NetBSD/sys/arch/arm32/ofw/ofw.c

1955 lines
51 KiB
C

/* $NetBSD: ofw.c,v 1.22 1999/03/29 10:02:19 mycroft Exp $ */
/*
* Copyright 1997
* Digital Equipment Corporation. All rights reserved.
*
* This software is furnished under license and may be used and
* copied only in accordance with the following terms and conditions.
* Subject to these conditions, you may download, copy, install,
* use, modify and distribute this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce
* and retain this copyright notice and list of conditions as
* they appear in the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
* Digital Equipment Corporation. Neither the "Digital Equipment
* Corporation" name nor any trademark or logo of Digital Equipment
* Corporation may be used to endorse or promote products derived
* from this software without the prior written permission of
* Digital Equipment Corporation.
*
* 3) This software is provided "AS-IS" and any express or implied
* warranties, including but not limited to, any implied warranties
* of merchantability, fitness for a particular purpose, or
* non-infringement are disclaimed. In no event shall DIGITAL be
* liable for any damages whatsoever, and in particular, DIGITAL
* shall not be liable for special, indirect, consequential, or
* incidental damages or damages for lost profits, loss of
* revenue or loss of use, whether such damages arise in contract,
* negligence, tort, under statute, in equity, at law or otherwise,
* even if advised of the possibility of such damage.
*/
/*
* Routines for interfacing between NetBSD and OFW.
*
* Parts of this could be moved to an MI file in time. -JJK
*
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/reboot.h>
#include <sys/mbuf.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <dev/cons.h>
#include <machine/bus.h>
#include <machine/frame.h>
#include <machine/bootconfig.h>
#include <machine/cpu.h>
#include <machine/irqhandler.h>
#include <machine/pte.h>
#include <dev/ofw/openfirm.h>
#include <machine/ofw.h>
#include <netinet/in.h>
#if BOOT_FW_DHCP
#include <nfs/bootdata.h>
#endif
#ifdef SHARK
#include "machine/pio.h"
#include "machine/isa_machdep.h"
#endif
#include "pc.h"
#include "isadma.h"
#define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
#define IO_VIRT_SIZE 0x01000000
/*
* Imported variables
*/
extern BootConfig bootconfig; /* temporary, I hope */
extern int cold;
#ifdef DIAGNOSTIC
/* NOTE: These variables will be removed, well some of them */
extern u_int spl_mask;
extern u_int current_mask;
#endif
extern int ofw_handleticks;
/*
* Imported routines
*/
extern void map_section __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa,
int cacheable));
extern void map_pagetable __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
extern void map_entry __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
extern void map_entry_nc __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
extern void map_entry_ro __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
extern void pmap_bootstrap __P((vm_offset_t kernel_l1pt, pv_addr_t kernel_ptpt));
extern void dump_spl_masks __P((void));
extern void dumpsys __P((void));
extern void dotickgrovelling __P((vm_offset_t));
#if defined(SHARK) && (NPC > 0)
extern void shark_screen_cleanup __P((int));
#endif
#define WriteWord(a, b) \
*((volatile unsigned int *)(a)) = (b)
#define ReadWord(a) \
(*((volatile unsigned int *)(a)))
/*
* Exported variables
*/
/* These should all be in a meminfo structure. */
vm_offset_t physical_start;
vm_offset_t physical_freestart;
vm_offset_t physical_freeend;
vm_offset_t physical_end;
u_int free_pages;
int physmem;
pv_addr_t systempage;
#ifndef OFWGENCFG
pv_addr_t irqstack;
#endif
pv_addr_t undstack;
pv_addr_t abtstack;
pv_addr_t kernelstack;
vm_offset_t msgbufphys;
/* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
static vm_offset_t virt_freeptr;
int ofw_callbacks = 0; /* debugging counter */
/**************************************************************/
/*
* Declarations and definitions private to this module
*
*/
struct mem_region {
vm_offset_t start;
vm_size_t size;
};
struct mem_translation {
vm_offset_t virt;
vm_size_t size;
vm_offset_t phys;
unsigned int mode;
};
struct isa_range {
vm_offset_t isa_phys_hi;
vm_offset_t isa_phys_lo;
vm_offset_t parent_phys_start;
vm_size_t isa_size;
};
struct vl_range {
vm_offset_t vl_phys_hi;
vm_offset_t vl_phys_lo;
vm_offset_t parent_phys_start;
vm_size_t vl_size;
};
struct vl_isa_range {
vm_offset_t isa_phys_hi;
vm_offset_t isa_phys_lo;
vm_offset_t parent_phys_hi;
vm_offset_t parent_phys_lo;
vm_size_t isa_size;
};
struct dma_range {
vm_offset_t start;
vm_size_t size;
};
struct ofw_cbargs {
char *name;
int nargs;
int nreturns;
int args_n_results[12];
};
/* Memory info */
static int nOFphysmem;
static struct mem_region *OFphysmem;
static int nOFphysavail;
static struct mem_region *OFphysavail;
static int nOFtranslations;
static struct mem_translation *OFtranslations;
static int nOFdmaranges;
static struct dma_range *OFdmaranges;
/* The OFW client services handle. */
/* Initialized by ofw_init(). */
static ofw_handle_t ofw_client_services_handle;
static void ofw_callbackhandler __P((struct ofw_cbargs *));
static void ofw_construct_proc0_addrspace __P((pv_addr_t *, pv_addr_t *));
static void ofw_getphysmeminfo __P((void));
static void ofw_getvirttranslations __P((void));
static void *ofw_malloc(vm_size_t size);
static void ofw_claimpages __P((vm_offset_t *, pv_addr_t *, vm_size_t));
static void ofw_discardmappings __P ((vm_offset_t, vm_offset_t, vm_size_t));
static int ofw_mem_ihandle __P((void));
static int ofw_mmu_ihandle __P((void));
static vm_offset_t ofw_claimphys __P((vm_offset_t, vm_size_t, vm_offset_t));
#if 0
static vm_offset_t ofw_releasephys __P((vm_offset_t, vm_size_t));
#endif
static vm_offset_t ofw_claimvirt __P((vm_offset_t, vm_size_t, vm_offset_t));
static void ofw_settranslation __P ((vm_offset_t, vm_offset_t, vm_size_t, int));
static void ofw_initallocator __P((void));
static void ofw_configisaonly __P((vm_offset_t *, vm_offset_t *));
static void ofw_configvl __P((int, vm_offset_t *, vm_offset_t *));
static vm_offset_t ofw_valloc __P((vm_offset_t, vm_offset_t));
/*
* DHCP hooks. For a first cut, we look to see if there is a DHCP
* packet that was saved by the firmware. If not, we proceed as before,
* getting hand-configured data from NVRAM. If there is one, we get the
* packet, and extract the data from it. For now, we hand that data up
* in the boot_args string as before.
