ENDPOINT,
UE_IN | UHCI_INTR_ENDPT,
UE_INTERRUPT,
{8},
255
};
usb_hub_descriptor_t uhci_hubd_piix = {
USB_HUB_DESCRIPTOR_SIZE,
UDESC_HUB,
2,
{ UHD_PWR_NO_SWITCH | UHD_OC_INDIVIDUAL, 0 },
50, /* power on to power good */
0,
{ 0x00 }, /* both ports are removable */
};
int
uhci_str(p, l, s)
usb_string_descriptor_t *p;
int l;
char *s;
{
int i;
if (l == 0)
return (0);
p->bLength = 2 * strlen(s) + 2;
if (l == 1)
return (1);
p->bDescriptorType = UDESC_STRING;
l -= 2;
for (i = 0; s[i] && l > 1; i++, l -= 2)
USETW2(p->bString[i], 0, s[i]);
return (2*i+2);
}
/*
* Simulate a hardware hub by handling all the necessary requests.
*/
usbd_status
uhci_root_ctrl_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status r;
s = splusb();
r = usb_insert_transfer(reqh);
splx(s);
if (r != USBD_NORMAL_COMPLETION)
return (r);
else
return (uhci_root_ctrl_start(reqh));
}
usbd_status
uhci_root_ctrl_start(reqh)
usbd_request_handle reqh;
{
uhci_softc_t *sc = (uhci_softc_t *)reqh->pipe->device->bus;
usb_device_request_t *req;
void *buf;
int port, x;
int len, value, index, status, change, l, totlen = 0;
usb_port_status_t ps;
usbd_status r;
if (!reqh->isreq)
panic("uhci_root_ctrl_transfer: not a request\n");
req = &reqh->request;
buf = reqh->buffer;
DPRINTFN(2,("uhci_root_ctrl_control type=0x%02x request=%02x\n",
req->bmRequestType, req->bRequest));
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
#define C(x,y) ((x) | ((y) << 8))
switch(C(req->bRequest, req->bmRequestType)) {
case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE):
case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE):
case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT):
/*
* DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops
* for the integrated root hub.
*/
break;
case C(UR_GET_CONFIG, UT_READ_DEVICE):
if (len > 0) {
*(u_int8_t *)buf = sc->sc_conf;
totlen = 1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
DPRINTFN(2,("uhci_root_ctrl_control wValue=0x%04x\n", value));
switch(value >> 8) {
case UDESC_DEVICE:
if ((value & 0xff) != 0) {
r = USBD_IOERROR;
goto ret;
}
totlen = l = min(len, USB_DEVICE_DESCRIPTOR_SIZE);
memcpy(buf, &uhci_devd, l);
break;
case UDESC_CONFIG:
if ((value & 0xff) != 0) {
r = USBD_IOERROR;
goto ret;
}
totlen = l = min(len, USB_CONFIG_DESCRIPTOR_SIZE);
memcpy(buf, &uhci_confd, l);
buf = (char *)buf + l;
len -= l;
l = min(len, USB_INTERFACE_DESCRIPTOR_SIZE);
totlen += l;
memcpy(buf, &uhci_ifcd, l);
buf = (char *)buf + l;
len -= l;
l = min(len, USB_ENDPOINT_DESCRIPTOR_SIZE);
totlen += l;
memcpy(buf, &uhci_endpd, l);
break;
case UDESC_STRING:
if (len == 0)
break;
*(u_int8_t *)buf = 0;
totlen = 1;
switch (value & 0xff) {
case 1: /* Vendor */
totlen = uhci_str(buf, len, sc->sc_vendor);
break;
case 2: /* Product */
totlen = uhci_str(buf, len, "UHCI root hub");
break;
}
break;
default:
r = USBD_IOERROR;
goto ret;
}
break;
case C(UR_GET_INTERFACE, UT_READ_INTERFACE):
if (len > 0) {
*(u_int8_t *)buf = 0;
totlen = 1;
}
break;
case C(UR_GET_STATUS, UT_READ_DEVICE):
if (len > 1) {
USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED);
totlen = 2;
}
break;
case C(UR_GET_STATUS, UT_READ_INTERFACE):
case C(UR_GET_STATUS, UT_READ_ENDPOINT):
if (len > 1) {
USETW(((usb_status_t *)buf)->wStatus, 0);
totlen = 2;
}
break;
case C(UR_SET_ADDRESS, UT_WRITE_DEVICE):
if (value >= USB_MAX_DEVICES) {
r = USBD_IOERROR;
goto ret;
}
sc->sc_addr = value;
break;
case C(UR_SET_CONFIG, UT_WRITE_DEVICE):
if (value != 0 && value != 1) {
r = USBD_IOERROR;
goto ret;
}
sc->sc_conf = value;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_DEVICE):
case C(UR_SET_FEATURE, UT_WRITE_INTERFACE):
case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT):
r = USBD_IOERROR;
goto ret;
case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE):
break;
case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT):
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
DPRINTFN(3, ("uhci_root_ctrl_control: UR_CLEAR_PORT_FEATURE "
"port=%d feature=%d\n",
index, value));
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
r = USBD_IOERROR;
goto ret;
}
switch(value) {
case UHF_PORT_ENABLE:
x = UREAD2(sc, port);
UWRITE2(sc, port, x & ~UHCI_PORTSC_PE);
break;
case UHF_PORT_SUSPEND:
x = UREAD2(sc, port);
UWRITE2(sc, port, x & ~UHCI_PORTSC_SUSP);
break;
case UHF_PORT_RESET:
x = UREAD2(sc, port);
UWRITE2(sc, port, x & ~UHCI_PORTSC_PR);
break;
case UHF_C_PORT_CONNECTION:
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_CSC);
break;
case UHF_C_PORT_ENABLE:
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_POEDC);
break;
case UHF_C_PORT_OVER_CURRENT:
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_OCIC);
break;
case UHF_C_PORT_RESET:
sc->sc_isreset = 0;
r = USBD_NORMAL_COMPLETION;
goto ret;
case UHF_PORT_CONNECTION:
case UHF_PORT_OVER_CURRENT:
case UHF_PORT_POWER:
case UHF_PORT_LOW_SPEED:
case UHF_C_PORT_SUSPEND:
default:
r = USBD_IOERROR;
goto ret;
}
break;
case C(UR_GET_BUS_STATE, UT_READ_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
r = USBD_IOERROR;
goto ret;
}
if (len > 0) {
*(u_int8_t *)buf =
(UREAD2(sc, port) & UHCI_PORTSC_LS) >>
UHCI_PORTSC_LS_SHIFT;
totlen = 1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if (value != 0) {
r = USBD_IOERROR;
goto ret;
}
l = min(len, USB_HUB_DESCRIPTOR_SIZE);
totlen = l;
memcpy(buf, &uhci_hubd_piix, l);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
if (len != 4) {
r = USBD_IOERROR;
goto ret;
}
memset(buf, 0, len);
totlen = len;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
r = USBD_IOERROR;
goto ret;
}
if (len != 4) {
r = USBD_IOERROR;
goto ret;
}
x = UREAD2(sc, port);
status = change = 0;
if (x & UHCI_PORTSC_CCS )
status |= UPS_CURRENT_CONNECT_STATUS;
if (x & UHCI_PORTSC_CSC )
change |= UPS_C_CONNECT_STATUS;
if (x & UHCI_PORTSC_PE )
status |= UPS_PORT_ENABLED;
if (x & UHCI_PORTSC_POEDC)
change |= UPS_C_PORT_ENABLED;
if (x & UHCI_PORTSC_OCI )
status |= UPS_OVERCURRENT_INDICATOR;
if (x & UHCI_PORTSC_OCIC )
change |= UPS_C_OVERCURRENT_INDICATOR;
if (x & UHCI_PORTSC_SUSP )
status |= UPS_SUSPEND;
if (x & UHCI_PORTSC_LSDA )
status |= UPS_LOW_SPEED;
