NetBSD/sys/dev/ic/dm9000.c
nisimura 3e4eba9a43 - add DM9000 internal PHY manipulating routines.
- now capable of auto-negotiation, use this as default media selection.
- add multicast filter support.
- code cleanup.

Code update from Paul Fleischer.
2012-01-28 08:29:55 +00:00

1134 lines
29 KiB
C

/* $NetBSD: dm9000.c,v 1.4 2012/01/28 08:29:55 nisimura Exp $ */
/*
* Copyright (c) 2009 Paul Fleischer
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* based on sys/dev/ic/cs89x0.c */
/*
* Copyright (c) 2004 Christopher Gilbert
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright 1997
* Digital Equipment Corporation. All rights reserved.
*
* This software is furnished under license and may be used and
* copied only in accordance with the following terms and conditions.
* Subject to these conditions, you may download, copy, install,
* use, modify and distribute this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce
* and retain this copyright notice and list of conditions as
* they appear in the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
* Digital Equipment Corporation. Neither the "Digital Equipment
* Corporation" name nor any trademark or logo of Digital Equipment
* Corporation may be used to endorse or promote products derived
* from this software without the prior written permission of
* Digital Equipment Corporation.
*
* 3) This software is provided "AS-IS" and any express or implied
* warranties, including but not limited to, any implied warranties
* of merchantability, fitness for a particular purpose, or
* non-infringement are disclaimed. In no event shall DIGITAL be
* liable for any damages whatsoever, and in particular, DIGITAL
* shall not be liable for special, indirect, consequential, or
* incidental damages or damages for lost profits, loss of
* revenue or loss of use, whether such damages arise in contract,
* negligence, tort, under statute, in equity, at law or otherwise,
* even if advised of the possibility of such damage.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/syslog.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <net/if.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <dev/ic/dm9000var.h>
#include <dev/ic/dm9000reg.h>
#if 1
#undef DM9000_DEBUG
#undef DM9000_TX_DEBUG
#undef DM9000_TX_DATA_DEBUG
#undef DM9000_RX_DEBUG
#undef DM9000_RX_DATA_DEBUG
#else
#define DM9000_DEBUG
#define DM9000_TX_DEBUG
#define DM9000_TX_DATA_DEBUG
#define DM9000_RX_DEBUG
#define DM9000_RX_DATA_DEBUG
#endif
#ifdef DM9000_DEBUG
#define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif
#ifdef DM9000_TX_DEBUG
#define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif
#ifdef DM9000_RX_DEBUG
#define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif
#ifdef DM9000_RX_DATA_DEBUG
#define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif
#ifdef DM9000_TX_DATA_DEBUG
#define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif
/*** Internal PHY functions ***/
uint16_t dme_phy_read(struct dme_softc *sc, int reg);
void dme_phy_write(struct dme_softc *sc, int reg, uint16_t value);
void dme_phy_init(struct dme_softc *sc);
void dme_phy_reset(struct dme_softc *sc);
void dme_phy_update_media(struct dme_softc *sc);
void dme_phy_check_link(void *arg);
/*** Methods registered in struct ifnet ***/
void dme_start_output(struct ifnet *ifp);
int dme_init(struct ifnet *ifp);
int dme_ioctl(struct ifnet *ifp, u_long cmd, void *data);
void dme_stop(struct ifnet *ifp, int disable);
int dme_mediachange(struct ifnet *ifp);
void dme_mediastatus(struct ifnet *ufp, struct ifmediareq *ifmr);
/*** Internal methods ***/
/* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
void dme_prepare(struct dme_softc *sc, struct ifnet *ifp);
/* Transmit prepared data */
void dme_transmit(struct dme_softc *sc);
/* Receive data */
void dme_receive(struct dme_softc *sc, struct ifnet *ifp);
/* Software Initialize/Reset of the DM9000 */
void dme_reset(struct dme_softc *sc);
