1666 lines
41 KiB
C
1666 lines
41 KiB
C
/* $NetBSD: if_ste.c,v 1.36 2008/04/28 20:23:55 martin Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Device driver for the Sundance Tech. ST-201 10/100
|
|
* Ethernet controller.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.36 2008/04/28 20:23:55 martin Exp $");
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <uvm/uvm_extern.h> /* for PAGE_SIZE */
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
#include <dev/mii/mii_bitbang.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/pci/if_stereg.h>
|
|
|
|
/*
|
|
* Transmit descriptor list size.
|
|
*/
|
|
#define STE_NTXDESC 256
|
|
#define STE_NTXDESC_MASK (STE_NTXDESC - 1)
|
|
#define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
|
|
|
|
/*
|
|
* Receive descriptor list size.
|
|
*/
|
|
#define STE_NRXDESC 128
|
|
#define STE_NRXDESC_MASK (STE_NRXDESC - 1)
|
|
#define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
|
|
|
|
/*
|
|
* Control structures are DMA'd to the ST-201 chip. We allocate them in
|
|
* a single clump that maps to a single DMA segment to make several things
|
|
* easier.
|
|
*/
|
|
struct ste_control_data {
|
|
/*
|
|
* The transmit descriptors.
|
|
*/
|
|
struct ste_tfd scd_txdescs[STE_NTXDESC];
|
|
|
|
/*
|
|
* The receive descriptors.
|
|
*/
|
|
struct ste_rfd scd_rxdescs[STE_NRXDESC];
|
|
};
|
|
|
|
#define STE_CDOFF(x) offsetof(struct ste_control_data, x)
|
|
#define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
|
|
#define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
|
|
|
|
/*
|
|
* Software state for transmit and receive jobs.
|
|
*/
|
|
struct ste_descsoft {
|
|
struct mbuf *ds_mbuf; /* head of our mbuf chain */
|
|
bus_dmamap_t ds_dmamap; /* our DMA map */
|
|
};
|
|
|
|
/*
|
|
* Software state per device.
|
|
*/
|
|
struct ste_softc {
|
|
struct device sc_dev; /* generic device information */
|
|
bus_space_tag_t sc_st; /* bus space tag */
|
|
bus_space_handle_t sc_sh; /* bus space handle */
|
|
bus_dma_tag_t sc_dmat; /* bus DMA tag */
|
|
struct ethercom sc_ethercom; /* ethernet common data */
|
|
void *sc_sdhook; /* shutdown hook */
|
|
|
|
void *sc_ih; /* interrupt cookie */
|
|
|
|
struct mii_data sc_mii; /* MII/media information */
|
|
|
|
callout_t sc_tick_ch; /* tick callout */
|
|
|
|
bus_dmamap_t sc_cddmamap; /* control data DMA map */
|
|
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
|
|
|
|
/*
|
|
* Software state for transmit and receive descriptors.
|
|
*/
|
|
struct ste_descsoft sc_txsoft[STE_NTXDESC];
|
|
struct ste_descsoft sc_rxsoft[STE_NRXDESC];
|
|
|
|
/*
|
|
* Control data structures.
|
|
*/
|
|
struct ste_control_data *sc_control_data;
|
|
#define sc_txdescs sc_control_data->scd_txdescs
|
|
#define sc_rxdescs sc_control_data->scd_rxdescs
|
|
|
|
int sc_txpending; /* number of Tx requests pending */
|
|
int sc_txdirty; /* first dirty Tx descriptor */
|
|
int sc_txlast; /* last used Tx descriptor */
|
|
|
|
int sc_rxptr; /* next ready Rx descriptor/descsoft */
|
|
|
|
int sc_txthresh; /* Tx threshold */
|
|
uint32_t sc_DMACtrl; /* prototype DMACtrl register */
|
|
uint16_t sc_IntEnable; /* prototype IntEnable register */
|
|
uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
|
|
uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
|
|
};
|
|
|
|
#define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
|
|
#define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
|
|
|
|
#define STE_CDTXSYNC(sc, x, ops) \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
|
|
|
|
#define STE_CDRXSYNC(sc, x, ops) \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
|
|
|
|
#define STE_INIT_RXDESC(sc, x) \
|
|
do { \
|
|
struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
|
|
struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
|
|
struct mbuf *__m = __ds->ds_mbuf; \
|
|
\
|
|
/* \
|
|
* Note: We scoot the packet forward 2 bytes in the buffer \
|
|
* so that the payload after the Ethernet header is aligned \
|
|
* to a 4-byte boundary. \
|
|
*/ \
|
|
__m->m_data = __m->m_ext.ext_buf + 2; \
|
|
__rfd->rfd_frag.frag_addr = \
|
|
htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
|
|
__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
|
|
__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
|
|
__rfd->rfd_status = 0; \
|
|
STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define STE_TIMEOUT 1000
|
|
|
|
static void ste_start(struct ifnet *);
|
|
static void ste_watchdog(struct ifnet *);
|
|
static int ste_ioctl(struct ifnet *, u_long, void *);
|
|