*/
/**************************************************************/
/*
*
* Support routines for xxx_machdep.c
*
* The intent is that all OFW-based configurations use the
* exported routines in this file to do their business. If
* they need to override some function they are free to do so.
*
* The exported routines are:
*
* openfirmware
* ofw_init
* ofw_boot
* ofw_getbootinfo
* ofw_configmem
* ofw_configisa
* ofw_configisadma
* ofw_gettranslation
* ofw_map
* ofw_getcleaninfo
*/
int
openfirmware(args)
void *args;
{
int ofw_result;
u_int saved_irq_state;
/* OFW is not re-entrant, so we wrap a mutex around the call. */
saved_irq_state = disable_interrupts(I32_bit);
ofw_result = ofw_client_services_handle(args);
(void)restore_interrupts(saved_irq_state);
return(ofw_result);
}
void
ofw_init(ofw_handle)
ofw_handle_t ofw_handle;
{
ofw_client_services_handle = ofw_handle;
/* Everything we allocate in the remainder of this block is
* constrained to be in the "kernel-static" portion of the
* virtual address space (i.e., 0xF0000000 - 0xF1000000).
* This is because all such objects are expected to be in
* that range by NetBSD, or the objects will be re-mapped
* after the page-table-switch to other specific locations.
* In the latter case, it's simplest if our pre-switch handles
* on those objects are in regions that are already "well-
* known." (Otherwise, the cloning of the OFW-managed address-
* space becomes more awkward.) To minimize the number of L2
* page tables that we use, we are further restricting the
* remaining allocations in this block to the bottom quarter of
* the legal range. OFW will have loaded the kernel text+data+bss
* starting at the bottom of the range, and we will allocate
* objects from the top, moving downwards. The two sub-regions
* will collide if their total sizes hit 4MB. The current total
* is <1.5MB, so we aren't in any real danger yet. The variable
* virt-freeptr represents the next free va (moving downwards).
*/
virt_freeptr = KERNEL_BASE + 0x00400000;
}
void
ofw_boot(howto, bootstr)
int howto;
char *bootstr;
{
#ifdef DIAGNOSTIC
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n",
irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
irqmasks[IPL_IMP]);
printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
dump_spl_masks();
#endif
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
printf("Halted while still in the ICE age.\n");
printf("The operating system has halted.\n");
goto ofw_exit;
/*NOTREACHED*/
}
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the unmount.
* It looks like syslogd is getting woken up only to find that it cannot
* page part of the binary in as the filesystem has been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
goto ofw_exit;
}
/* Tell the user we are booting */
printf("rebooting...\n");
/* Jump into the OFW boot routine. */
{
static char str[256];
char *ap = str, *ap1 = ap;
if (bootstr && *bootstr) {
if (strlen(bootstr) > sizeof str - 5)
printf("boot string too large, ignored\n");
else {
strcpy(str, bootstr);
ap1 = ap = str + strlen(str);
*ap++ = ' ';
}
}
*ap++ = '-';
if (howto & RB_SINGLE)
*ap++ = 's';
if (howto & RB_KDB)
*ap++ = 'd';
*ap++ = 0;
if (ap[-2] == '-')
*ap1 = 0;
#if defined(SHARK) && (NPC > 0)
shark_screen_cleanup(0);
#endif
OF_boot(str);
/*NOTREACHED*/
}
ofw_exit:
printf("Calling OF_exit...\n");
#if defined(SHARK) && (NPC > 0)
shark_screen_cleanup(1);
#endif
OF_exit();
/*NOTREACHED*/
}
#if BOOT_FW_DHCP
extern char *ip2dotted __P((struct in_addr));
/*
* Get DHCP data from OFW
*/
void
get_fw_dhcp_data(bdp)
struct bootdata *bdp;
{
int chosen;
int dhcplen;
bzero((char *)bdp, sizeof(*bdp));
if ((chosen = OF_finddevice("/chosen")) == -1)
panic("no /chosen from OFW");
if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
u_char *cp;
int dhcp_type = 0;
char *ip;
/*
* OFW saved a DHCP (or BOOTP) packet for us.
*/
if (dhcplen > sizeof(bdp->dhcp_packet))
panic("DHCP packet too large");
OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
sizeof(bdp->dhcp_packet));
SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
/*
* Collect the interesting data from DHCP into
* the bootdata structure.
*/
bdp->ip_address = bdp->dhcp_packet.yiaddr;
ip = ip2dotted(bdp->ip_address);
if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
parse_dhcp_options(&bdp->dhcp_packet,
bdp->dhcp_packet.options + 4,
&bdp->dhcp_packet.options[dhcplen
- DHCP_FIXED_NON_UDP], bdp, ip);
if (bdp->root_ip.s_addr == 0)
bdp->root_ip = bdp->dhcp_packet.siaddr;
if (bdp->swap_ip.s_addr == 0)
bdp->swap_ip = bdp->dhcp_packet.siaddr;
}
/*
* If the DHCP packet did not contain all the necessary data,
* look in NVRAM for the missing parts.