/* Configure multicast filter */
void dme_set_addr_filter(struct dme_softc *sc);
/* Set media */
int dme_set_media(struct dme_softc *sc, int media);
/* Read/write packet data from/to DM9000 IC in various transfer sizes */
int dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf);
int dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain);
/* TODO: Implement 8 and 32 bit read/write functions */
uint16_t
dme_phy_read(struct dme_softc *sc, int reg)
{
uint16_t val;
/* Select Register to read*/
dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
(reg & DM9000_EPAR_EROA_MASK));
/* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
/* Wait until access to PHY has completed */
while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
/* Reset ERPRR-bit */
dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
val = dme_read(sc, DM9000_EPDRL);
val += dme_read(sc, DM9000_EPDRH) << 8;
return val;
}
void
dme_phy_write(struct dme_softc *sc, int reg, uint16_t value)
{
/* Select Register to write*/
dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
(reg & DM9000_EPAR_EROA_MASK));
/* Write data to the two data registers */
dme_write(sc, DM9000_EPDRL, value & 0xFF);
dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF);
/* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
/* Wait until access to PHY has completed */
while(dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
/* Reset ERPRR-bit */
dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
}
void
dme_phy_init(struct dme_softc *sc)
{
u_int ifm_media = sc->sc_media.ifm_media;
uint32_t bmcr, anar;
bmcr = dme_phy_read(sc, DM9000_PHY_BMCR);
anar = dme_phy_read(sc, DM9000_PHY_ANAR);
anar = anar & ~DM9000_PHY_ANAR_10_HDX
& ~DM9000_PHY_ANAR_10_FDX
& ~DM9000_PHY_ANAR_TX_HDX
& ~DM9000_PHY_ANAR_TX_FDX;
switch (IFM_SUBTYPE(ifm_media)) {
case IFM_AUTO:
bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN;
anar |= DM9000_PHY_ANAR_10_HDX |
DM9000_PHY_ANAR_10_FDX |
DM9000_PHY_ANAR_TX_HDX |
DM9000_PHY_ANAR_TX_FDX;
break;
case IFM_10_T:
//bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT;
if (ifm_media & IFM_FDX)
anar |= DM9000_PHY_ANAR_10_FDX;
else
anar |= DM9000_PHY_ANAR_10_HDX;
break;
case IFM_100_TX:
//bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
bmcr |= DM9000_PHY_BMCR_SPEED_SELECT;
if (ifm_media & IFM_FDX)
anar |= DM9000_PHY_ANAR_TX_FDX;
else
anar |= DM9000_PHY_ANAR_TX_HDX;
break;
}
if(ifm_media & IFM_FDX) {
bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE;
} else {
bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE;
}
dme_phy_write(sc, DM9000_PHY_BMCR, bmcr);
dme_phy_write(sc, DM9000_PHY_ANAR, anar);
}
void
dme_phy_reset(struct dme_softc *sc)
{
uint32_t reg;
/* PHY Reset */
dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
reg = dme_read(sc, DM9000_GPCR);
dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT);
reg = dme_read(sc, DM9000_GPR);
dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF);
dme_phy_init(sc);
reg = dme_read(sc, DM9000_GPR);
dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF);
reg = dme_read(sc, DM9000_GPCR);
dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT);
dme_phy_update_media(sc);
}
void
dme_phy_update_media(struct dme_softc *sc)
{
u_int ifm_media = sc->sc_media.ifm_media;
uint32_t reg;
if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) {
/* If auto-negotiation is used, ensures that it is completed
before trying to extract any media information. */
reg = dme_phy_read(sc, DM9000_PHY_BMSR);
if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) {
/* Auto-negotation not possible, therefore there is no
reason to try obtain any media information. */
return;
}
/* Then loop until the negotiation is completed. */
while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) {
/* TODO: Bail out after a finite number of attempts
in case something goes wrong. */
preempt();
reg = dme_phy_read(sc, DM9000_PHY_BMSR);
}
}