static int ste_init(struct ifnet *);
|
|
static void ste_stop(struct ifnet *, int);
|
|
|
|
static void ste_shutdown(void *);
|
|
|
|
static void ste_reset(struct ste_softc *, u_int32_t);
|
|
static void ste_setthresh(struct ste_softc *);
|
|
static void ste_txrestart(struct ste_softc *, u_int8_t);
|
|
static void ste_rxdrain(struct ste_softc *);
|
|
static int ste_add_rxbuf(struct ste_softc *, int);
|
|
static void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
|
|
static void ste_tick(void *);
|
|
|
|
static void ste_stats_update(struct ste_softc *);
|
|
|
|
static void ste_set_filter(struct ste_softc *);
|
|
|
|
static int ste_intr(void *);
|
|
static void ste_txintr(struct ste_softc *);
|
|
static void ste_rxintr(struct ste_softc *);
|
|
|
|
static int ste_mii_readreg(device_t, int, int);
|
|
static void ste_mii_writereg(device_t, int, int, int);
|
|
static void ste_mii_statchg(device_t);
|
|
|
|
static int ste_match(device_t, struct cfdata *, void *);
|
|
static void ste_attach(device_t, device_t, void *);
|
|
|
|
int ste_copy_small = 0;
|
|
|
|
CFATTACH_DECL(ste, sizeof(struct ste_softc),
|
|
ste_match, ste_attach, NULL, NULL);
|
|
|
|
static uint32_t ste_mii_bitbang_read(device_t);
|
|
static void ste_mii_bitbang_write(device_t, uint32_t);
|
|
|
|
static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
|
|
ste_mii_bitbang_read,
|
|
ste_mii_bitbang_write,
|
|
{
|
|
PC_MgmtData, /* MII_BIT_MDO */
|
|
PC_MgmtData, /* MII_BIT_MDI */
|
|
PC_MgmtClk, /* MII_BIT_MDC */
|
|
PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
|
|
0, /* MII_BIT_DIR_PHY_HOST */
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Devices supported by this driver.
|
|
*/
|
|
static const struct ste_product {
|
|
pci_vendor_id_t ste_vendor;
|
|
pci_product_id_t ste_product;
|
|
const char *ste_name;
|
|
} ste_products[] = {
|
|
{ PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_IP100A,
|
|
"IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
|
|
|
|
{ PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
|
|
"Sundance ST-201 10/100 Ethernet" },
|
|
|
|
{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
|
|
"D-Link DL-1002 10/100 Ethernet" },
|
|
|
|
{ 0, 0,
|
|
NULL },
|
|
};
|
|
|
|
static const struct ste_product *
|
|
ste_lookup(const struct pci_attach_args *pa)
|
|
{
|
|
const struct ste_product *sp;
|
|
|
|
for (sp = ste_products; sp->ste_name != NULL; sp++) {
|
|
if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
|
|
PCI_PRODUCT(pa->pa_id) == sp->ste_product)
|
|
return (sp);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
ste_match(device_t parent, struct cfdata *cf, void *aux)
|
|
{
|
|
struct pci_attach_args *pa = aux;
|
|
|
|
if (ste_lookup(pa) != NULL)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
ste_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct ste_softc *sc = device_private(self);
|
|
struct pci_attach_args *pa = aux;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
pci_chipset_tag_t pc = pa->pa_pc;
|
|
pci_intr_handle_t ih;
|
|
const char *intrstr = NULL;
|
|
bus_space_tag_t iot, memt;
|
|
bus_space_handle_t ioh, memh;
|
|
bus_dma_segment_t seg;
|
|
int ioh_valid, memh_valid;
|
|
int i, rseg, error;
|
|
const struct ste_product *sp;
|
|
uint8_t enaddr[ETHER_ADDR_LEN];
|
|
uint16_t myea[ETHER_ADDR_LEN / 2];
|
|
|
|
callout_init(&sc->sc_tick_ch, 0);
|
|
|
|
sp = ste_lookup(pa);
|
|
if (sp == NULL) {
|
|
printf("\n");
|
|
panic("ste_attach: impossible");
|
|
}
|
|
|
|
printf(": %s\n", sp->ste_name);
|
|
|
|
/*
|
|
* Map the device.
|
|
*/
|
|
ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
|
|
PCI_MAPREG_TYPE_IO, 0,
|
|
&iot, &ioh, NULL, NULL) == 0);
|
|
memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
|
|
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
|
|
&memt, &memh, NULL, NULL) == 0);
|
|
|
|
if (memh_valid) {
|
|
sc->sc_st = memt;
|
|
sc->sc_sh = memh;
|
|
} else if (ioh_valid) {
|
|
sc->sc_st = iot;
|
|
sc->sc_sh = ioh;
|
|
} else {
|
|
aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
|
|
return;
|
|
}
|
|
|
|
sc->sc_dmat = pa->pa_dmat;
|
|
|
|
/* Enable bus mastering. */
|
|
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
|
|
pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
|
|
PCI_COMMAND_MASTER_ENABLE);
|
|
|
|
/* power up chip */
|
|
if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
|
|
NULL)) && error != EOPNOTSUPP) {
|
|
aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
|
|
error);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Map and establish our interrupt.
