NetBSD/sys/opencrypto/cryptosoft.c
2005-11-25 16:41:31 +00:00

1166 lines
26 KiB
C

/* $NetBSD: cryptosoft.c,v 1.11 2005/11/25 16:41:31 thorpej Exp $ */
/* $FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $ */
/* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */
/*
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.11 2005/11/25 16:41:31 thorpej Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/cryptosoft.h>
#include <opencrypto/xform.h>
#include <opencrypto/cryptosoft_xform.c>
union authctx {
MD5_CTX md5ctx;
SHA1_CTX sha1ctx;
RMD160_CTX rmd160ctx;
SHA256_CTX sha256ctx;
SHA384_CTX sha384ctx;
SHA512_CTX sha512ctx;
};
struct swcr_data **swcr_sessions = NULL;
u_int32_t swcr_sesnum = 0;
int32_t swcr_id = -1;
#define COPYBACK(x, a, b, c, d) \
(x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
: cuio_copyback((struct uio *)a,b,c,d)
#define COPYDATA(x, a, b, c, d) \
(x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
: cuio_copydata((struct uio *)a,b,c,d)
static int swcr_encdec(struct cryptodesc *, struct swcr_data *, caddr_t, int);
static int swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
struct swcr_data *sw, caddr_t buf, int outtype);
static int swcr_compdec(struct cryptodesc *, struct swcr_data *, caddr_t, int);
static int swcr_process(void *, struct cryptop *, int);
static int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
static int swcr_freesession(void *, u_int64_t);
/*
* Apply a symmetric encryption/decryption algorithm.
*/
static int
swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf,
int outtype)
{
unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
const struct swcr_enc_xform *exf;
int i, k, j, blks;
int count, ind;
exf = sw->sw_exf;
blks = exf->enc_xform->blocksize;
/* Check for non-padded data */
if (crd->crd_len % blks)
return EINVAL;
/* Initialize the IV */
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* IV explicitly provided ? */
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crd->crd_iv, iv, blks);
else {
/* Get random IV */
for (i = 0;
i + sizeof (u_int32_t) < EALG_MAX_BLOCK_LEN;
i += sizeof (u_int32_t)) {
u_int32_t temp = arc4random();
bcopy(&temp, iv + i, sizeof(u_int32_t));
}
/*
* What if the block size is not a multiple
* of sizeof (u_int32_t), which is the size of
* what arc4random() returns ?
*/
if (EALG_MAX_BLOCK_LEN % sizeof (u_int32_t) != 0) {
u_int32_t temp = arc4random();
bcopy (&temp, iv + i,
EALG_MAX_BLOCK_LEN - i);
}
}
/* Do we need to write the IV */
if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
COPYBACK(outtype, buf, crd->crd_inject, blks, iv);
}
} else { /* Decryption */
/* IV explicitly provided ? */
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crd->crd_iv, iv, blks);
else {
/* Get IV off buf */
COPYDATA(outtype, buf, crd->crd_inject, blks, iv);
}
}
ivp = iv;
if (outtype == CRYPTO_BUF_CONTIG) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
for (i = crd->crd_skip;
i < crd->crd_skip + crd->crd_len; i += blks) {
/* XOR with the IV/previous block, as appropriate. */
if (i == crd->crd_skip)
for (k = 0; k < blks; k++)
buf[i + k] ^= ivp[k];
else
for (k = 0; k < blks; k++)
buf[i + k] ^= buf[i + k - blks];
exf->encrypt(sw->sw_kschedule, buf + i);
}
} else { /* Decrypt */
/*
* Start at the end, so we don't need to keep the encrypted
* block as the IV for the next block.