*/
{
int options;
int proplen;
#define BOOTJUNKV_SIZE 256
char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
if ((options = OF_finddevice("/options")) == -1)
panic("can't find /options");
if (bdp->ip_address.s_addr == 0 &&
(proplen = OF_getprop(options, "ipaddr",
bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
bootjunkv[proplen] = '\0';
if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
bdp->ip_address.s_addr = 0;
}
if (bdp->ip_mask.s_addr == 0 &&
(proplen = OF_getprop(options, "netmask",
bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
bootjunkv[proplen] = '\0';
if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
bdp->ip_mask.s_addr = 0;
}
if (bdp->hostname[0] == '\0' &&
(proplen = OF_getprop(options, "hostname",
bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
bdp->hostname[proplen] = '\0';
}
if (bdp->root[0] == '\0' &&
(proplen = OF_getprop(options, "rootfs",
bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
bootjunkv[proplen] = '\0';
parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
}
if (bdp->swap[0] == '\0' &&
(proplen = OF_getprop(options, "swapfs",
bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
bootjunkv[proplen] = '\0';
parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
}
}
}
#endif /* BOOT_FW_DHCP */
void
ofw_getbootinfo(bp_pp, ba_pp)
char **bp_pp;
char **ba_pp;
{
int chosen;
int bp_len;
int ba_len;
char *bootpathv;
char *bootargsv;
/* Read the bootpath and bootargs out of OFW. */
/* XXX is bootpath still interesting? --emg */
if ((chosen = OF_finddevice("/chosen")) == -1)
panic("no /chosen from OFW");
bp_len = OF_getproplen(chosen, "bootpath");
ba_len = OF_getproplen(chosen, "bootargs");
if (bp_len < 0 || ba_len < 0)
panic("can't get boot data from OFW");
bootpathv = (char *)ofw_malloc(bp_len);
bootargsv = (char *)ofw_malloc(ba_len);
if (bp_len)
OF_getprop(chosen, "bootpath", bootpathv, bp_len);
else
bootpathv[0] = '\0';
if (ba_len)
OF_getprop(chosen, "bootargs", bootargsv, ba_len);
else
bootargsv[0] = '\0';
*bp_pp = bootpathv;
*ba_pp = bootargsv;
}
vm_offset_t
ofw_getcleaninfo(void)
{
int cpu;
vm_offset_t vclean, pclean;
if ((cpu = OF_finddevice("/cpu")) == -1)
panic("no /cpu from OFW");
if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
sizeof(vclean))) != sizeof(vclean)) {
#ifdef DEBUG
printf("no OFW d-cache-flush-address property\n");
#endif
return -1;
}
if ((pclean = ofw_gettranslation(
of_decode_int((unsigned char *)&vclean))) == -1)
panic("OFW failed to translate cache flush address");
return pclean;
}
void
ofw_configisa(pio, pmem)
vm_offset_t *pio;
vm_offset_t *pmem;
{
int vl;
if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
ofw_configisaonly(pio, pmem);
else /* old style OFW dev info tree */
ofw_configvl(vl, pio, pmem);
}
static void
ofw_configisaonly(pio, pmem)
vm_offset_t *pio;
vm_offset_t *pmem;
{
int isa;
int rangeidx;
int size;
vm_offset_t hi, start;
struct isa_range ranges[2];
if ((isa = OF_finddevice("/isa")) == -1)
panic("OFW has no /isa device node");
/* expect to find two isa ranges: IO/data and memory/data */
if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
!= sizeof(ranges))
panic("unexpected size of OFW /isa ranges property: %d", size);
*pio = *pmem = -1;
for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
hi = of_decode_int((unsigned char *)
&ranges[rangeidx].isa_phys_hi);
start = of_decode_int((unsigned char *)
&ranges[rangeidx].parent_phys_start);
if (hi & 1) { /* then I/O space */
*pio = start;
} else {
*pmem = start;
}
} /* END for */
if ((*pio == -1) || (*pmem == -1))
panic("bad OFW /isa ranges property");
}
static void
ofw_configvl(vl, pio, pmem)
int vl;
vm_offset_t *pio;
vm_offset_t *pmem;
{
int isa;
int ir, vr;
int size;
vm_offset_t hi, start;
struct vl_isa_range isa_ranges[2];
struct vl_range vl_ranges[2];
if ((isa = OF_finddevice("/vlbus/isa")) == -1)
panic("OFW has no /vlbus/isa device node");
/* expect to find two isa ranges: IO/data and memory/data */
if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
!= sizeof(isa_ranges))
panic("unexpected size of OFW /vlbus/isa ranges property: %d",
size);
/* expect to find two vl ranges: IO/data and memory/data */
if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
!= sizeof(vl_ranges))
panic("unexpected size of OFW /vlbus ranges property: %d", size);
*pio = -1;
*pmem = -1;
for (ir = 0; ir < 2; ++ir) {
for (vr = 0; vr < 2; ++vr) {
if ((isa_ranges[ir].parent_phys_hi
== vl_ranges[vr].vl_phys_hi) &&
(isa_ranges[ir].parent_phys_lo
== vl_ranges[vr].vl_phys_lo)) {
hi = of_decode_int((unsigned char *)
&isa_ranges[ir].isa_phys_hi);
start = of_decode_int((unsigned char *)
&vl_ranges[vr].parent_phys_start);
if (hi & 1) { /* then I/O space */
*pio = start;
} else {
*pmem = start;
}
} /* END if */
} /* END for */
} /* END for */
if ((*pio == -1) || (*pmem == -1))
panic("bad OFW /isa ranges property");
}
void
ofw_configisadma(pdma)
vm_offset_t *pdma;
{
int root;
int rangeidx;
int size;
struct dma_range *dr;
#if NISADMA > 0
extern bus_dma_segment_t *pmap_isa_dma_ranges;
extern int pmap_isa_dma_nranges;
#endif
if ((root = OF_finddevice("/")) == -1 ||
(size = OF_getproplen(root, "dma-ranges")) <= 0 ||
(OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
panic("bad / dma-ranges property");
nOFdmaranges = size / sizeof(struct dma_range);
#if NISADMA > 0
/* Allocate storage for non-OFW representation of the range. */
pmap_isa_dma_ranges = ofw_malloc(nOFdmaranges *
sizeof(bus_dma_segment_t));
if (pmap_isa_dma_ranges == NULL)
panic("unable to allocate pmap_isa_dma_ranges");
pmap_isa_dma_nranges = nOFdmaranges;
#endif
for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
++rangeidx, ++dr) {
dr->start = of_decode_int((unsigned char *)&dr->start);
dr->size = of_decode_int((unsigned char *)&dr->size);
#if NISADMA > 0
pmap_isa_dma_ranges[rangeidx].ds_addr = dr->start;
pmap_isa_dma_ranges[rangeidx].ds_len = dr->size;
#endif
}
#ifdef DEBUG
printf("dma ranges size = %d\n", size);
for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
printf("%08lx %08lx\n",
(u_long)OFdmaranges[rangeidx].start,
(u_long)OFdmaranges[rangeidx].size);
}
#endif
}
/*
* Memory configuration:
*
* We start off running in the environment provided by OFW.
* This has the MMU turned on, the kernel code and data
* mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
* data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
* page0 mapped-in at 0x0.
*
* The strategy is to set-up the address space for proc0 --
* including the allocation of space for new page tables -- while
* memory is still managed by OFW. We then effectively create a
* copy of the address space by dumping all of OFW's translations
* and poking them into the new page tables. We then notify OFW
* that we are assuming control of memory-management by installing
* our callback-handler, and switch to the NetBSD-managed page
* tables with the setttb() call.
*
* This scheme may cause some amount of memory to be wasted within
* OFW as dead page tables, but it shouldn't be more than about
* 20-30KB. (It's also possible that OFW will re-use the space.)
*/
void
ofw_configmem(void)
{
pv_addr_t proc0_ttbbase;
pv_addr_t proc0_ptpt;
/* Set-up proc0 address space. */
ofw_construct_proc0_addrspace(&proc0_ttbbase, &proc0_ptpt);
/*
* Get a dump of OFW's picture of physical memory.
* This is used below to initialize a load of variables used by pmap.