|
|
*/
|
|
if (pci_intr_map(pa, &ih)) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
|
|
return;
|
|
}
|
|
intrstr = pci_intr_string(pc, ih);
|
|
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
|
|
if (sc->sc_ih == NULL) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
|
|
if (intrstr != NULL)
|
|
printf(" at %s", intrstr);
|
|
printf("\n");
|
|
return;
|
|
}
|
|
printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
|
|
0)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
|
|
error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
|
|
sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
|
|
BUS_DMA_COHERENT)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
|
|
error);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(struct ste_control_data), 1,
|
|
sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
|
|
"error = %d\n", error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
|
|
sc->sc_control_data, sizeof(struct ste_control_data), NULL,
|
|
0)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_3;
|
|
}
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < STE_NTXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
STE_NTXFRAGS, MCLBYTES, 0, 0,
|
|
&sc->sc_txsoft[i].ds_dmamap)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
|
|
"error = %d\n", i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < STE_NRXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
|
|
"error = %d\n", i, error);
|
|
goto fail_5;
|
|
}
|
|
sc->sc_rxsoft[i].ds_mbuf = NULL;
|
|
}
|
|
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
|
|
AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
|
|
|
|
/*
|
|
* Read the Ethernet address from the EEPROM.
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
|
|
myea[i] = le16toh(myea[i]);
|
|
}
|
|
memcpy(enaddr, myea, sizeof(enaddr));
|
|
|
|
printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
|
|
ether_sprintf(enaddr));
|
|
|
|
/*
|
|
* Initialize our media structures and probe the MII.
|
|
*/
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = ste_mii_readreg;
|
|
sc->sc_mii.mii_writereg = ste_mii_writereg;
|
|
sc->sc_mii.mii_statchg = ste_mii_statchg;
|
|
sc->sc_ethercom.ec_mii = &sc->sc_mii;
|
|
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
|
|
ether_mediastatus);
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, 0);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = ste_ioctl;
|
|
ifp->if_start = ste_start;
|
|
ifp->if_watchdog = ste_watchdog;
|
|
ifp->if_init = ste_init;
|
|
ifp->if_stop = ste_stop;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* Default the transmit threshold to 128 bytes.
|
|
*/
|
|
sc->sc_txthresh = 128;
|
|
|
|
/*
|
|
* Disable MWI if the PCI layer tells us to.
|
|
*/
|
|
sc->sc_DMACtrl = 0;
|
|
if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
|
|
sc->sc_DMACtrl |= DC_MWIDisable;
|
|
|
|
/*
|
|
* We can support 802.1Q VLAN-sized frames.
|
|
*/
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
|
|
|
|
/*
|
|
* Attach the interface.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, enaddr);
|
|
|
|
/*
|
|
* Make sure the interface is shutdown during reboot.
|
|
*/
|
|
sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
|
|
if (sc->sc_sdhook == NULL)
|
|
printf("%s: WARNING: unable to establish shutdown hook\n",
|
|
device_xname(&sc->sc_dev));
|
|
return;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall through.
|
|
*/
|
|
fail_5:
|
|
for (i = 0; i < STE_NRXDESC; i++) {
|
|
if (sc->sc_rxsoft[i].ds_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_rxsoft[i].ds_dmamap);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < STE_NTXDESC; i++) {
|
|
if (sc->sc_txsoft[i].ds_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_txsoft[i].ds_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
|
|
sizeof(struct ste_control_data));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
|
|
fail_0:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* ste_shutdown:
|
|
*
|
|
* Make sure the interface is stopped at reboot time.
|
|
*/
|
|
static void
|
|
ste_shutdown(void *arg)
|
|
{
|
|
struct ste_softc *sc = arg;
|
|
|
|
ste_stop(&sc->sc_ethercom.ec_if, 1);
|
|
}
|
|
|
|
static void
|
|
ste_dmahalt_wait(struct ste_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < STE_TIMEOUT; i++) {
|
|
delay(2);
|
|
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
|
|
DC_DMAHaltBusy) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == STE_TIMEOUT)
|
|
printf("%s: DMA halt timed out\n", device_xname(&sc->sc_dev));
|
|
}
|
|
|
|
/*
|
|
* ste_start: [ifnet interface function]
|
|
*
|
|
* Start packet transmission on the interface.
|
|
*/
|
|
static void
|
|
ste_start(struct ifnet *ifp)
|
|
{
|
|
struct ste_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0, *m;
|
|
struct ste_descsoft *ds;
|
|
struct ste_tfd *tfd;
|
|
bus_dmamap_t dmamap;
|
|
int error, olasttx, nexttx, opending, seg, totlen;
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
/*
|
|
* Remember the previous number of pending transmissions
|
|
* and the current last descriptor in the list.
|
|
*/
|
|
opending = sc->sc_txpending;
|
|
olasttx = sc->sc_txlast;
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
while (sc->sc_txpending < STE_NTXDESC) {
|
|
/*
|
|
* Grab a packet off the queue.
|
|
*/
|
|
IFQ_POLL(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
m = NULL;
|
|
|
|
/*
|
|
* Get the last and next available transmit descriptor.