sc->sc_media_active = IFM_ETHER;
reg = dme_phy_read(sc, DM9000_PHY_BMCR);
if (reg & DM9000_PHY_BMCR_SPEED_SELECT) {
sc->sc_media_active |= IFM_100_TX;
} else {
sc->sc_media_active |= IFM_10_T;
}
if (reg & DM9000_PHY_BMCR_DUPLEX_MODE) {
sc->sc_media_active |= IFM_FDX;
}
}
void
dme_phy_check_link(void *arg)
{
struct dme_softc *sc = arg;
uint32_t reg;
int s;
s = splnet();
reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST;
if( reg )
reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE;
else {
reg = IFM_ETHER | IFM_AVALID;
sc->sc_media_active = IFM_NONE;
}
if ( (sc->sc_media_status != reg) && (reg & IFM_ACTIVE)) {
dme_phy_reset(sc);
}
sc->sc_media_status = reg;
callout_schedule(&sc->sc_link_callout, mstohz(2000));
splx(s);
}
int
dme_set_media(struct dme_softc *sc, int media)
{
int s;
s = splnet();
sc->sc_media.ifm_media = media;
dme_phy_reset(sc);
splx(s);
return 0;
}
int
dme_attach(struct dme_softc *sc, const uint8_t *enaddr)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint8_t b[2];
uint16_t io_mode;
dme_read_c(sc, DM9000_VID0, b, 2);
#if BYTE_ORDER == BIG_ENDIAN
sc->sc_vendor_id = (b[0] << 8) | b[1];
#else
sc->sc_vendor_id = b[0] | (b[1] << 8);
#endif
dme_read_c(sc, DM9000_PID0, b, 2);
#if BYTE_ORDER == BIG_ENDIAN
sc->sc_product_id = (b[0] << 8) | b[1];
#else
sc->sc_product_id = b[0] | (b[1] << 8);
#endif
/* TODO: Check the vendor ID as well */
if (sc->sc_product_id != 0x9000) {
panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
sc->sc_product_id);
}
/* Initialize ifnet structure. */
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = dme_start_output;
ifp->if_init = dme_init;
ifp->if_ioctl = dme_ioctl;
ifp->if_stop = dme_stop;
ifp->if_watchdog = NULL; /* no watchdog at this stage */
ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_BROADCAST |
IFF_MULTICAST;
IFQ_SET_READY(&ifp->if_snd);
/* Initialize ifmedia structures. */
ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus);
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
if (enaddr != NULL)
memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
/* TODO: Support an EEPROM attached to the DM9000 chip */
callout_init(&sc->sc_link_callout, 0);
callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc);
sc->sc_media_status = 0;
/* Configure DM9000 with the MAC address */
dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6);
#ifdef DM9000_DEBUG
{
uint8_t macAddr[6];
dme_read_c(sc, DM9000_PAB0, macAddr, 6);
printf("DM9000 configured with MAC address: ");
for (int i = 0; i < 6; i++) {
printf("%02X:", macAddr[i]);
}
printf("\n");
}
#endif
if_attach(ifp);
ether_ifattach(ifp, sc->sc_enaddr);
#ifdef DM9000_DEBUG
{
uint8_t network_state;
network_state = dme_read(sc, DM9000_NSR);
printf("DM9000 Link status: ");
if (network_state & DM9000_NSR_LINKST) {
if (network_state & DM9000_NSR_SPEED)
printf("10Mbps");
else
printf("100Mbps");
} else {
printf("Down");
}
printf("\n");
}
#endif
io_mode = (dme_read(sc, DM9000_ISR) &
DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
if (io_mode != DM9000_MODE_16BIT )
panic("DM9000: Only 16-bit mode is supported!\n");
DPRINTF(("DM9000 Operation Mode: "));
switch( io_mode) {
case DM9000_MODE_16BIT:
DPRINTF(("16-bit mode"));
sc->sc_data_width = 2;
sc->sc_pkt_write = dme_pkt_write_2;
sc->sc_pkt_read = dme_pkt_read_2;
break;
case DM9000_MODE_32BIT:
DPRINTF(("32-bit mode"));
sc->sc_data_width = 4;
break;
case DM9000_MODE_8BIT:
DPRINTF(("8-bit mode"));
sc->sc_data_width = 1;
break;
default:
DPRINTF(("Invalid mode"));
break;
}
DPRINTF(("\n"));
callout_schedule(&sc->sc_link_callout, mstohz(2000));
return 0;
}
int dme_intr(void *arg)
{
struct dme_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint8_t status;
DPRINTF(("dme_intr: Begin\n"));
/* Disable interrupts */
dme_write(sc, DM9000_IMR, DM9000_IMR_PAR );
status = dme_read(sc, DM9000_ISR);
dme_write(sc, DM9000_ISR, status);
if (status & DM9000_ISR_PRS) {
if (ifp->if_flags & IFF_RUNNING )
dme_receive(sc, ifp);