*/
for (i = crd->crd_skip + crd->crd_len - blks;
i >= crd->crd_skip; i -= blks) {
exf->decrypt(sw->sw_kschedule, buf + i);
/* XOR with the IV/previous block, as appropriate */
if (i == crd->crd_skip)
for (k = 0; k < blks; k++)
buf[i + k] ^= ivp[k];
else
for (k = 0; k < blks; k++)
buf[i + k] ^= buf[i + k - blks];
}
}
return 0;
} else if (outtype == CRYPTO_BUF_MBUF) {
struct mbuf *m = (struct mbuf *) buf;
/* Find beginning of data */
m = m_getptr(m, crd->crd_skip, &k);
if (m == NULL)
return EINVAL;
i = crd->crd_len;
while (i > 0) {
/*
* If there's insufficient data at the end of
* an mbuf, we have to do some copying.
*/
if (m->m_len < k + blks && m->m_len != k) {
m_copydata(m, k, blks, blk);
/* Actual encryption/decryption */
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, blk);
/*
* Keep encrypted block for XOR'ing
* with next block
*/
bcopy(blk, iv, blks);
ivp = iv;
} else { /* decrypt */
/*
* Keep encrypted block for XOR'ing
* with next block
*/
if (ivp == iv)
bcopy(blk, piv, blks);
else
bcopy(blk, iv, blks);
exf->decrypt(sw->sw_kschedule, blk);
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
if (ivp == iv)
bcopy(piv, iv, blks);
else
ivp = iv;
}
/* Copy back decrypted block */
m_copyback(m, k, blks, blk);
/* Advance pointer */
m = m_getptr(m, k + blks, &k);
if (m == NULL)
return EINVAL;
i -= blks;
/* Could be done... */
if (i == 0)
break;
}
/* Skip possibly empty mbufs */
if (k == m->m_len) {
for (m = m->m_next; m && m->m_len == 0;
m = m->m_next)
;
k = 0;
}
/* Sanity check */
if (m == NULL)
return EINVAL;
/*
* Warning: idat may point to garbage here, but
* we only use it in the while() loop, only if
* there are indeed enough data.
*/
idat = mtod(m, unsigned char *) + k;
while (m->m_len >= k + blks && i > 0) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, idat);
ivp = idat;
} else { /* decrypt */
/*
* Keep encrypted block to be used
* in next block's processing.
*/
if (ivp == iv)
bcopy(idat, piv, blks);
else
bcopy(idat, iv, blks);
exf->decrypt(sw->sw_kschedule, idat);
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
if (ivp == iv)
bcopy(piv, iv, blks);
else
ivp = iv;
}
idat += blks;
k += blks;
i -= blks;
}
}
return 0; /* Done with mbuf encryption/decryption */
} else if (outtype == CRYPTO_BUF_IOV) {
struct uio *uio = (struct uio *) buf;
#ifdef __FreeBSD__
struct iovec *iov;
/* Find beginning of data */
iov = cuio_getptr(uio, crd->crd_skip, &k);
if (iov == NULL)
return EINVAL;
i = crd->crd_len;
while (i > 0) {
/*
* If there's insufficient data at the end of
* an iovec, we have to do some copying.
*/
if (iov->iov_len < k + blks && iov->iov_len != k) {
cuio_copydata(uio, k, blks, blk);
/* Actual encryption/decryption */
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, blk);
/*
* Keep encrypted block for XOR'ing
* with next block
*/
bcopy(blk, iv, blks);
ivp = iv;
} else { /* decrypt */
/*
* Keep encrypted block for XOR'ing
* with next block
*/
if (ivp == iv)
bcopy(blk, piv, blks);
else
bcopy(blk, iv, blks);
exf->decrypt(sw->sw_kschedule, blk);
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
if (ivp == iv)
bcopy(piv, iv, blks);
else
ivp = iv;
}
/* Copy back decrypted block */
cuio_copyback(uio, k, blks, blk);
/* Advance pointer */
iov = cuio_getptr(uio, k + blks, &k);
if (iov == NULL)
return EINVAL;
i -= blks;
/* Could be done... */
if (i == 0)
break;
}
/*
* Warning: idat may point to garbage here, but
* we only use it in the while() loop, only if
* there are indeed enough data.
*/
idat = (char *)iov->iov_base + k;
while (iov->iov_len >= k + blks && i > 0) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, idat);
ivp = idat;
} else { /* decrypt */
/*
* Keep encrypted block to be used
* in next block's processing.