|
|
*/
|
|
nexttx = STE_NEXTTX(sc->sc_txlast);
|
|
tfd = &sc->sc_txdescs[nexttx];
|
|
ds = &sc->sc_txsoft[nexttx];
|
|
|
|
dmamap = ds->ds_dmamap;
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the alloted number of segments, or we
|
|
* were short on resources. In this case, we'll copy
|
|
* and try again.
|
|
*/
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
printf("%s: unable to allocate Tx mbuf\n",
|
|
device_xname(&sc->sc_dev));
|
|
break;
|
|
}
|
|
if (m0->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
printf("%s: unable to allocate Tx "
|
|
"cluster\n", device_xname(&sc->sc_dev));
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
}
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
|
|
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
|
|
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: unable to load Tx buffer, "
|
|
"error = %d\n", device_xname(&sc->sc_dev), error);
|
|
break;
|
|
}
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m != NULL) {
|
|
m_freem(m0);
|
|
m0 = m;
|
|
}
|
|
|
|
/*
|
|
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
|
|
*/
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Initialize the fragment list. */
|
|
for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
|
|
tfd->tfd_frags[seg].frag_addr =
|
|
htole32(dmamap->dm_segs[seg].ds_addr);
|
|
tfd->tfd_frags[seg].frag_len =
|
|
htole32(dmamap->dm_segs[seg].ds_len);
|
|
totlen += dmamap->dm_segs[seg].ds_len;
|
|
}
|
|
tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
|
|
|
|
/* Initialize the descriptor. */
|
|
tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
|
|
tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
|
|
|
|
/* Sync the descriptor. */
|
|
STE_CDTXSYNC(sc, nexttx,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Store a pointer to the packet so we can free it later,
|
|
* and remember what txdirty will be once the packet is
|
|
* done.
|
|
*/
|
|
ds->ds_mbuf = m0;
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->sc_txpending++;
|
|
sc->sc_txlast = nexttx;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass the packet to any BPF listeners.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m0);
|
|
#endif /* NBPFILTER > 0 */
|
|
}
|
|
|
|
if (sc->sc_txpending == STE_NTXDESC) {
|
|
/* No more slots left; notify upper layer. */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
}
|
|
|
|
if (sc->sc_txpending != opending) {
|
|
/*
|
|
* We enqueued packets. If the transmitter was idle,
|
|
* reset the txdirty pointer.
|
|
*/
|
|
if (opending == 0)
|
|
sc->sc_txdirty = STE_NEXTTX(olasttx);
|
|
|
|
/*
|
|
* Cause a descriptor interrupt to happen on the
|
|
* last packet we enqueued, and also cause the
|
|
* DMA engine to wait after is has finished processing
|
|
* it.
|
|
*/
|
|
sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
|
|
sc->sc_txdescs[sc->sc_txlast].tfd_control |=
|
|
htole32(TFD_TxDMAIndicate);
|
|
STE_CDTXSYNC(sc, sc->sc_txlast,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Link up the new chain of descriptors to the
|
|
* last.
|
|
*/
|
|
sc->sc_txdescs[olasttx].tfd_next =
|
|
htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
|
|
STE_CDTXSYNC(sc, olasttx,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Kick the transmit DMA logic. Note that since we're
|
|
* using auto-polling, reading the Tx desc pointer will
|
|
* give it the nudge it needs to get going.
|
|
*/
|
|
if (bus_space_read_4(sc->sc_st, sc->sc_sh,
|
|
STE_TxDMAListPtr) == 0) {
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh,
|
|
STE_DMACtrl, DC_TxDMAHalt);
|
|
ste_dmahalt_wait(sc);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh,
|
|
STE_TxDMAListPtr,
|
|
STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh,
|
|
STE_DMACtrl, DC_TxDMAResume);
|
|
}
|
|
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ste_watchdog: [ifnet interface function]
|
|
*
|
|
* Watchdog timer handler.
|
|
*/
|
|
static void
|
|
ste_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct ste_softc *sc = ifp->if_softc;
|
|
|
|
printf("%s: device timeout\n", device_xname(&sc->sc_dev));
|
|
ifp->if_oerrors++;
|
|
|
|
ste_txintr(sc);
|
|
ste_rxintr(sc);
|
|
(void) ste_init(ifp);
|
|
|
|
/* Try to get more packets going. */
|
|
ste_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* ste_ioctl: [ifnet interface function]
|
|
*
|
|
* Handle control requests from the operator.
|
|
*/
|
|
static int
|
|
ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct ste_softc *sc = ifp->if_softc;
|
|
int s, error;
|
|
|
|
s = splnet();
|
|
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
ste_set_filter(sc);
|
|
error = 0;
|
|
}
|
|
|
|
/* Try to get more packets going. */
|
|
ste_start(ifp);
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ste_intr:
|
|
*
|
|
* Interrupt service routine.