}
if (status & DM9000_ISR_PTS) {
uint8_t nsr;
uint8_t tx_status = 0x01; /* Initialize to an error value */
/* A packet has been transmitted */
sc->txbusy = 0;
nsr = dme_read(sc, DM9000_NSR);
if (nsr & DM9000_NSR_TX1END) {
tx_status = dme_read(sc, DM9000_TSR1);
TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
} else if (nsr & DM9000_NSR_TX2END) {
tx_status = dme_read(sc, DM9000_TSR2);
TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
}
if (tx_status == 0x0) {
/* Frame successfully sent */
ifp->if_opackets++;
} else {
ifp->if_oerrors++;
}
/* If we have nothing ready to transmit, prepare something */
if (!sc->txready) {
dme_prepare(sc, ifp);
}
if (sc->txready)
dme_transmit(sc);
/* Prepare the next frame */
dme_prepare(sc, ifp);
}
#ifdef notyet
if (status & DM9000_ISR_LNKCHNG) {
}
#endif
/* Enable interrupts again */
dme_write(sc, DM9000_IMR, DM9000_IMR_PAR | DM9000_IMR_PRM |
DM9000_IMR_PTM);
DPRINTF(("dme_intr: End\n"));
return 1;
}
void
dme_start_output(struct ifnet *ifp)
{
struct dme_softc *sc;
sc = ifp->if_softc;
DPRINTF(("dme_start_output: Begin\n"));
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
printf("No output\n");
return;
}
if (sc->txbusy && sc->txready) {
panic("DM9000: Internal error, trying to send without"
" any empty queue\n");
}
dme_prepare(sc, ifp);
if (sc->txbusy == 0) {
/* We are ready to transmit right away */
dme_transmit(sc);
dme_prepare(sc, ifp); /* Prepare next one */
} else {
/* We need to wait until the current packet has
* been transmitted.
*/
ifp->if_flags |= IFF_OACTIVE;
}
DPRINTF(("dme_start_output: End\n"));
}
void
dme_prepare(struct dme_softc *sc, struct ifnet *ifp)
{
struct mbuf *bufChain;
uint16_t length;
TX_DPRINTF(("dme_prepare: Entering\n"));
if (sc->txready)
panic("dme_prepare: Someone called us with txready set\n");
IFQ_DEQUEUE(&ifp->if_snd, bufChain);
if (bufChain == NULL) {
TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
return; /* Nothing to transmit */
}
/* Element has now been removed from the queue, so we better send it */
if (ifp->if_bpf)
bpf_mtap(ifp, bufChain);
/* Setup the DM9000 to accept the writes, and then write each buf in
the chain. */
TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
length = sc->sc_pkt_write(sc, bufChain);
TX_DATA_DPRINTF(("\n"));
if (length % sc->sc_data_width != 0) {
panic("dme_prepare: length is not compatible with IO_MODE");
}
sc->txready_length = length;
sc->txready = 1;
TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: "
"txready: %d, txready_length: %d\n",
sc->txbusy, sc->txready, sc->txready_length));
m_freem(bufChain);
TX_DPRINTF(("dme_prepare: Leaving\n"));
}
int
dme_init(struct ifnet *ifp)
{
int s;
struct dme_softc *sc = ifp->if_softc;
dme_stop(ifp, 0);
s = splnet();
dme_reset(sc);
sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
sc->sc_ethercom.ec_if.if_timer = 0;
splx(s);
return 0;
}
int
dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct dme_softc *sc = ifp->if_softc;
struct ifreq *ifr = data;
int s, error = 0;
s = splnet();
switch(cmd) {
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags && IFF_RUNNING) {
/* Address list has changed, reconfigure
filter */
dme_set_addr_filter(sc);
}
error = 0;
}
break;
}
splx(s);
return error;
}
void
dme_stop(struct ifnet *ifp, int disable)
{
struct dme_softc *sc = ifp->if_softc;
/* Not quite sure what to do when called with disable == 0 */
if (disable) {
/* Disable RX */
dme_write(sc, DM9000_RCR, 0x0);
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
int
dme_mediachange(struct ifnet *ifp)
{
struct dme_softc *sc = ifp->if_softc;
return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
}
void
dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct dme_softc *sc = ifp->if_softc;
ifmr->ifm_active = sc->sc_media_active;
ifmr->ifm_status = sc->sc_media_status;
}
void
dme_transmit(struct dme_softc *sc)
{
uint8_t status;
TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