*/
if (ivp == iv)
bcopy(idat, piv, blks);
else
bcopy(idat, iv, blks);
exf->decrypt(sw->sw_kschedule, idat);
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
if (ivp == iv)
bcopy(piv, iv, blks);
else
ivp = iv;
}
idat += blks;
k += blks;
i -= blks;
}
}
return 0; /* Done with mbuf encryption/decryption */
#else /* !freebsd iov */
/* Find beginning of data */
count = crd->crd_skip;
ind = cuio_getptr(uio, count, &k);
if (ind == -1)
return EINVAL;
i = crd->crd_len;
while (i > 0) {
/*
* If there's insufficient data at the end,
* we have to do some copying.
*/
if (uio->uio_iov[ind].iov_len < k + blks &&
uio->uio_iov[ind].iov_len != k) {
cuio_copydata(uio, k, blks, blk);
/* Actual encryption/decryption */
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, blk);
/*
* Keep encrypted block for XOR'ing
* with next block
*/
bcopy(blk, iv, blks);
ivp = iv;
} else { /* decrypt */
/*
* Keep encrypted block for XOR'ing
* with next block
*/
if (ivp == iv)
bcopy(blk, piv, blks);
else
bcopy(blk, iv, blks);
exf->decrypt(sw->sw_kschedule, blk);
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
if (ivp == iv)
bcopy(piv, iv, blks);
else
ivp = iv;
}
/* Copy back decrypted block */
cuio_copyback(uio, k, blks, blk);
count += blks;
/* Advance pointer */
ind = cuio_getptr(uio, count, &k);
if (ind == -1)
return (EINVAL);
i -= blks;
/* Could be done... */
if (i == 0)
break;
}
/*
* Warning: idat may point to garbage here, but
* we only use it in the while() loop, only if
* there are indeed enough data.
*/
idat = ((caddr_t)uio->uio_iov[ind].iov_base) + k;
while (uio->uio_iov[ind].iov_len >= k + blks &&
i > 0) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, idat);
ivp = idat;
} else { /* decrypt */
/*
* Keep encrypted block to be used
* in next block's processing.
*/
if (ivp == iv)
bcopy(idat, piv, blks);
else
bcopy(idat, iv, blks);
exf->decrypt(sw->sw_kschedule, idat);
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
if (ivp == iv)
bcopy(piv, iv, blks);
else
ivp = iv;
}
idat += blks;
count += blks;
k += blks;
i -= blks;
}
}
#endif
return 0; /* Done with mbuf encryption/decryption */
}
/* Unreachable */
return EINVAL;
}
/*
* Compute keyed-hash authenticator.
*/
static int
swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
struct swcr_data *sw, caddr_t buf, int outtype)
{
unsigned char aalg[AALG_MAX_RESULT_LEN];
const struct swcr_auth_hash *axf;
union authctx ctx;
int err;
if (sw->sw_ictx == 0)
return EINVAL;
axf = sw->sw_axf;
bcopy(sw->sw_ictx, &ctx, axf->auth_hash->ctxsize);
switch (outtype) {
case CRYPTO_BUF_CONTIG:
axf->Update(&ctx, buf + crd->crd_skip, crd->crd_len);
break;
case CRYPTO_BUF_MBUF:
err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
(int (*)(void*, caddr_t, unsigned int)) axf->Update,
(caddr_t) &ctx);
if (err)
return err;
break;
case CRYPTO_BUF_IOV:
#ifdef __FreeBSD__
/*XXX FIXME: handle iov case*/