|
|
*/
|
|
static int
|
|
ste_intr(void *arg)
|
|
{
|
|
struct ste_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
uint16_t isr;
|
|
uint8_t txstat;
|
|
int wantinit;
|
|
|
|
if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
|
|
IS_InterruptStatus) == 0)
|
|
return (0);
|
|
|
|
for (wantinit = 0; wantinit == 0;) {
|
|
isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
|
|
if ((isr & sc->sc_IntEnable) == 0)
|
|
break;
|
|
|
|
/* Receive interrupts. */
|
|
if (isr & IE_RxDMAComplete)
|
|
ste_rxintr(sc);
|
|
|
|
/* Transmit interrupts. */
|
|
if (isr & (IE_TxDMAComplete|IE_TxComplete))
|
|
ste_txintr(sc);
|
|
|
|
/* Statistics overflow. */
|
|
if (isr & IE_UpdateStats)
|
|
ste_stats_update(sc);
|
|
|
|
/* Transmission errors. */
|
|
if (isr & IE_TxComplete) {
|
|
for (;;) {
|
|
txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
|
|
STE_TxStatus);
|
|
if ((txstat & TS_TxComplete) == 0)
|
|
break;
|
|
if (txstat & TS_TxUnderrun) {
|
|
sc->sc_txthresh += 32;
|
|
if (sc->sc_txthresh > 0x1ffc)
|
|
sc->sc_txthresh = 0x1ffc;
|
|
printf("%s: transmit underrun, new "
|
|
"threshold: %d bytes\n",
|
|
device_xname(&sc->sc_dev),
|
|
sc->sc_txthresh);
|
|
ste_reset(sc, AC_TxReset | AC_DMA |
|
|
AC_FIFO | AC_Network);
|
|
ste_setthresh(sc);
|
|
bus_space_write_1(sc->sc_st, sc->sc_sh,
|
|
STE_TxDMAPollPeriod, 127);
|
|
ste_txrestart(sc,
|
|
bus_space_read_1(sc->sc_st,
|
|
sc->sc_sh, STE_TxFrameId));
|
|
}
|
|
if (txstat & TS_TxReleaseError) {
|
|
printf("%s: Tx FIFO release error\n",
|
|
device_xname(&sc->sc_dev));
|
|
wantinit = 1;
|
|
}
|
|
if (txstat & TS_MaxCollisions) {
|
|
printf("%s: excessive collisions\n",
|
|
device_xname(&sc->sc_dev));
|
|
wantinit = 1;
|
|
}
|
|
if (txstat & TS_TxStatusOverflow) {
|
|
printf("%s: status overflow\n",
|
|
device_xname(&sc->sc_dev));
|
|
wantinit = 1;
|
|
}
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh,
|
|
STE_TxStatus, 0);
|
|
}
|
|
}
|
|
|
|
/* Host interface errors. */
|
|
if (isr & IE_HostError) {
|
|
printf("%s: Host interface error\n",
|
|
device_xname(&sc->sc_dev));
|
|
wantinit = 1;
|
|
}
|
|
}
|
|
|
|
if (wantinit)
|
|
ste_init(ifp);
|
|
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
|
|
sc->sc_IntEnable);
|
|
|
|
/* Try to get more packets going. */
|
|
ste_start(ifp);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* ste_txintr:
|
|
*
|
|
* Helper; handle transmit interrupts.
|
|
*/
|
|
static void
|
|
ste_txintr(struct ste_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ste_descsoft *ds;
|
|
uint32_t control;
|
|
int i;
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/*
|
|
* Go through our Tx list and free mbufs for those
|
|
* frames which have been transmitted.
|
|
*/
|
|
for (i = sc->sc_txdirty; sc->sc_txpending != 0;
|
|
i = STE_NEXTTX(i), sc->sc_txpending--) {
|
|
ds = &sc->sc_txsoft[i];
|
|
|
|
STE_CDTXSYNC(sc, i,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
control = le32toh(sc->sc_txdescs[i].tfd_control);
|
|
if ((control & TFD_TxDMAComplete) == 0)
|
|
break;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
|
|
0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
|
|
m_freem(ds->ds_mbuf);
|
|
ds->ds_mbuf = NULL;
|
|
}
|
|
|
|
/* Update the dirty transmit buffer pointer. */
|
|
sc->sc_txdirty = i;
|
|
|
|
/*
|
|
* If there are no more pending transmissions, cancel the watchdog
|
|
* timer.
|
|
*/
|
|
if (sc->sc_txpending == 0)
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* ste_rxintr:
|
|
*
|
|
* Helper; handle receive interrupts.
|
|
*/
|
|
static void
|
|
ste_rxintr(struct ste_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ste_descsoft *ds;
|
|
struct mbuf *m;
|
|
uint32_t status;
|
|
int i, len;
|
|
|
|
for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
|
|
ds = &sc->sc_rxsoft[i];
|
|
|
|
STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
status = le32toh(sc->sc_rxdescs[i].rfd_status);
|
|
|
|
if ((status & RFD_RxDMAComplete) == 0)
|
|
break;
|
|
|
|
/*
|
|
* If the packet had an error, simply recycle the
|
|
* buffer. Note, we count the error later in the
|
|
* periodic stats update.
|
|
*/
|
|
if (status & RFD_RxFrameError) {
|
|
STE_INIT_RXDESC(sc, i);
|
|
continue;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
/*
|
|
* No errors; receive the packet. Note, we have
|
|
* configured the chip to not include the CRC at
|
|
* the end of the packet.