sc->txready, sc->txbusy));
dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff );
/* Request to send the packet */
status = dme_read(sc, DM9000_ISR);
dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
sc->txready = 0;
sc->txbusy = 1;
sc->txready_length = 0;
}
void
dme_receive(struct dme_softc *sc, struct ifnet *ifp)
{
uint8_t ready = 0x01;
DPRINTF(("inside dme_receive\n"));
while (ready == 0x01) {
/* Packet received, retrieve it */
/* Read without address increment to get the ready byte without moving past it. */
bus_space_write_1(sc->sc_iot, sc->sc_ioh,
sc->dme_io, DM9000_MRCMDX);
/* Dummy ready */
ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
ready &= 0x03; /* we only want bits 1:0 */
if (ready == 0x01) {
uint8_t rx_status;
struct mbuf *m;
/* Read with address increment. */
bus_space_write_1(sc->sc_iot, sc->sc_ioh,
sc->dme_io, DM9000_MRCMD);
rx_status = sc->sc_pkt_read(sc, ifp, &m);
if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
/* Error while receiving the packet,
* discard it and keep track of counters
*/
ifp->if_ierrors++;
RX_DPRINTF(("dme_receive: "
"Error reciving packet\n"));
} else if (rx_status & DM9000_RSR_LCS) {
ifp->if_collisions++;
} else {
if (ifp->if_bpf)
bpf_mtap(ifp, m);
ifp->if_ipackets++;
(*ifp->if_input)(ifp, m);
}
} else if (ready != 0x00) {
/* Should this be logged somehow? */
printf("%s: Resetting chip\n",
device_xname(sc->sc_dev));
dme_reset(sc);
}
}
}
void
dme_reset(struct dme_softc *sc)
{
uint8_t var;
/* We only re-initialized the PHY in this function the first time it is
called. */
if( !sc->sc_phy_initialized) {
/* PHY Reset */
dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
/* PHY Power Down */
var = dme_read(sc, DM9000_GPR);
dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF);
}
/* Reset the DM9000 twice, as described in section 2 of the Programming
Guide.
The PHY is initialized and enabled between those two resets.
*/
/* Software Reset*/
dme_write(sc, DM9000_NCR,
DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
delay(20);
dme_write(sc, DM9000_NCR, 0x0);
if( !sc->sc_phy_initialized) {
/* PHY Initialization */
dme_phy_init(sc);
/* PHY Enable */
var = dme_read(sc, DM9000_GPR);
dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF);
var = dme_read(sc, DM9000_GPCR);
dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT);
dme_write(sc, DM9000_NCR,
DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
delay(20);
dme_write(sc, DM9000_NCR, 0x0);
}
/* Select internal PHY, no wakeup event, no collosion mode,
* normal loopback mode.
*/
dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL );
/* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
dme_read(sc, DM9000_NSR);
/* Enable wraparound of read/write pointer, packet received latch,
* and packet transmitted latch.
*/
dme_write(sc, DM9000_IMR,
DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
/* Setup multicast address filter, and enable RX. */
dme_set_addr_filter(sc);
/* Obtain media information from PHY */
dme_phy_update_media(sc);
sc->txbusy = 0;
sc->txready = 0;
sc->sc_phy_initialized = 1;
}
void
dme_set_addr_filter(struct dme_softc *sc)
{
struct ether_multi *enm;
struct ether_multistep step;
struct ethercom *ec;
struct ifnet *ifp;
uint16_t af[4];
int i;
ec = &sc->sc_ethercom;
ifp = &ec->ec_if;
if (ifp->if_flags & IFF_PROMISC) {
dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN |
DM9000_RCR_WTDIS |
DM9000_RCR_PRMSC);
ifp->if_flags |= IFF_ALLMULTI;
return;
}
af[0] = af[1] = af[2] = af[3] = 0x0000;
ifp->if_flags &= ~IFF_ALLMULTI;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
uint16_t hash;
if (memcpy(enm->enm_addrlo, enm->enm_addrhi,
sizeof(enm->enm_addrlo))) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = af[2] = af[3] = 0xffff;
break;
} else {
hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F;
af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16));
ETHER_NEXT_MULTI(step, enm);
}
}
/* Write the multicast address filter */