return EINVAL;
#else
err = cuio_apply((struct uio *) buf, crd->crd_skip,
crd->crd_len,
(int (*)(caddr_t, caddr_t, unsigned int)) axf->Update,
(caddr_t) &ctx);
if (err) {
return err;
}
#endif
break;
default:
return EINVAL;
}
switch (sw->sw_alg) {
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_HMAC:
case CRYPTO_RIPEMD160_HMAC:
if (sw->sw_octx == NULL)
return EINVAL;
axf->Final(aalg, &ctx);
bcopy(sw->sw_octx, &ctx, axf->auth_hash->ctxsize);
axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
axf->Final(aalg, &ctx);
break;
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
if (sw->sw_octx == NULL)
return EINVAL;
axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
axf->Final(aalg, &ctx);
break;
case CRYPTO_NULL_HMAC:
case CRYPTO_MD5:
case CRYPTO_SHA1:
axf->Final(aalg, &ctx);
break;
}
/* Inject the authentication data */
switch (outtype) {
case CRYPTO_BUF_CONTIG:
bcopy(aalg, buf + crd->crd_inject, axf->auth_hash->authsize);
break;
case CRYPTO_BUF_MBUF:
m_copyback((struct mbuf *) buf, crd->crd_inject,
axf->auth_hash->authsize, aalg);
break;
case CRYPTO_BUF_IOV:
bcopy(aalg, crp->crp_mac, axf->auth_hash->authsize);
break;
default:
return EINVAL;
}
return 0;
}
/*
* Apply a compression/decompression algorithm
*/
static int
swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw,
caddr_t buf, int outtype)
{
u_int8_t *data, *out;
const struct swcr_comp_algo *cxf;
int adj;
u_int32_t result;
cxf = sw->sw_cxf;
/* We must handle the whole buffer of data in one time
* then if there is not all the data in the mbuf, we must
* copy in a buffer.
*/
MALLOC(data, u_int8_t *, crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
if (data == NULL)
return (EINVAL);
COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
if (crd->crd_flags & CRD_F_COMP)
result = cxf->compress(data, crd->crd_len, &out);
else
result = cxf->decompress(data, crd->crd_len, &out);
FREE(data, M_CRYPTO_DATA);
if (result == 0)
return EINVAL;
/* Copy back the (de)compressed data. m_copyback is
* extending the mbuf as necessary.
*/
sw->sw_size = result;
/* Check the compressed size when doing compression */
if (crd->crd_flags & CRD_F_COMP) {
if (result > crd->crd_len) {
/* Compression was useless, we lost time */
FREE(out, M_CRYPTO_DATA);
return 0;
}
}
COPYBACK(outtype, buf, crd->crd_skip, result, out);
if (result < crd->crd_len) {
adj = result - crd->crd_len;
if (outtype == CRYPTO_BUF_MBUF) {
adj = result - crd->crd_len;
m_adj((struct mbuf *)buf, adj);
} else {
struct uio *uio = (struct uio *)buf;
int ind;
adj = crd->crd_len - result;
ind = uio->uio_iovcnt - 1;
while (adj > 0 && ind >= 0) {
if (adj < uio->uio_iov[ind].iov_len) {
uio->uio_iov[ind].iov_len -= adj;
break;
}
adj -= uio->uio_iov[ind].iov_len;
uio->uio_iov[ind].iov_len = 0;
ind--;
uio->uio_iovcnt--;
}
}
}
FREE(out, M_CRYPTO_DATA);
return 0;
}
/*
* Generate a new software session.
