NetBSD/sys/kern/sys_sched.c

496 lines
12 KiB
C

/* $NetBSD: sys_sched.c,v 1.21 2008/04/24 18:39:24 ad Exp $ */
/*
* Copyright (c) 2008, Mindaugas Rasiukevicius <rmind at NetBSD org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* System calls relating to the scheduler.
*
* TODO:
* - Handle pthread_setschedprio() as defined by POSIX;
* - Handle sched_yield() case for SCHED_FIFO as defined by POSIX;
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sys_sched.c,v 1.21 2008/04/24 18:39:24 ad Exp $");
#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/kauth.h>
#include <sys/kmem.h>
#include <sys/lwp.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/pset.h>
#include <sys/sched.h>
#include <sys/syscallargs.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/unistd.h>
/*
* Convert user priority or the in-kernel priority or convert the current
* priority to the appropriate range according to the policy change.
*/
static pri_t
convert_pri(lwp_t *l, int policy, pri_t pri)
{
int delta = 0;
switch (policy) {
case SCHED_OTHER:
delta = PRI_USER;
break;
case SCHED_FIFO:
case SCHED_RR:
delta = PRI_USER_RT;
break;
default:
panic("upri_to_kpri");
}
if (pri != PRI_NONE) {
/* Convert user priority to the in-kernel */
KASSERT(pri >= SCHED_PRI_MIN && pri <= SCHED_PRI_MAX);
return pri + delta;
}
if (l->l_class == policy)
return l->l_priority;
/* Change the current priority to the appropriate range */
if (l->l_class == SCHED_OTHER) {
KASSERT(policy == SCHED_FIFO || policy == SCHED_RR);
return l->l_priority + delta;
}
if (policy == SCHED_OTHER) {
KASSERT(l->l_class == SCHED_FIFO || l->l_class == SCHED_RR);
return l->l_priority - delta;
}
KASSERT(l->l_class != SCHED_OTHER && policy != SCHED_OTHER);
return l->l_class;
}
int
do_sched_setparam(pid_t pid, lwpid_t lid, int policy,
const struct sched_param *params)
{
struct proc *p;
struct lwp *t;
pri_t pri;
u_int lcnt;
int error;
error = 0;
pri = params->sched_priority;
/* If no parameters specified, just return (this should not happen) */
if (pri == PRI_NONE && policy == SCHED_NONE)
return 0;
/* Validate scheduling class */
if (policy != SCHED_NONE && (policy < SCHED_OTHER || policy > SCHED_RR))
return EINVAL;
/* Validate priority */
if (pri != PRI_NONE && (pri < SCHED_PRI_MIN || pri > SCHED_PRI_MAX))
return EINVAL;
if (pid != 0) {
/* Find the process */
mutex_enter(proc_lock);
p = p_find(pid, PFIND_LOCKED);
if (p == NULL) {
mutex_exit(proc_lock);
return ESRCH;
}
mutex_enter(p->p_lock);
mutex_exit(proc_lock);
/* Disallow modification of system processes */
if ((p->p_flag & PK_SYSTEM) != 0) {
mutex_exit(p->p_lock);
return EPERM;
}
} else {
/* Use the calling process */
p = curlwp->l_proc;
mutex_enter(p->p_lock);
}
/* Find the LWP(s) */
lcnt = 0;
LIST_FOREACH(t, &p->p_lwps, l_sibling) {
pri_t kpri;
int lpolicy;
if (lid && lid != t->l_lid)
continue;
lcnt++;
KASSERT(pri != PRI_NONE || policy != SCHED_NONE);
lwp_lock(t);
if (policy == SCHED_NONE)
lpolicy = t->l_class;
else
lpolicy = policy;
/*
* Note that, priority may need to be changed to get into
* the correct priority range of the new scheduling class.