status |= UPS_PORT_POWER;
if (sc->sc_isreset)
change |= UPS_C_PORT_RESET;
USETW(ps.wPortStatus, status);
USETW(ps.wPortChange, change);
l = min(len, sizeof ps);
memcpy(buf, &ps, l);
totlen = l;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
r = USBD_IOERROR;
goto ret;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
r = USBD_IOERROR;
goto ret;
}
switch(value) {
case UHF_PORT_ENABLE:
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_PE);
break;
case UHF_PORT_SUSPEND:
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_SUSP);
break;
case UHF_PORT_RESET:
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_PR);
usb_delay_ms(&sc->sc_bus, 10);
UWRITE2(sc, port, x & ~UHCI_PORTSC_PR);
delay(100);
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_PE);
delay(100);
DPRINTFN(3,("uhci port %d reset, status = 0x%04x\n",
index, UREAD2(sc, port)));
sc->sc_isreset = 1;
break;
case UHF_C_PORT_CONNECTION:
case UHF_C_PORT_ENABLE:
case UHF_C_PORT_OVER_CURRENT:
case UHF_PORT_CONNECTION:
case UHF_PORT_OVER_CURRENT:
case UHF_PORT_POWER:
case UHF_PORT_LOW_SPEED:
case UHF_C_PORT_SUSPEND:
case UHF_C_PORT_RESET:
default:
r = USBD_IOERROR;
goto ret;
}
break;
default:
r = USBD_IOERROR;
goto ret;
}
reqh->actlen = totlen;
r = USBD_NORMAL_COMPLETION;
ret:
reqh->status = r;
reqh->xfercb(reqh);
usb_start_next(reqh->pipe);
return (USBD_IN_PROGRESS);
}
/* Abort a root control request. */
void
uhci_root_ctrl_abort(reqh)
usbd_request_handle reqh;
{
/* Nothing to do, all transfers are syncronous. */
}
/* Close the root pipe. */
void
uhci_root_ctrl_close(pipe)
usbd_pipe_handle pipe;
{
usb_untimeout(uhci_timo, pipe->intrreqh, pipe->intrreqh->timo_handle);
DPRINTF(("uhci_root_ctrl_close\n"));
}
/* Abort a root interrupt request. */
void
uhci_root_intr_abort(reqh)
usbd_request_handle reqh;
{
usb_untimeout(uhci_timo, reqh, reqh->timo_handle);
}
usbd_status
uhci_root_intr_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status r;
s = splusb();
r = usb_insert_transfer(reqh);
splx(s);
if (r != USBD_NORMAL_COMPLETION)
return (r);
else
return (uhci_root_intr_start(reqh));
}
/* Start a transfer on the root interrupt pipe */
usbd_status
uhci_root_intr_start(reqh)
usbd_request_handle reqh;
{
usbd_pipe_handle pipe = reqh->pipe;
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usb_dma_t *dmap;
usbd_status r;
int len;
DPRINTFN(3, ("uhci_root_intr_transfer: reqh=%p buf=%p len=%d "
"flags=%d\n",
reqh, reqh->buffer, reqh->length, reqh->flags));
len = reqh->length;
dmap = &upipe->u.intr.datadma;
if (len == 0)
return (USBD_INVAL); /* XXX should it be? */
r = usb_allocmem(sc->sc_dmatag, len, 0, dmap);
if (r != USBD_NORMAL_COMPLETION)
return (r);
sc->sc_ival = MS_TO_TICKS(reqh->pipe->endpoint->edesc->bInterval);
usb_timeout(uhci_timo, reqh, sc->sc_ival, reqh->timo_handle);
return (USBD_IN_PROGRESS);
}
/* Close the root interrupt pipe. */
void
uhci_root_intr_close(pipe)
usbd_pipe_handle pipe;
{
usb_untimeout(uhci_timo, pipe->intrreqh, pipe->intrreqh->timo_handle);
DPRINTF(("uhci_root_intr_close\n"));
}