*/
static int
swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
{
struct swcr_data **swd;
const struct swcr_auth_hash *axf;
const struct swcr_enc_xform *txf;
const struct swcr_comp_algo *cxf;
u_int32_t i;
int k, error;
if (sid == NULL || cri == NULL)
return EINVAL;
if (swcr_sessions) {
for (i = 1; i < swcr_sesnum; i++)
if (swcr_sessions[i] == NULL)
break;
} else
i = 1; /* NB: to silence compiler warning */
if (swcr_sessions == NULL || i == swcr_sesnum) {
if (swcr_sessions == NULL) {
i = 1; /* We leave swcr_sessions[0] empty */
swcr_sesnum = CRYPTO_SW_SESSIONS;
} else
swcr_sesnum *= 2;
swd = malloc(swcr_sesnum * sizeof(struct swcr_data *),
M_CRYPTO_DATA, M_NOWAIT);
if (swd == NULL) {
/* Reset session number */
if (swcr_sesnum == CRYPTO_SW_SESSIONS)
swcr_sesnum = 0;
else
swcr_sesnum /= 2;
return ENOBUFS;
}
bzero(swd, swcr_sesnum * sizeof(struct swcr_data *));
/* Copy existing sessions */
if (swcr_sessions) {
bcopy(swcr_sessions, swd,
(swcr_sesnum / 2) * sizeof(struct swcr_data *));
free(swcr_sessions, M_CRYPTO_DATA);
}
swcr_sessions = swd;
}
swd = &swcr_sessions[i];
*sid = i;
while (cri) {
MALLOC(*swd, struct swcr_data *, sizeof(struct swcr_data),
M_CRYPTO_DATA, M_NOWAIT);
if (*swd == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
bzero(*swd, sizeof(struct swcr_data));
switch (cri->cri_alg) {
case CRYPTO_DES_CBC:
txf = &swcr_enc_xform_des;
goto enccommon;
case CRYPTO_3DES_CBC:
txf = &swcr_enc_xform_3des;
goto enccommon;
case CRYPTO_BLF_CBC:
txf = &swcr_enc_xform_blf;
goto enccommon;
case CRYPTO_CAST_CBC:
txf = &swcr_enc_xform_cast5;
goto enccommon;
case CRYPTO_SKIPJACK_CBC:
txf = &swcr_enc_xform_skipjack;
goto enccommon;
case CRYPTO_RIJNDAEL128_CBC:
txf = &swcr_enc_xform_rijndael128;
goto enccommon;
case CRYPTO_NULL_CBC:
txf = &swcr_enc_xform_null;
goto enccommon;
enccommon:
error = txf->setkey(&((*swd)->sw_kschedule),
cri->cri_key, cri->cri_klen / 8);
if (error) {
swcr_freesession(NULL, i);
return error;
}
(*swd)->sw_exf = txf;
break;
case CRYPTO_MD5_HMAC:
axf = &swcr_auth_hash_hmac_md5_96;
goto authcommon;
case CRYPTO_SHA1_HMAC:
axf = &swcr_auth_hash_hmac_sha1_96;
goto authcommon;
case CRYPTO_SHA2_HMAC:
if (cri->cri_klen == 256)
axf = &swcr_auth_hash_hmac_sha2_256;
else if (cri->cri_klen == 384)
axf = &swcr_auth_hash_hmac_sha2_384;
else if (cri->cri_klen == 512)
axf = &swcr_auth_hash_hmac_sha2_512;
else {
swcr_freesession(NULL, i);
return EINVAL;
}
goto authcommon;
case CRYPTO_NULL_HMAC:
axf = &swcr_auth_hash_null;
goto authcommon;
case CRYPTO_RIPEMD160_HMAC:
axf = &swcr_auth_hash_hmac_ripemd_160_96;
authcommon:
(*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
M_CRYPTO_DATA, M_NOWAIT);
if ((*swd)->sw_ictx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
(*swd)->sw_octx = malloc(axf->auth_hash->ctxsize,
M_CRYPTO_DATA, M_NOWAIT);
if ((*swd)->sw_octx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
for (k = 0; k < cri->cri_klen / 8; k++)
cri->cri_key[k] ^= HMAC_IPAD_VAL;
axf->Init((*swd)->sw_ictx);
axf->Update((*swd)->sw_ictx, cri->cri_key,
cri->cri_klen / 8);
axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
HMAC_BLOCK_LEN - (cri->cri_klen / 8));
for (k = 0; k < cri->cri_klen / 8; k++)
cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
axf->Init((*swd)->sw_octx);
axf->Update((*swd)->sw_octx, cri->cri_key,
cri->cri_klen / 8);
axf->Update((*swd)->sw_octx, hmac_opad_buffer,
HMAC_BLOCK_LEN - (cri->cri_klen / 8));
for (k = 0; k < cri->cri_klen / 8; k++)
cri->cri_key[k] ^= HMAC_OPAD_VAL;
(*swd)->sw_axf = axf;
break;
case CRYPTO_MD5_KPDK:
axf = &swcr_auth_hash_key_md5;
goto auth2common;
case CRYPTO_SHA1_KPDK:
axf = &swcr_auth_hash_key_sha1;
auth2common:
(*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
M_CRYPTO_DATA, M_NOWAIT);
if ((*swd)->sw_ictx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
/* Store the key so we can "append" it to the payload */
(*swd)->sw_octx = malloc(cri->cri_klen / 8, M_CRYPTO_DATA,
M_NOWAIT);
if ((*swd)->sw_octx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
(*swd)->sw_klen = cri->cri_klen / 8;
bcopy(cri->cri_key, (*swd)->sw_octx, cri->cri_klen / 8);
axf->Init((*swd)->sw_ictx);
axf->Update((*swd)->sw_ictx, cri->cri_key,
cri->cri_klen / 8);
axf->Final(NULL, (*swd)->sw_ictx);
(*swd)->sw_axf = axf;
break;
case CRYPTO_MD5:
axf = &swcr_auth_hash_md5;
goto auth3common;
case CRYPTO_SHA1:
axf = &swcr_auth_hash_sha1;
auth3common:
(*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
M_CRYPTO_DATA, M_NOWAIT);
if ((*swd)->sw_ictx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
axf->Init((*swd)->sw_ictx);
(*swd)->sw_axf = axf;
break;
case CRYPTO_DEFLATE_COMP:
cxf = &swcr_comp_algo_deflate;
(*swd)->sw_cxf = cxf;
break;
default:
swcr_freesession(NULL, i);
return EINVAL;
}
(*swd)->sw_alg = cri->cri_alg;
cri = cri->cri_next;
swd = &((*swd)->sw_next);
}
return 0;
}
/*
* Free a session.
*/
static int
swcr_freesession(void *arg, u_int64_t tid)
{
struct swcr_data *swd;
const struct swcr_enc_xform *txf;
const struct swcr_auth_hash *axf;
const struct swcr_comp_algo *cxf;
u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
if (sid > swcr_sesnum || swcr_sessions == NULL ||
swcr_sessions[sid] == NULL)
return EINVAL;
/* Silently accept and return */
if (sid == 0)
return 0;
while ((swd = swcr_sessions[sid]) != NULL) {
swcr_sessions[sid] = swd->sw_next;
switch (swd->sw_alg) {
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
case CRYPTO_BLF_CBC:
case CRYPTO_CAST_CBC:
case CRYPTO_SKIPJACK_CBC:
case CRYPTO_RIJNDAEL128_CBC:
case CRYPTO_NULL_CBC:
txf = swd->sw_exf;
if (swd->sw_kschedule)
txf->zerokey(&(swd->sw_kschedule));
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_NULL_HMAC:
axf = swd->sw_axf;
if (swd->sw_ictx) {
bzero(swd->sw_ictx, axf->auth_hash->ctxsize);
free(swd->sw_ictx, M_CRYPTO_DATA);
}
if (swd->sw_octx) {
bzero(swd->sw_octx, axf->auth_hash->ctxsize);
free(swd->sw_octx, M_CRYPTO_DATA);
}
break;
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
axf = swd->sw_axf;
if (swd->sw_ictx) {
bzero(swd->sw_ictx, axf->auth_hash->ctxsize);
free(swd->sw_ictx, M_CRYPTO_DATA);
}
if (swd->sw_octx) {
bzero(swd->sw_octx, swd->sw_klen);
free(swd->sw_octx, M_CRYPTO_DATA);
}
break;
case CRYPTO_MD5:
case CRYPTO_SHA1:
axf = swd->sw_axf;
if (swd->sw_ictx)
free(swd->sw_ictx, M_CRYPTO_DATA);
break;
case CRYPTO_DEFLATE_COMP:
cxf = swd->sw_cxf;
break;
}
FREE(swd, M_CRYPTO_DATA);
}
return 0;
}
/*
* Process a software request.