* We get it now rather than later because we are about to
* tell OFW to stop managing memory.
*/
ofw_getphysmeminfo();
/* We are about to take control of memory-management from OFW.
* Establish callbacks for OFW to use for its future memory needs.
* This is required for us to keep using OFW services.
*/
/* First initialize our callback memory allocator. */
ofw_initallocator();
OF_set_callback((void(*)())ofw_callbackhandler);
/* Switch to the proc0 pagetables. */
setttb(proc0_ttbbase.pv_pa);
/* Aaaaaaaah, running in the proc0 address space! */
/* I feel good... */
/* Set-up the various globals which describe physical memory for pmap. */
{
struct mem_region *mp;
int totalcnt;
int availcnt;
int i;
/* physmem, physical_start, physical_end */
physmem = 0;
for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
totalcnt++, mp++) {
#ifdef OLDPRINTFS
printf("physmem: %x, %x\n", mp->start, mp->size);
#endif
physmem += btoc(mp->size);
}
physical_start = OFphysmem[0].start;
mp--;
physical_end = mp->start + mp->size;
/* free_pages, physical_freestart, physical_freeend */
free_pages = 0;
for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
availcnt++, mp++) {
#ifdef OLDPRINTFS
printf("physavail: %x, %x\n", mp->start, mp->size);
#endif
free_pages += btoc(mp->size);
}
physical_freestart = OFphysavail[0].start;
mp--;
physical_freeend = mp->start + mp->size;
#ifdef OLDPRINTFS
printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
physmem, free_pages);
#endif
/*
* This is a hack to work with the existing pmap code.
* That code depends on a RiscPC BootConfig structure
* containing, among other things, an array describing
* the regions of physical memory. So, for now, we need
* to stuff our OFW-derived physical memory info into a
* "fake" BootConfig structure.
*
* An added twist is that we initialize the BootConfig
* structure with our "available" physical memory regions
* rather than the "total" physical memory regions. Why?
* Because:
*
* (a) the VM code requires that the "free" pages it is
* initialized with have consecutive indices. This
* allows it to use more efficient data structures
* (presumably).
* (b) the current pmap routines which report the initial
* set of free page indices (pmap_next_page) and
* which map addresses to indices (pmap_page_index)
* assume that the free pages are consecutive across
* memory region boundaries.
*
* This means that memory which is "stolen" at startup time
* (say, for page descriptors) MUST come from either the
* bottom of the first region or the top of the last.
*
* This requirement doesn't mesh well with OFW (or at least
* our use of it). We can get around it for the time being
* by pretending that our "available" region array describes
* all of our physical memory. This may cause some important
* information to be excluded from a dump file, but so far
* I haven't come across any other negative effects.
*
* In the long-run we should fix the index
* generation/translation code in the pmap module.
*/
if (DRAM_BLOCKS < (availcnt + 1))
panic("more ofw memory regions than bootconfig blocks");
for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
bootconfig.dram[i].address = mp->start;
bootconfig.dram[i].pages = btoc(mp->size);
}
bootconfig.dramblocks = availcnt;
}
/* Initialize pmap module. */
pmap_bootstrap(proc0_ttbbase.pv_va, proc0_ptpt);
}
/*
************************************************************
Routines private to this module
************************************************************
*/
/* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
static void
ofw_callbackhandler(args)
struct ofw_cbargs *args;
{
char *name = args->name;
int nargs = args->nargs;
int nreturns = args->nreturns;
int *args_n_results = args->args_n_results;
ofw_callbacks++;
#if defined(OFWGENCFG)
/* Check this first, so that we don't waste IRQ time parsing. */
if (strcmp(name, "tick") == 0) {
vm_offset_t frame;
/* Check format. */
if (nargs != 1 || nreturns < 1) {
args_n_results[nargs] = -1;
args->nreturns = 1;
return;
}
args_n_results[nargs] = 0; /* properly formatted request */
/*
* Note that we are running in the IRQ frame, with interrupts
* disabled.
*
* We need to do two things here:
* - copy a few words out of the input frame into a global
* area, for later use by our real tick-handling code
* - patch a few words in the frame so that when OFW returns
* from the interrupt it will resume with our handler
* rather than the code that was actually interrupted.
* Our handler will resume when it finishes with the code
* that was actually interrupted.
*
* It's simplest to do this in assembler, since it requires
* switching frames and grovelling about with registers.
*/
frame = (vm_offset_t)args_n_results[0];
if (ofw_handleticks)
dotickgrovelling(frame);
args_n_results[nargs + 1] = frame;
args->nreturns = 1;
} else
#endif
if (strcmp(name, "map") == 0) {
vm_offset_t va;
vm_offset_t pa;
vm_size_t size;
int mode;
int ap_bits;
int dom_bits;
int cb_bits;
/* Check format. */
if (nargs != 4 || nreturns < 2) {
args_n_results[nargs] = -1;
args->nreturns = 1;
return;
}
args_n_results[nargs] = 0; /* properly formatted request */
pa = (vm_offset_t)args_n_results[0];
va = (vm_offset_t)args_n_results[1];
size = (vm_size_t)args_n_results[2];
mode = args_n_results[3];
ap_bits = (mode & 0x00000C00);
dom_bits = (mode & 0x000001E0);
cb_bits = (mode & 0x000000C0);
/* Sanity checks. */
if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
(va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
(pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
size == 0 || (dom_bits >> 5) != 0) {
args_n_results[nargs + 1] = -1;
args->nreturns = 1;
return;
}
/* Write-back anything stuck in the cache. */
cache_clean();
/* Install new mappings. */
{
pt_entry_t *pte = vtopte(va);
int npages = size >> PGSHIFT;
ap_bits >>= 10;
for (; npages > 0; pte++, pa += NBPG, npages--)
*pte = (pa | PT_AP(ap_bits) | L2_SPAGE | cb_bits);
}
/* Clean out tlb. */
tlb_flush();
args_n_results[nargs + 1] = 0;
args->nreturns = 2;
} else if (strcmp(name, "unmap") == 0) {
vm_offset_t va;
vm_size_t size;
/* Check format. */
if (nargs != 2 || nreturns < 1) {
args_n_results[nargs] = -1;
args->nreturns = 1;
return;
}
args_n_results[nargs] = 0; /* properly formatted request */
va = (vm_offset_t)args_n_results[0];
size = (vm_size_t)args_n_results[1];
/* Sanity checks. */
if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
(va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
(size & PGOFSET) != 0 || size == 0) {
args_n_results[nargs + 1] = -1;
args->nreturns = 1;
return;
}
/* Write-back anything stuck in the cache. */
cache_clean();
/* Zero the mappings. */
{
pt_entry_t *pte = vtopte(va);
int npages = size >> PGSHIFT;
for (; npages > 0; pte++, npages--)
*pte = 0;
}
/* Clean out tlb. */
tlb_flush();
args->nreturns = 1;
} else if (strcmp(name, "translate") == 0) {
vm_offset_t va;
vm_offset_t pa;
int mode;
pt_entry_t pte;
/* Check format. */
if (nargs != 1 || nreturns < 4) {
args_n_results[nargs] = -1;
args->nreturns = 1;
return;
}
args_n_results[nargs] = 0; /* properly formatted request */
va = (vm_offset_t)args_n_results[0];
/* Sanity checks.