for(i=0; i<4; i++) {
dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF);
dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF);
}
/* Setup RX controls */
dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS);
}
int
dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
{
int left_over_count = 0; /* Number of bytes from previous mbuf, which
need to be written with the next.*/
uint16_t left_over_buf = 0;
int length = 0;
struct mbuf *buf;
uint8_t *write_ptr;
/* We expect that the DM9000 has been setup to accept writes before
this function is called. */
for (buf = bufChain; buf != NULL; buf = buf->m_next) {
int to_write = buf->m_len;
length += to_write;
write_ptr = buf->m_data;
while (to_write > 0 ||
(buf->m_next == NULL && left_over_count > 0)
) {
if (left_over_count > 0) {
uint8_t b = 0;
DPRINTF(("dme_pkt_write_16: "
"Writing left over byte\n"));
if (to_write > 0) {
b = *write_ptr;
to_write--;
write_ptr++;
DPRINTF(("Took single byte\n"));
} else {
DPRINTF(("Leftover in last run\n"));
length++;
}
/* Does shift direction depend on endianess? */
left_over_buf = left_over_buf | (b << 8);
bus_space_write_2(sc->sc_iot, sc->sc_ioh,
sc->dme_data, left_over_buf);
TX_DATA_DPRINTF(("%02X ", left_over_buf));
left_over_count = 0;
} else if ((long)write_ptr % 2 != 0) {
/* Misaligned data */
DPRINTF(("dme_pkt_write_16: "
"Detected misaligned data\n"));
left_over_buf = *write_ptr;
left_over_count = 1;
write_ptr++;
to_write--;
} else {
int i;
uint16_t *dptr = (uint16_t*)write_ptr;
/* A block of aligned data. */
for(i = 0; i < to_write/2; i++) {
/* buf will be half-word aligned
* all the time
*/
bus_space_write_2(sc->sc_iot,
sc->sc_ioh, sc->dme_data, *dptr);
TX_DATA_DPRINTF(("%02X %02X ",
*dptr & 0xFF, (*dptr>>8) & 0xFF));
dptr++;
}
write_ptr += i*2;
if (to_write % 2 != 0) {
DPRINTF(("dme_pkt_write_16: "
"to_write %% 2: %d\n",
to_write % 2));
left_over_count = 1;
/* XXX: Does this depend on
* the endianess?
*/
left_over_buf = *write_ptr;
write_ptr++;
to_write--;
DPRINTF(("dme_pkt_write_16: "
"to_write (after): %d\n",
to_write));
DPRINTF(("dme_pkt_write_16: i*2: %d\n",
i*2));
}
to_write -= i*2;
}
} /* while(...) */
} /* for(...) */
return length;
}
int
dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
{
uint8_t rx_status;
struct mbuf *m;
uint16_t data;
uint16_t frame_length;
uint16_t i;
uint16_t *buf;
data = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
sc->dme_data);
rx_status = data & 0xFF;
frame_length = bus_space_read_2(sc->sc_iot,
sc->sc_ioh, sc->dme_data);
if (frame_length > ETHER_MAX_LEN) {
printf("Got frame of length: %d\n", frame_length);
printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
panic("Something is rotten");
}
RX_DPRINTF(("dme_receive: "
"rx_statux: 0x%x, frame_length: %d\n",
rx_status, frame_length));
m = dme_alloc_receive_buffer(ifp, frame_length);
buf = mtod(m, uint16_t*);
RX_DPRINTF(("dme_receive: "));
for(i=0; i< frame_length; i+=2 ) {
data = bus_space_read_2(sc->sc_iot,
sc->sc_ioh, sc->dme_data);
if ( (frame_length % 2 != 0) &&
(i == frame_length-1) ) {
data = data & 0xff;
RX_DPRINTF((" L "));
}
*buf = data;
buf++;
RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
(data>>8) & 0xff));
}
RX_DATA_DPRINTF(("\n"));
RX_DPRINTF(("Read %d bytes\n", i));
*outBuf = m;
return rx_status;
}
struct mbuf*
dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
{
struct dme_softc *sc = ifp->if_softc;
struct mbuf *m;
int pad;
MGETHDR(m, M_DONTWAIT, MT_DATA);
m->m_pkthdr.rcvif = ifp;
/* Ensure that we always allocate an even number of
* bytes in order to avoid writing beyond the buffer
*/
m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width);
pad = ALIGN(sizeof(struct ether_header)) -
sizeof(struct ether_header);
/* All our frames have the CRC attached */
m->m_flags |= M_HASFCS;
if (m->m_pkthdr.len + pad > MHLEN )
MCLGET(m, M_DONTWAIT);
m->m_data += pad;
m->m_len = frame_length + (frame_length % sc->sc_data_width);
return m;
}