|
|
*/
|
|
len = RFD_RxDMAFrameLen(status);
|
|
|
|
/*
|
|
* If the packet is small enough to fit in a
|
|
* single header mbuf, allocate one and copy
|
|
* the data into it. This greatly reduces
|
|
* memory consumption when we receive lots
|
|
* of small packets.
|
|
*
|
|
* Otherwise, we add a new buffer to the receive
|
|
* chain. If this fails, we drop the packet and
|
|
* recycle the old buffer.
|
|
*/
|
|
if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
goto dropit;
|
|
m->m_data += 2;
|
|
memcpy(mtod(m, void *),
|
|
mtod(ds->ds_mbuf, void *), len);
|
|
STE_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
} else {
|
|
m = ds->ds_mbuf;
|
|
if (ste_add_rxbuf(sc, i) != 0) {
|
|
dropit:
|
|
ifp->if_ierrors++;
|
|
STE_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass this up to any BPF listeners, but only
|
|
* pass if up the stack if it's for us.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif /* NBPFILTER > 0 */
|
|
|
|
/* Pass it on. */
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
/* Update the receive pointer. */
|
|
sc->sc_rxptr = i;
|
|
}
|
|
|
|
/*
|
|
* ste_tick:
|
|
*
|
|
* One second timer, used to tick the MII.
|
|
*/
|
|
static void
|
|
ste_tick(void *arg)
|
|
{
|
|
struct ste_softc *sc = arg;
|
|
int s;
|
|
|
|
s = splnet();
|
|
mii_tick(&sc->sc_mii);
|
|
ste_stats_update(sc);
|
|
splx(s);
|
|
|
|
callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* ste_stats_update:
|
|
*
|
|
* Read the ST-201 statistics counters.
|
|
*/
|
|
static void
|
|
ste_stats_update(struct ste_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_space_tag_t st = sc->sc_st;
|
|
bus_space_handle_t sh = sc->sc_sh;
|
|
|
|
(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
|
|
(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
|
|
|
|
(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
|
|
(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
|
|
|
|
ifp->if_opackets +=
|
|
(u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
|
|
ifp->if_ipackets +=
|
|
(u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
|
|
|
|
ifp->if_collisions +=
|
|
(u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
|
|
(u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
|
|
(u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
|
|
|
|
(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
|
|
|
|
ifp->if_ierrors +=
|
|
(u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
|
|
|
|
ifp->if_oerrors +=
|
|
(u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
|
|
(u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
|
|
bus_space_read_1(st, sh, STE_CarrierSenseErrors);
|
|
|
|
(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
|
|
(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
|
|
(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
|
|
(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
|
|
}
|
|
|
|
/*
|
|
* ste_reset:
|
|
*
|
|
* Perform a soft reset on the ST-201.
|
|
*/
|
|
static void
|
|
ste_reset(struct ste_softc *sc, u_int32_t rstbits)
|
|
{
|
|
uint32_t ac;
|
|
int i;
|
|
|
|
ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
|
|
|
|
delay(50000);
|
|
|
|
for (i = 0; i < STE_TIMEOUT; i++) {
|
|
delay(1000);
|
|
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
|
|
AC_ResetBusy) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == STE_TIMEOUT)
|
|
printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
|
|
|
|
delay(1000);
|
|
}
|
|
|
|
/*
|
|
* ste_setthresh:
|
|
*
|
|
* set the various transmit threshold registers
|
|
*/
|
|
static void
|
|
ste_setthresh(struct ste_softc *sc)
|
|
{
|
|
/* set the TX threhold */
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh,
|
|
STE_TxStartThresh, sc->sc_txthresh);
|
|
/* Urgent threshold: set to sc_txthresh / 2 */
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
|
|
sc->sc_txthresh >> 6);
|
|
/* Burst threshold: use default value (256 bytes) */
|
|
}
|
|
|
|
/*
|
|
* restart TX at the given frame ID in the transmitter ring
|
|
*/
|
|
static void
|
|
ste_txrestart(struct ste_softc *sc, u_int8_t id)
|
|
{
|
|
u_int32_t control;
|
|
|
|
STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
control = le32toh(sc->sc_txdescs[id].tfd_control);
|
|
control &= ~TFD_TxDMAComplete;
|
|
sc->sc_txdescs[id].tfd_control = htole32(control);
|
|
STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
|
|
ste_dmahalt_wait(sc);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
|
|
STE_CDTXADDR(sc, id));
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
|
|
}
|
|
|
|
/*
|
|
* ste_init: [ ifnet interface function ]
|
|
*
|
|
* Initialize the interface. Must be called at splnet().
|
|
*/
|
|
static int
|
|
ste_init(struct ifnet *ifp)
|
|
{
|
|
struct ste_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t st = sc->sc_st;
|
|
bus_space_handle_t sh = sc->sc_sh;
|
|
struct ste_descsoft *ds;
|
|
int i, error = 0;
|
|
|
|
/*
|
|
* Cancel any pending I/O.
|
|
*/
|
|
ste_stop(ifp, 0);
|
|
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
|
|
AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
|
|
|
|
/*
|
|
* Initialize the transmit descriptor ring.