* For now, I am only willing to translate va's in the
* "ofw range." Eventually, I may be more generous. -JJK
*/
if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
args_n_results[nargs + 1] = -1;
args->nreturns = 1;
return;
}
/* Lookup mapping. */
pte = *vtopte(va);
if (pte == 0) {
/* No mapping. */
args_n_results[nargs + 1] = -1;
args->nreturns = 2;
} else {
/* Existing mapping. */
pa = (pte & PG_FRAME) | (va & ~PG_FRAME);
mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
args_n_results[nargs + 1] = 0;
args_n_results[nargs + 2] = pa;
args_n_results[nargs + 3] = mode;
args->nreturns = 4;
}
} else if (strcmp(name, "claim-phys") == 0) {
struct pglist alloclist = TAILQ_HEAD_INITIALIZER(alloclist);
vm_offset_t low, high;
vm_size_t align, size;
/*
* XXX
* XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
* XXX
*/
/* Check format. */
if (nargs != 4 || nreturns < 3) {
args_n_results[nargs] = -1;
args->nreturns = 1;
return;
}
args_n_results[nargs] = 0; /* properly formatted request */
low = args_n_results[0];
size = args_n_results[2];
align = args_n_results[3];
high = args_n_results[1] + size;
#if 0
printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
low, size, align, high);
align = size;
printf("forcing align to be 0x%x\n", align);
#endif
args_n_results[nargs + 1] =
uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
#if 0
printf(" -> 0x%lx", args_n_results[nargs + 1]);
#endif
if (args_n_results[nargs + 1] != 0) {
#if 0
printf("(failed)\n");
#endif
args_n_results[nargs + 1] = -1;
args->nreturns = 2;
return;
}
args_n_results[nargs + 2] = alloclist.tqh_first->phys_addr;
#if 0
printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
#endif
args->nreturns = 3;
} else if (strcmp(name, "release-phys") == 0) {
printf("unimplemented ofw callback - %s\n", name);
args_n_results[nargs] = -1;
args->nreturns = 1;
} else if (strcmp(name, "claim-virt") == 0) {
vm_offset_t va;
vm_size_t size;
vm_offset_t align;
/* XXX - notyet */
/* printf("unimplemented ofw callback - %s\n", name);*/
args_n_results[nargs] = -1;
args->nreturns = 1;
return;
/* Check format. */
if (nargs != 2 || nreturns < 3) {
args_n_results[nargs] = -1;
args->nreturns = 1;
return;
}
args_n_results[nargs] = 0; /* properly formatted request */
/* Allocate size bytes with specified alignment. */
size = (vm_size_t)args_n_results[0];
align = (vm_offset_t)args_n_results[1];
if (align % NBPG != 0) {
args_n_results[nargs + 1] = -1;
args->nreturns = 2;
return;
}
if (va == 0) {
/* Couldn't allocate. */
args_n_results[nargs + 1] = -1;
args->nreturns = 2;
} else {
/* Successful allocation. */
args_n_results[nargs + 1] = 0;
args_n_results[nargs + 2] = va;
args->nreturns = 3;
}
} else if (strcmp(name, "release-virt") == 0) {
vm_offset_t va;
vm_size_t size;
/* XXX - notyet */
printf("unimplemented ofw callback - %s\n", name);
args_n_results[nargs] = -1;
args->nreturns = 1;
return;
/* Check format. */
if (nargs != 2 || nreturns < 1) {
args_n_results[nargs] = -1;
args->nreturns = 1;
return;
}
args_n_results[nargs] = 0; /* properly formatted request */
/* Release bytes. */
va = (vm_offset_t)args_n_results[0];
size = (vm_size_t)args_n_results[1];
args->nreturns = 1;
} else {
args_n_results[nargs] = -1;
args->nreturns = 1;
}
}
#define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (PDSHIFT + 2))
#define KERNEL_OFW_PTS 4
#define KERNEL_IO_PTS 4
static void
ofw_construct_proc0_addrspace(proc0_ttbbase, proc0_ptpt)
pv_addr_t *proc0_ttbbase;
pv_addr_t *proc0_ptpt;
{
int i, oft;
pv_addr_t proc0_pagedir;
pv_addr_t proc0_pt_pte;
pv_addr_t proc0_pt_sys;
pv_addr_t proc0_pt_kernel;
pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
pv_addr_t msgbuf;
vm_offset_t L1pagetable;
vm_offset_t L2pagetable;
struct mem_translation *tp;
/* Set-up the system page. */
systempage.pv_va = ofw_claimvirt(0, NBPG, 0);
if (systempage.pv_va == -1) {
/* Something was already mapped to VA 0. */
systempage.pv_va = 0;
systempage.pv_pa = ofw_gettranslation(0);
if (systempage.pv_pa == -1)
panic("bogus result from gettranslation(0)");
} else {
/* We were just allocated the page-length range at VA 0. */
if (systempage.pv_va != 0)
panic("bogus result from claimvirt(0, NBPG, 0)");
/* Now allocate a physical page, and establish the mapping. */
systempage.pv_pa = ofw_claimphys(0, NBPG, NBPG);
if (systempage.pv_pa == -1)
panic("bogus result from claimphys(0, NBPG, NBPG)");
ofw_settranslation(systempage.pv_va, systempage.pv_pa,
NBPG, -1); /* XXX - mode? -JJK */
/* Zero the memory. */
bzero((char *)systempage.pv_va, NBPG);
}
/* Allocate/initialize space for the proc0, NetBSD-managed */
/* page tables that we will be switching to soon. */
ofw_claimpages(&virt_freeptr, &proc0_pagedir, PD_SIZE);
ofw_claimpages(&virt_freeptr, &proc0_pt_pte, PT_SIZE);
ofw_claimpages(&virt_freeptr, &proc0_pt_sys, PT_SIZE);
ofw_claimpages(&virt_freeptr, &proc0_pt_kernel, PT_SIZE);
for (i = 0; i < KERNEL_VMDATA_PTS; i++)
ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], PT_SIZE);
for (i = 0; i < KERNEL_OFW_PTS; i++)
ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], PT_SIZE);
for (i = 0; i < KERNEL_IO_PTS; i++)
ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], PT_SIZE);
/* Allocate/initialize space for stacks. */
#ifndef OFWGENCFG
ofw_claimpages(&virt_freeptr, &irqstack, NBPG);
#endif
ofw_claimpages(&virt_freeptr, &undstack, NBPG);
ofw_claimpages(&virt_freeptr, &abtstack, NBPG);
ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * NBPG);
/* Allocate/initialize space for msgbuf area. */
ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
msgbufphys = msgbuf.pv_pa;
/*
* OK, we're done allocating.