*/
kpri = convert_pri(t, lpolicy, pri);
/* Check the permission */
error = kauth_authorize_process(kauth_cred_get(),
KAUTH_PROCESS_SCHEDULER_SETPARAM, p, t, KAUTH_ARG(lpolicy),
KAUTH_ARG(kpri));
if (error) {
lwp_unlock(t);
break;
}
/* Set the scheduling class */
if (policy != SCHED_NONE)
t->l_class = policy;
/* Change the priority */
if (t->l_priority != kpri)
lwp_changepri(t, kpri);
lwp_unlock(t);
}
mutex_exit(p->p_lock);
return (lcnt == 0) ? ESRCH : error;
}
/*
* Set scheduling parameters.
*/
int
sys__sched_setparam(struct lwp *l, const struct sys__sched_setparam_args *uap,
register_t *retval)
{
/* {
syscallarg(pid_t) pid;
syscallarg(lwpid_t) lid;
syscallarg(int) policy;
syscallarg(const struct sched_param *) params;
} */
struct sched_param params;
int error;
/* Get the parameters from the user-space */
error = copyin(SCARG(uap, params), &params, sizeof(params));
if (error)
goto out;
error = do_sched_setparam(SCARG(uap, pid), SCARG(uap, lid),
SCARG(uap, policy), &params);
out:
return (error);
}
int
do_sched_getparam(pid_t pid, lwpid_t lid, int *policy,
struct sched_param *params)
{
struct sched_param lparams;
struct lwp *t;
int error, lpolicy;
/* Locks the LWP */
t = lwp_find2(pid, lid);
if (t == NULL)
return ESRCH;
/* Check the permission */
error = kauth_authorize_process(kauth_cred_get(),
KAUTH_PROCESS_SCHEDULER_GETPARAM, t->l_proc, NULL, NULL, NULL);
if (error != 0) {
mutex_exit(t->l_proc->p_lock);
return error;
}
lwp_lock(t);
lparams.sched_priority = t->l_priority;
lpolicy = t->l_class;
switch (lpolicy) {
case SCHED_OTHER:
lparams.sched_priority -= PRI_USER;
break;
case SCHED_RR:
case SCHED_FIFO:
lparams.sched_priority -= PRI_USER_RT;
break;
}
if (policy != NULL)
*policy = lpolicy;
if (params != NULL)
*params = lparams;
lwp_unlock(t);
mutex_exit(t->l_proc->p_lock);
return error;
}
/*
* Get scheduling parameters.
*/
int
sys__sched_getparam(struct lwp *l, const struct sys__sched_getparam_args *uap,
register_t *retval)
{
/* {
syscallarg(pid_t) pid;
syscallarg(lwpid_t) lid;
syscallarg(int *) policy;
syscallarg(struct sched_param *) params;
} */
struct sched_param params;
int error, policy;
error = do_sched_getparam(SCARG(uap, pid), SCARG(uap, lid), &policy,
&params);
if (error)
goto out;
error = copyout(&params, SCARG(uap, params), sizeof(params));
if (error == 0 && SCARG(uap, policy) != NULL)
error = copyout(&policy, SCARG(uap, policy), sizeof(int));
out:
return (error);
}
/*
* Set affinity.
*/
int
sys__sched_setaffinity(struct lwp *l,
const struct sys__sched_setaffinity_args *uap, register_t *retval)
{
/* {
syscallarg(pid_t) pid;
syscallarg(lwpid_t) lid;
syscallarg(size_t) size;
syscallarg(void *) cpuset;
} */
cpuset_t *cpuset;
struct cpu_info *ci = NULL;
struct proc *p;
struct lwp *t;
CPU_INFO_ITERATOR cii;
lwpid_t lid;
u_int lcnt;
int error;
/* Allocate the CPU set, and get it from userspace */
cpuset = kmem_zalloc(sizeof(cpuset_t), KM_SLEEP);
error = copyin(SCARG(uap, cpuset), cpuset,
min(SCARG(uap, size), sizeof(cpuset_t)));
if (error)
goto error;
/* Look for a CPU in the set */
for (CPU_INFO_FOREACH(cii, ci))
if (CPU_ISSET(cpu_index(ci), cpuset))
break;
if (ci == NULL) {
/* Empty set */
kmem_free(cpuset, sizeof(cpuset_t));
cpuset = NULL;
}
if (SCARG(uap, pid) != 0) {
/* Find the process */
mutex_enter(proc_lock);
p = p_find(SCARG(uap, pid), PFIND_LOCKED);
if (p == NULL) {
mutex_exit(proc_lock);
error = ESRCH;
goto error;
}
mutex_enter(p->p_lock);
mutex_exit(proc_lock);
/* Disallow modification of system processes. */
if ((p->p_flag & PK_SYSTEM) != 0) {
mutex_exit(p->p_lock);
error = EPERM;
goto error;
}
} else {
/* Use the calling process */
p = l->l_proc;
mutex_enter(p->p_lock);
}
/*
* Check the permission.