|
|
*/
|
|
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
|
|
sc->sc_txpending = 0;
|
|
sc->sc_txdirty = 0;
|
|
sc->sc_txlast = STE_NTXDESC - 1;
|
|
|
|
/*
|
|
* Initialize the receive descriptor and receive job
|
|
* descriptor rings.
|
|
*/
|
|
for (i = 0; i < STE_NRXDESC; i++) {
|
|
ds = &sc->sc_rxsoft[i];
|
|
if (ds->ds_mbuf == NULL) {
|
|
if ((error = ste_add_rxbuf(sc, i)) != 0) {
|
|
printf("%s: unable to allocate or map rx "
|
|
"buffer %d, error = %d\n",
|
|
device_xname(&sc->sc_dev), i, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
ste_rxdrain(sc);
|
|
goto out;
|
|
}
|
|
} else
|
|
STE_INIT_RXDESC(sc, i);
|
|
}
|
|
sc->sc_rxptr = 0;
|
|
|
|
/* Set the station address. */
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
bus_space_write_1(st, sh, STE_StationAddress0 + 1,
|
|
CLLADDR(ifp->if_sadl)[i]);
|
|
|
|
/* Set up the receive filter. */
|
|
ste_set_filter(sc);
|
|
|
|
/*
|
|
* Give the receive ring to the chip.
|
|
*/
|
|
bus_space_write_4(st, sh, STE_RxDMAListPtr,
|
|
STE_CDRXADDR(sc, sc->sc_rxptr));
|
|
|
|
/*
|
|
* We defer giving the transmit ring to the chip until we
|
|
* transmit the first packet.
|
|
*/
|
|
|
|
/*
|
|
* Initialize the Tx auto-poll period. It's OK to make this number
|
|
* large (127 is the max) -- we explicitly kick the transmit engine
|
|
* when there's actually a packet. We are using auto-polling only
|
|
* to make the interface to the transmit engine not suck.
|
|
*/
|
|
bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
|
|
|
|
/* ..and the Rx auto-poll period. */
|
|
bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
|
|
|
|
/* Initialize the Tx start threshold. */
|
|
ste_setthresh(sc);
|
|
|
|
/* Set the FIFO release threshold to 512 bytes. */
|
|
bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
|
|
|
|
/* Set maximum packet size for VLAN. */
|
|
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
|
|
bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
|
|
else
|
|
bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
|
|
|
|
/*
|
|
* Initialize the interrupt mask.
|
|
*/
|
|
sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
|
|
IE_TxDMAComplete | IE_RxDMAComplete;
|
|
|
|
bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
|
|
bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
|
|
|
|
/*
|
|
* Start the receive DMA engine.
|
|
*/
|
|
bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
|
|
|
|
/*
|
|
* Initialize MacCtrl0 -- do it before setting the media,
|
|
* as setting the media will actually program the register.
|
|
*/
|
|
sc->sc_MacCtrl0 = MC0_IFSSelect(0);
|
|
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
|
|
sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
|
|
|
|
/*
|
|
* Set the current media.
|
|
*/
|
|
if ((error = ether_mediachange(ifp)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Start the MAC.
|
|
*/
|
|
bus_space_write_2(st, sh, STE_MacCtrl1,
|
|
MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
|
|
|
|
/*
|
|
* Start the one second MII clock.
|
|
*/
|
|
callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
|
|
|
|
/*
|
|
* ...all done!
|
|
*/
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
out:
|
|
if (error)
|
|
printf("%s: interface not running\n", device_xname(&sc->sc_dev));
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ste_drain:
|
|
*
|
|
* Drain the receive queue.
|
|
*/
|
|
static void
|
|
ste_rxdrain(struct ste_softc *sc)
|
|
{
|
|
struct ste_descsoft *ds;
|
|
int i;
|
|
|
|
for (i = 0; i < STE_NRXDESC; i++) {
|
|
ds = &sc->sc_rxsoft[i];
|
|
if (ds->ds_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
|
|
m_freem(ds->ds_mbuf);
|
|
ds->ds_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ste_stop: [ ifnet interface function ]
|
|
*
|
|
* Stop transmission on the interface.
|
|
*/
|
|
static void
|
|
ste_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct ste_softc *sc = ifp->if_softc;
|
|
struct ste_descsoft *ds;
|
|
int i;
|
|
|
|
/*
|
|
* Stop the one second clock.
|
|
*/
|
|
callout_stop(&sc->sc_tick_ch);
|
|
|
|
/* Down the MII. */
|
|
mii_down(&sc->sc_mii);
|
|
|
|
/*
|
|
* Disable interrupts.
|
|
*/
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
|
|
|
|
/*
|
|
* Stop receiver, transmitter, and stats update.
|
|
*/
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
|
|
MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
|
|
|
|
/*
|
|
* Stop the transmit and receive DMA.
|
|
*/
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
|
|
DC_RxDMAHalt | DC_TxDMAHalt);
|
|
ste_dmahalt_wait(sc);
|
|
|
|
/*
|
|
* Release any queued transmit buffers.