* Get a dump of OFW's translations, and make the appropriate
* entries in the L2 pagetables that we just allocated.
*/
ofw_getvirttranslations();
for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
oft++, tp++) {
vm_offset_t va, pa;
int npages = tp->size / NBPG;
/* Size must be an integral number of pages. */
if (npages == 0 || tp->size % NBPG != 0)
panic("illegal ofw translation (size)");
/* Make an entry for each page in the appropriate table. */
for (va = tp->virt, pa = tp->phys; npages > 0;
va += NBPG, pa += NBPG, npages--) {
vm_offset_t L2pagetable;
/*
* Map the top bits to the appropriate L2 pagetable.
* The only allowable regions are page0, the
* kernel-static area, and the ofw area.
*/
switch (va >> (PDSHIFT + 2)) {
case 0:
/* page0 */
L2pagetable = proc0_pt_sys.pv_va;
break;
case (KERNEL_BASE >> (PDSHIFT + 2)):
/* kernel static area */
L2pagetable = proc0_pt_kernel.pv_va;
break;
case ( OFW_VIRT_BASE >> (PDSHIFT + 2)):
case ((OFW_VIRT_BASE + 0x00400000) >> (PDSHIFT + 2)):
case ((OFW_VIRT_BASE + 0x00800000) >> (PDSHIFT + 2)):
case ((OFW_VIRT_BASE + 0x00C00000) >> (PDSHIFT + 2)):
/* ofw area */
L2pagetable = proc0_pt_ofw[(va >> (PDSHIFT + 2))
& 0x3].pv_va;
break;
case ( IO_VIRT_BASE >> (PDSHIFT + 2)):
case ((IO_VIRT_BASE + 0x00400000) >> (PDSHIFT + 2)):
case ((IO_VIRT_BASE + 0x00800000) >> (PDSHIFT + 2)):
case ((IO_VIRT_BASE + 0x00C00000) >> (PDSHIFT + 2)):
/* io area */
L2pagetable = proc0_pt_io[(va >> (PDSHIFT + 2))
& 0x3].pv_va;
break;
default:
/* illegal */
panic("illegal ofw translation (addr) %#lx", va);
}
/* Sanity. The current entry should be null. */
{
pt_entry_t pte;
pte = ReadWord(L2pagetable + ((va >> 10)
& 0x00000FFC));
if (pte != 0)
panic("illegal ofw translation (%#lx, %#lx, %#lx, %x)",
L2pagetable, va, pa, pte);
}
/* Make the entry. */
if ((tp->mode & 0xC) == 0xC)
map_entry(L2pagetable, va, pa);
else
map_entry_nc(L2pagetable, va, pa);
}
}
/*
* We don't actually want some of the mappings that we just
* set up to appear in proc0's address space. In particular,
* we don't want aliases to physical addresses that the kernel
* has-mapped/will-map elsewhere.
*/
ofw_discardmappings(proc0_pt_kernel.pv_va,
proc0_pt_sys.pv_va, PT_SIZE);
ofw_discardmappings(proc0_pt_kernel.pv_va,
proc0_pt_kernel.pv_va, PT_SIZE);
for (i = 0; i < KERNEL_VMDATA_PTS; i++)
ofw_discardmappings(proc0_pt_kernel.pv_va,
proc0_pt_vmdata[i].pv_va, PT_SIZE);
for (i = 0; i < KERNEL_OFW_PTS; i++)
ofw_discardmappings(proc0_pt_kernel.pv_va,
proc0_pt_ofw[i].pv_va, PT_SIZE);
for (i = 0; i < KERNEL_IO_PTS; i++)
ofw_discardmappings(proc0_pt_kernel.pv_va,
proc0_pt_io[i].pv_va, PT_SIZE);
ofw_discardmappings(proc0_pt_kernel.pv_va,
msgbuf.pv_va, MSGBUFSIZE);
/*
* We did not throw away the proc0_pt_pte and proc0_pagedir
* mappings as well still want them. However we don't want them
* cached ...
* Really these should be uncached when allocated.
*/
map_entry_nc(proc0_pt_kernel.pv_va, proc0_pt_pte.pv_va,
proc0_pt_pte.pv_pa);
for (i = 0; i < (PD_SIZE / NBPG); ++i)
map_entry_nc(proc0_pt_kernel.pv_va,
proc0_pagedir.pv_va + NBPG * i,
proc0_pagedir.pv_pa + NBPG * i);
/*
* Construct the proc0 L2 pagetables that map page tables.
*/
/* Map entries in the L2pagetable used to map L2PTs. */
L2pagetable = proc0_pt_pte.pv_va;
map_entry_nc(L2pagetable, (0x00000000 >> (PGSHIFT-2)),
proc0_pt_sys.pv_pa);
map_entry_nc(L2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
proc0_pt_kernel.pv_pa);
map_entry_nc(L2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
proc0_pt_pte.pv_pa);
for (i = 0; i < KERNEL_VMDATA_PTS; i++)
map_entry_nc(L2pagetable, ((KERNEL_VM_BASE + i * 0x00400000)
>> (PGSHIFT-2)), proc0_pt_vmdata[i].pv_pa);
for (i = 0; i < KERNEL_OFW_PTS; i++)
map_entry_nc(L2pagetable, ((OFW_VIRT_BASE + i * 0x00400000)
>> (PGSHIFT-2)), proc0_pt_ofw[i].pv_pa);
for (i = 0; i < KERNEL_IO_PTS; i++)
map_entry_nc(L2pagetable, ((IO_VIRT_BASE + i * 0x00400000)
>> (PGSHIFT-2)), proc0_pt_io[i].pv_pa);
/* Construct the proc0 L1 pagetable. */
L1pagetable = proc0_pagedir.pv_va;
map_pagetable(L1pagetable, 0x0, proc0_pt_sys.pv_pa);
map_pagetable(L1pagetable, KERNEL_BASE, proc0_pt_kernel.pv_pa);
map_pagetable(L1pagetable, PROCESS_PAGE_TBLS_BASE,
proc0_pt_pte.pv_pa);
for (i = 0; i < KERNEL_VMDATA_PTS; i++)
map_pagetable(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
proc0_pt_vmdata[i].pv_pa);
for (i = 0; i < KERNEL_OFW_PTS; i++)
map_pagetable(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
proc0_pt_ofw[i].pv_pa);
for (i = 0; i < KERNEL_IO_PTS; i++)
map_pagetable(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
proc0_pt_io[i].pv_pa);
/*
* gross hack for the sake of not thrashing the TLB and making
* cache flush more efficient: blast l1 ptes for sections.