*/
static int
swcr_process(void *arg, struct cryptop *crp, int hint)
{
struct cryptodesc *crd;
struct swcr_data *sw;
u_int32_t lid;
int type;
/* Sanity check */
if (crp == NULL)
return EINVAL;
if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
crp->crp_etype = EINVAL;
goto done;
}
lid = crp->crp_sid & 0xffffffff;
if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
crp->crp_etype = ENOENT;
goto done;
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
type = CRYPTO_BUF_MBUF;
} else if (crp->crp_flags & CRYPTO_F_IOV) {
type = CRYPTO_BUF_IOV;
} else {
type = CRYPTO_BUF_CONTIG;
}
/* Go through crypto descriptors, processing as we go */
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
/*
* Find the crypto context.
*
* XXX Note that the logic here prevents us from having
* XXX the same algorithm multiple times in a session
* XXX (or rather, we can but it won't give us the right
* XXX results). To do that, we'd need some way of differentiating
* XXX between the various instances of an algorithm (so we can
* XXX locate the correct crypto context).
*/
for (sw = swcr_sessions[lid];
sw && sw->sw_alg != crd->crd_alg;
sw = sw->sw_next)
;
/* No such context ? */
if (sw == NULL) {
crp->crp_etype = EINVAL;
goto done;
}
switch (sw->sw_alg) {
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
case CRYPTO_BLF_CBC:
case CRYPTO_CAST_CBC:
case CRYPTO_SKIPJACK_CBC:
case CRYPTO_RIJNDAEL128_CBC:
if ((crp->crp_etype = swcr_encdec(crd, sw,
crp->crp_buf, type)) != 0)
goto done;
break;
case CRYPTO_NULL_CBC:
crp->crp_etype = 0;
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_NULL_HMAC:
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
case CRYPTO_MD5:
case CRYPTO_SHA1:
if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
crp->crp_buf, type)) != 0)
goto done;
break;
case CRYPTO_DEFLATE_COMP:
if ((crp->crp_etype = swcr_compdec(crd, sw,
crp->crp_buf, type)) != 0)
goto done;
else
crp->crp_olen = (int)sw->sw_size;
break;
default:
/* Unknown/unsupported algorithm */
crp->crp_etype = EINVAL;
goto done;
}
}
done:
crypto_done(crp);
return 0;
}
static void
swcr_init(void)
{
swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
if (swcr_id < 0) {
/* This should never happen */
panic("Software crypto device cannot initialize!");
}
crypto_register(swcr_id, CRYPTO_DES_CBC,
0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
#define REGISTER(alg) \
crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
REGISTER(CRYPTO_3DES_CBC);
REGISTER(CRYPTO_BLF_CBC);
REGISTER(CRYPTO_CAST_CBC);
REGISTER(CRYPTO_SKIPJACK_CBC);
REGISTER(CRYPTO_NULL_CBC);
REGISTER(CRYPTO_MD5_HMAC);
REGISTER(CRYPTO_SHA1_HMAC);
REGISTER(CRYPTO_SHA2_HMAC);
REGISTER(CRYPTO_RIPEMD160_HMAC);
REGISTER(CRYPTO_NULL_HMAC);
REGISTER(CRYPTO_MD5_KPDK);
REGISTER(CRYPTO_SHA1_KPDK);
REGISTER(CRYPTO_MD5);
REGISTER(CRYPTO_SHA1);
REGISTER(CRYPTO_RIJNDAEL128_CBC);
REGISTER(CRYPTO_DEFLATE_COMP);
#undef REGISTER
}
#ifdef __FreeBSD__
SYSINIT(cryptosoft_init, SI_SUB_PSEUDO, SI_ORDER_ANY, swcr_init, NULL)
#endif
#ifdef __NetBSD__
/*
* Pseudo-device init routine for software crypto.
*/
void swcryptoattach(int);
void
swcryptoattach(int num)
{
swcr_init();
}
#endif /* __NetBSD__ */