|
|
*/
|
|
for (i = 0; i < STE_NTXDESC; i++) {
|
|
ds = &sc->sc_txsoft[i];
|
|
if (ds->ds_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
|
|
m_freem(ds->ds_mbuf);
|
|
ds->ds_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
|
|
if (disable)
|
|
ste_rxdrain(sc);
|
|
}
|
|
|
|
static int
|
|
ste_eeprom_wait(struct ste_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < STE_TIMEOUT; i++) {
|
|
delay(1000);
|
|
if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
|
|
EC_EepromBusy) == 0)
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* ste_read_eeprom:
|
|
*
|
|
* Read data from the serial EEPROM.
|
|
*/
|
|
static void
|
|
ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
|
|
{
|
|
|
|
if (ste_eeprom_wait(sc))
|
|
printf("%s: EEPROM failed to come ready\n",
|
|
device_xname(&sc->sc_dev));
|
|
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
|
|
EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
|
|
if (ste_eeprom_wait(sc))
|
|
printf("%s: EEPROM read timed out\n",
|
|
device_xname(&sc->sc_dev));
|
|
*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
|
|
}
|
|
|
|
/*
|
|
* ste_add_rxbuf:
|
|
*
|
|
* Add a receive buffer to the indicated descriptor.
|
|
*/
|
|
static int
|
|
ste_add_rxbuf(struct ste_softc *sc, int idx)
|
|
{
|
|
struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (ds->ds_mbuf != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
|
|
|
|
ds->ds_mbuf = m;
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
|
|
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
|
|
BUS_DMA_READ|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: can't load rx DMA map %d, error = %d\n",
|
|
device_xname(&sc->sc_dev), idx, error);
|
|
panic("ste_add_rxbuf"); /* XXX */
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
STE_INIT_RXDESC(sc, idx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* ste_set_filter:
|
|
*
|
|
* Set up the receive filter.
|
|
*/
|
|
static void
|
|
ste_set_filter(struct ste_softc *sc)
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
uint32_t crc;
|
|
uint16_t mchash[4];
|
|
|
|
sc->sc_ReceiveMode = RM_ReceiveUnicast;
|
|
if (ifp->if_flags & IFF_BROADCAST)
|
|
sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
|
|
goto allmulti;
|
|
}
|
|
|
|
/*
|
|
* Set up the multicast address filter by passing all multicast
|
|
* addresses through a CRC generator, and then using the low-order
|
|
* 6 bits as an index into the 64 bit multicast hash table. The
|
|
* high order bits select the register, while the rest of the bits
|
|
* select the bit within the register.
|
|
*/
|
|
|
|
memset(mchash, 0, sizeof(mchash));
|
|
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
if (enm == NULL)
|
|
goto done;
|
|
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
|
|
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
|
|
|
|
/* Just want the 6 least significant bits. */
|
|
crc &= 0x3f;
|
|
|
|
/* Set the corresponding bit in the hash table. */
|
|
mchash[crc >> 4] |= 1 << (crc & 0xf);
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
|
|
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
goto done;
|
|
|
|
allmulti:
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
sc->sc_ReceiveMode |= RM_ReceiveMulticast;
|
|
|
|
done:
|
|
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
|
|
/*
|
|
* Program the multicast hash table.
|
|
*/
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
|
|
mchash[0]);
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
|
|
mchash[1]);
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
|
|
mchash[2]);
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
|
|
mchash[3]);
|
|
}
|
|
|
|
bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
|
|
sc->sc_ReceiveMode);
|
|
}
|
|
|
|
/*
|
|
* ste_mii_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the MII of the ST-201.
|
|
*/
|
|
static int
|
|
ste_mii_readreg(device_t self, int phy, int reg)
|
|
{
|
|
|
|
return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
|
|
}
|
|
|
|
/*
|
|
* ste_mii_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the MII of the ST-201.
|
|
*/
|
|
static void
|
|
ste_mii_writereg(device_t self, int phy, int reg, int val)
|
|
{
|
|
|
|
mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
|
|
}
|
|
|
|
/*
|
|
* ste_mii_statchg: [mii interface function]
|
|
*
|
|
* Callback from MII layer when media changes.
|
|
*/
|
|
static void
|
|
ste_mii_statchg(device_t self)
|
|
{
|
|
struct ste_softc *sc = device_private(self);
|
|
|
|
if (sc->sc_mii.mii_media_active & IFM_FDX)
|
|
sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
|
|
else
|
|
sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
|
|
|
|
/* XXX 802.1x flow-control? */
|
|
|
|
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
|
|
}
|
|
|
|
/*
|
|
* ste_mii_bitbang_read: [mii bit-bang interface function]
|
|
*
|
|
* Read the MII serial port for the MII bit-bang module.
|
|
*/
|
|
static uint32_t
|
|
ste_mii_bitbang_read(device_t self)
|
|
{
|
|
struct ste_softc *sc = device_private(self);
|
|
|
|
return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
|
|
}
|
|
|
|
/*
|
|
* ste_mii_bitbang_write: [mii big-bang interface function]
|
|
*
|
|
* Write the MII serial port for the MII bit-bang module.
|
|
*/
|
|
static void
|
|
ste_mii_bitbang_write(device_t self, uint32_t val)
|
|
{
|
|
struct ste_softc *sc = device_private(self);
|
|
|
|
bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
|
|
}
|