*/
for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
vm_offset_t va = tp->virt;
vm_offset_t pa = tp->phys;
if (((va & (NBPD - 1)) == 0) && ((pa & (NBPD - 1)) == 0)) {
int nsections = tp->size / NBPD;
while (nsections--) {
map_section(L1pagetable, va, pa, 0);
/*
* even grosser hack:
* blast B & C bits if necessary
*/
if ((tp->mode & 0xC) == 0xC)
((u_int *)L1pagetable)[(va >> PDSHIFT)]
|= PT_B | PT_C;
va += NBPD;
pa += NBPD;
} /* END while */
} /* END if */
} /* END for */
/* OUT parameters are the new ttbbase and the pt which maps pts. */
*proc0_ttbbase = proc0_pagedir;
*proc0_ptpt = proc0_pt_pte;
}
static void
ofw_getphysmeminfo()
{
int phandle;
int mem_len;
int avail_len;
int i;
if ((phandle = OF_finddevice("/memory")) == -1 ||
(mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
(OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
(avail_len = OF_getproplen(phandle, "available")) <= 0 ||
(OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
OF_getprop(phandle, "available", OFphysavail, avail_len)
!= avail_len)
panic("can't get physmeminfo from OFW");
nOFphysmem = mem_len / sizeof(struct mem_region);
nOFphysavail = avail_len / sizeof(struct mem_region);
/*
* Sort the blocks in each array into ascending address order.
* Also, page-align all blocks.
*/
for (i = 0; i < 2; i++) {
struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
struct mem_region *mp;
int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
int j;
#ifdef OLDPRINTFS
printf("ofw_getphysmeminfo: %d blocks\n", cnt);
#endif
/* XXX - Convert all the values to host order. -JJK */
for (j = 0, mp = tmp; j < cnt; j++, mp++) {
mp->start = of_decode_int((unsigned char *)&mp->start);
mp->size = of_decode_int((unsigned char *)&mp->size);
}
for (j = 0, mp = tmp; j < cnt; j++, mp++) {
u_int s, sz;
struct mem_region *mp1;
/* Page-align start of the block. */
s = mp->start % NBPG;
if (s != 0) {
s = (NBPG - s);
if (mp->size >= s) {
mp->start += s;
mp->size -= s;
}
}
/* Page-align the size. */
mp->size -= mp->size % NBPG;
/* Handle empty block. */
if (mp->size == 0) {
bcopy(mp + 1, mp, (cnt - (mp - tmp))
* sizeof(struct mem_region));
cnt--;
mp--;
continue;
}
/* Bubble sort. */
s = mp->start;
sz = mp->size;
for (mp1 = tmp; mp1 < mp; mp1++)
if (s < mp1->start)
break;
if (mp1 < mp) {
bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
mp1->start = s;
mp1->size = sz;
}
}
#ifdef OLDPRINTFS
for (mp = tmp; mp->size; mp++) {
printf("%x, %x\n", mp->start, mp->size);
}
#endif
}
}
static void
ofw_getvirttranslations(void)
{
int mmu_phandle;
int mmu_ihandle;
int trans_len;
int over, len;
int i;
struct mem_translation *tp;
mmu_ihandle = ofw_mmu_ihandle();
/* overallocate to avoid increases during allocation */
over = 4 * sizeof(struct mem_translation);
if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
(len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
(OFtranslations = ofw_malloc(len + over)) == 0 ||
(trans_len = OF_getprop(mmu_phandle, "translations",
OFtranslations, len + over)) > (len + over))
panic("can't get virttranslations from OFW");
/* XXX - Convert all the values to host order. -JJK */
nOFtranslations = trans_len / sizeof(struct mem_translation);
#ifdef OLDPRINTFS
printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
#endif
for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
tp->virt = of_decode_int((unsigned char *)&tp->virt);
tp->size = of_decode_int((unsigned char *)&tp->size);
tp->phys = of_decode_int((unsigned char *)&tp->phys);
tp->mode = of_decode_int((unsigned char *)&tp->mode);
}
}
/*
* ofw_valloc: allocate blocks of VM for IO and other special purposes
*/
typedef struct _vfree {
struct _vfree *pNext;
vm_offset_t start;
vm_size_t size;
} VFREE, *PVFREE;
static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
static PVFREE vflist = &vfinitial;
static vm_offset_t
ofw_valloc(size, align)
vm_offset_t size;
vm_offset_t align;
{
PVFREE *ppvf;
PVFREE pNew;
vm_offset_t new;
vm_offset_t lead;
for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
if (align == 0) {
new = (*ppvf)->start;
lead = 0;
} else {
new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
lead = new - (*ppvf)->start;
}
if (((*ppvf)->size - lead) >= size) {
if (lead == 0) {
/* using whole block */
if (size == (*ppvf)->size) {
/* splice out of list */
(*ppvf) = (*ppvf)->pNext;
} else { /* tail of block is free */
(*ppvf)->start = new + size;
(*ppvf)->size -= size;
}
} else {
vm_size_t tail = ((*ppvf)->start
+ (*ppvf)->size) - (new + size);
/* free space at beginning */
(*ppvf)->size = lead;
if (tail != 0) {
/* free space at tail */
pNew = ofw_malloc(sizeof(VFREE));
pNew->pNext = (*ppvf)->pNext;
(*ppvf)->pNext = pNew;
pNew->start = new + size;
pNew->size = tail;
}
}
return new;
} /* END if */
} /* END for */
return -1;
}
vm_offset_t
ofw_map(pa, size, cb_bits)
vm_offset_t pa;
vm_size_t size;
int cb_bits;
{
vm_offset_t va;
if ((va = ofw_valloc(size, size)) == -1)
panic("cannot alloc virtual memory for %#lx", pa);
ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
ofw_settranslation(va, pa, size, PT_AP(AP_KRW) | cb_bits);
return va;
}
static int
ofw_mem_ihandle(void)
{
static int mem_ihandle = 0;
int chosen;
if (mem_ihandle != 0)
return(mem_ihandle);
if ((chosen = OF_finddevice("/chosen")) == -1 ||
OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
panic("ofw_mem_ihandle");
mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
return(mem_ihandle);
}
static int
ofw_mmu_ihandle(void)
{
static int mmu_ihandle = 0;
int chosen;
if (mmu_ihandle != 0)
return(mmu_ihandle);
if ((chosen = OF_finddevice("/chosen")) == -1 ||
OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
panic("ofw_mmu_ihandle");
mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
return(mmu_ihandle);
}
/* Return -1 on failure. */
static vm_offset_t
ofw_claimphys(pa, size, align)
vm_offset_t pa;
vm_size_t size;
vm_offset_t align;
{