*/
error = kauth_authorize_process(l->l_cred,
KAUTH_PROCESS_SCHEDULER_SETAFFINITY, p, NULL, NULL, NULL);
if (error != 0) {
mutex_exit(p->p_lock);
goto error;
}
/* Find the LWP(s) */
lcnt = 0;
lid = SCARG(uap, lid);
LIST_FOREACH(t, &p->p_lwps, l_sibling) {
if (lid && lid != t->l_lid)
continue;
lwp_lock(t);
if (cpuset) {
/* Set the affinity flag and new CPU set */
t->l_flag |= LW_AFFINITY;
memcpy(&t->l_affinity, cpuset, sizeof(cpuset_t));
/* Migrate to another CPU, unlocks LWP */
lwp_migrate(t, ci);
} else {
/* Unset the affinity flag */
t->l_flag &= ~LW_AFFINITY;
lwp_unlock(t);
}
lcnt++;
}
mutex_exit(p->p_lock);
if (lcnt == 0)
error = ESRCH;
error:
if (cpuset != NULL)
kmem_free(cpuset, sizeof(cpuset_t));
return error;
}
/*
* Get affinity.
*/
int
sys__sched_getaffinity(struct lwp *l,
const struct sys__sched_getaffinity_args *uap, register_t *retval)
{
/* {
syscallarg(pid_t) pid;
syscallarg(lwpid_t) lid;
syscallarg(size_t) size;
syscallarg(void *) cpuset;
} */
struct lwp *t;
void *cpuset;
int error;
if (SCARG(uap, size) <= 0)
return EINVAL;
cpuset = kmem_zalloc(sizeof(cpuset_t), KM_SLEEP);
/* Locks the LWP */
t = lwp_find2(SCARG(uap, pid), SCARG(uap, lid));
if (t == NULL) {
kmem_free(cpuset, sizeof(cpuset_t));
return ESRCH;
}
/* Check the permission */
if (kauth_authorize_process(l->l_cred,
KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) {
mutex_exit(t->l_proc->p_lock);
kmem_free(cpuset, sizeof(cpuset_t));
return EPERM;
}
lwp_lock(t);
if (t->l_flag & LW_AFFINITY)
memcpy(cpuset, &t->l_affinity, sizeof(cpuset_t));
lwp_unlock(t);
mutex_exit(t->l_proc->p_lock);
error = copyout(cpuset, SCARG(uap, cpuset),
min(SCARG(uap, size), sizeof(cpuset_t)));
kmem_free(cpuset, sizeof(cpuset_t));
return error;
}
/*
* Yield.
*/
int
sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
{
yield();
return 0;
}
/*
* Sysctl nodes and initialization.
*/
SYSCTL_SETUP(sysctl_sched_setup, "sysctl sched setup")
{
const struct sysctlnode *node = NULL;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "kern", NULL,
NULL, 0, NULL, 0,
CTL_KERN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_sched",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
"Process Scheduling option to which the "
"system attempts to conform"),
NULL, _POSIX_PRIORITY_SCHEDULING, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "sched",
SYSCTL_DESCR("Scheduler options"),
NULL, 0, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
if (node == NULL)
return;
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "pri_min",
SYSCTL_DESCR("Minimal POSIX real-time priority"),
NULL, SCHED_PRI_MIN, NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "pri_max",
SYSCTL_DESCR("Maximal POSIX real-time priority"),
NULL, SCHED_PRI_MAX, NULL, 0,
CTL_CREATE, CTL_EOL);
}