int mem_ihandle = ofw_mem_ihandle();
/* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
if (align == 0) {
/* Allocate at specified base; alignment is ignored. */
pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
} else {
/* Allocate anywhere, with specified alignment. */
pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
}
/* printf("%x\n", pa);*/
return(pa);
}
#if 0
/* Return -1 on failure. */
static vm_offset_t
ofw_releasephys(pa, size)
vm_offset_t pa;
vm_size_t size;
{
int mem_ihandle = ofw_mem_ihandle();
/* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
}
#endif
/* Return -1 on failure. */
static vm_offset_t
ofw_claimvirt(va, size, align)
vm_offset_t va;
vm_size_t size;
vm_offset_t align;
{
int mmu_ihandle = ofw_mmu_ihandle();
/*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
if (align == 0) {
/* Allocate at specified base; alignment is ignored. */
va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
} else {
/* Allocate anywhere, with specified alignment. */
va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
}
/*printf("%x\n", va);*/
return(va);
}
/* Return -1 if no mapping. */
vm_offset_t
ofw_gettranslation(va)
vm_offset_t va;
{
int mmu_ihandle = ofw_mmu_ihandle();
vm_offset_t pa;
int mode;
int exists;
/*printf("ofw_gettranslation (%x) --> ", va);*/
exists = 0; /* gets set to true if translation exists */
if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
&exists) != 0)
return(-1);
/*printf("%x\n", exists ? pa : -1);*/
return(exists ? pa : -1);
}
static void
ofw_settranslation(va, pa, size, mode)
vm_offset_t va;
vm_offset_t pa;
vm_size_t size;
int mode;
{
int mmu_ihandle = ofw_mmu_ihandle();
/*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
panic("ofw_settranslation failed");
}
/*
* Allocation routine used before the kernel takes over memory.
* Use this for efficient storage for things that aren't rounded to
* page size.
*
* The point here is not necessarily to be very efficient (even though
* that's sort of nice), but to do proper dynamic allocation to avoid
* size-limitation errors.
*
*/
typedef struct _leftover {
struct _leftover *pNext;
vm_size_t size;
} LEFTOVER, *PLEFTOVER;
/* leftover bits of pages. first word is pointer to next.
second word is size of leftover */
static PLEFTOVER leftovers = NULL;
static void *
ofw_malloc(size)
vm_size_t size;
{
PLEFTOVER *ppLeftover;
PLEFTOVER pLeft;
pv_addr_t new;
vm_size_t newSize, claim_size;
/* round and set minimum size */
size = max(sizeof(LEFTOVER),
((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
for (ppLeftover = &leftovers; *ppLeftover;
ppLeftover = &((*ppLeftover)->pNext))
if ((*ppLeftover)->size >= size)
break;
if (*ppLeftover) { /* have a leftover of the right size */
/* remember the leftover */
new.pv_va = (vm_offset_t)*ppLeftover;
if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
/* splice out of chain */
*ppLeftover = (*ppLeftover)->pNext;
} else {
/* remember the next pointer */
pLeft = (*ppLeftover)->pNext;
newSize = (*ppLeftover)->size - size; /* reduce size */
/* move pointer */
*ppLeftover = (PLEFTOVER)(((vm_offset_t)*ppLeftover)
+ size);
(*ppLeftover)->pNext = pLeft;
(*ppLeftover)->size = newSize;
}
} else {
claim_size = (size + NBPG - 1) & ~(NBPG - 1);
ofw_claimpages(&virt_freeptr, &new, claim_size);
if ((size + sizeof(LEFTOVER)) <= claim_size) {
pLeft = (PLEFTOVER)(new.pv_va + size);
pLeft->pNext = leftovers;
pLeft->size = claim_size - size;
leftovers = pLeft;
}
}
return (void *)(new.pv_va);
}
/*
* Here is a really, really sleazy free. It's not used right now,
* because it's not worth the extra complexity for just a few bytes.
*
*/
#if 0
static void
ofw_free(addr, size)
vm_offset_t addr;
vm_size_t size;
{
PLEFTOVER pLeftover = (PLEFTOVER)addr;
/* splice right into list without checks or compaction */
pLeftover->pNext = leftovers;
pLeftover->size = size;
leftovers = pLeftover;
}
#endif
/*
* Allocate and zero round(size)/NBPG pages of memory.
* We guarantee that the allocated memory will be
* aligned to a boundary equal to the smallest power of
* 2 greater than or equal to size.
* free_pp is an IN/OUT parameter which points to the
* last allocated virtual address in an allocate-downwards
* stack. pv_p is an OUT parameter which contains the
* virtual and physical base addresses of the allocated
* memory.
*/
static void
ofw_claimpages(free_pp, pv_p, size)
vm_offset_t *free_pp;
pv_addr_t *pv_p;
vm_size_t size;
{
/* round-up to page boundary */
vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
vm_size_t aligned_size;
vm_offset_t va, pa;
if (alloc_size == 0)
panic("ofw_claimpages zero");
for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
;
/* The only way to provide the alignment guarantees is to
* allocate the virtual and physical ranges separately,
* then do an explicit map call.
*/
va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
if (ofw_claimvirt(va, alloc_size, 0) != va)
panic("ofw_claimpages va alloc");
pa = ofw_claimphys(0, alloc_size, aligned_size);
if (pa == -1)
panic("ofw_claimpages pa alloc");
/* XXX - what mode? -JJK */
ofw_settranslation(va, pa, alloc_size, -1);
/* The memory's mapped-in now, so we can zero it. */
bzero((char *)va, alloc_size);
/* Set OUT parameters. */
*free_pp = va;
pv_p->pv_va = va;
pv_p->pv_pa = pa;
}
static void
ofw_discardmappings(L2pagetable, va, size)
vm_offset_t L2pagetable;
vm_offset_t va;
vm_size_t size;
{
/* round-up to page boundary */
vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
int npages = alloc_size / NBPG;
if (npages == 0)
panic("ofw_discardmappings zero");
/* Discard each mapping. */
for (; npages > 0; va += NBPG, npages--) {
/* Sanity. The current entry should be non-null. */
if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
panic("ofw_discardmappings zero entry");
/* Clear the entry. */
WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
}
}
static void
ofw_initallocator(void)
{
}