NetBSD/sys/dev/ic/hme.c
2000-06-15 15:34:32 +00:00

1447 lines
34 KiB
C

/* $NetBSD: hme.c,v 1.14 2000/06/15 15:34:32 pk Exp $ */
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* HME Ethernet module driver.
*/
#define HMEDEBUG
#include "opt_inet.h"
#include "opt_ns.h"
#include "bpfilter.h"
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/syslog.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <machine/bus.h>
#include <dev/ic/hmereg.h>
#include <dev/ic/hmevar.h>
void hme_start __P((struct ifnet *));
void hme_stop __P((struct hme_softc *));
int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
void hme_tick __P((void *));
void hme_watchdog __P((struct ifnet *));
void hme_shutdown __P((void *));
void hme_init __P((struct hme_softc *));
void hme_meminit __P((struct hme_softc *));
void hme_mifinit __P((struct hme_softc *));
void hme_reset __P((struct hme_softc *));
void hme_setladrf __P((struct hme_softc *));
/* MII methods & callbacks */
static int hme_mii_readreg __P((struct device *, int, int));
static void hme_mii_writereg __P((struct device *, int, int, int));
static void hme_mii_statchg __P((struct device *));
int hme_mediachange __P((struct ifnet *));
void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
struct mbuf *hme_get __P((struct hme_softc *, int, int));
int hme_put __P((struct hme_softc *, int, struct mbuf *));
void hme_read __P((struct hme_softc *, int, int));
int hme_eint __P((struct hme_softc *, u_int));
int hme_rint __P((struct hme_softc *));
int hme_tint __P((struct hme_softc *));
static int ether_cmp __P((u_char *, u_char *));
/* Default buffer copy routines */
void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
void hme_zerobuf_contig __P((struct hme_softc *, int, int));
void
hme_config(sc)
struct hme_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mii_data *mii = &sc->sc_mii;
struct mii_softc *child;
bus_dma_tag_t dmatag = sc->sc_dmatag;
bus_dma_segment_t seg;
bus_size_t size;
int rseg, error;
/*
* HME common initialization.
*
* hme_softc fields that must be initialized by the front-end:
*
* the bus tag:
* sc_bustag
*
* the dma bus tag:
* sc_dmatag
*
* the bus handles:
* sc_seb (Shared Ethernet Block registers)
* sc_erx (Receiver Unit registers)
* sc_etx (Transmitter Unit registers)
* sc_mac (MAC registers)
* sc_mif (Managment Interface registers)
*
* the maximum bus burst size:
* sc_burst
*
* (notyet:DMA capable memory for the ring descriptors & packet buffers:
* rb_membase, rb_dmabase)
*
* the local Ethernet address:
* sc_enaddr
*
*/
/* Make sure the chip is stopped. */
hme_stop(sc);
/*
* Allocate descriptors and buffers
* XXX - do all this differently.. and more configurably,
* eg. use things as `dma_load_mbuf()' on transmit,
* and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
* all the time) on the reveiver side.
*
* Note: receive buffers must be 64-byte aligned.
* Also, apparently, the buffers must extend to a DMA burst
* boundary beyond the maximum packet size.
*/
#define _HME_NDESC 32
#define _HME_BUFSZ 1600
/* Note: the # of descriptors must be a multiple of 16 */
sc->sc_rb.rb_ntbuf = _HME_NDESC;
sc->sc_rb.rb_nrbuf = _HME_NDESC;
/*
* Allocate DMA capable memory
* Buffer descriptors must be aligned on a 2048 byte boundary;
* take this into account when calculating the size. Note that
* the maximum number of descriptors (256) occupies 2048 bytes,
* so we allocate that much regardless of _HME_NDESC.
*/
size = 2048 + /* TX descriptors */
2048 + /* RX descriptors */
sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */
/* Allocate DMA buffer */
if ((error = bus_dmamem_alloc(dmatag, size,
2048, 0,
&seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
printf("%s: DMA buffer alloc error %d\n",
sc->sc_dev.dv_xname, error);
return;
}
/* Map DMA memory in CPU addressable space */
if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
&sc->sc_rb.rb_membase,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
printf("%s: DMA buffer map error %d\n",
sc->sc_dev.dv_xname, error);
bus_dmamap_unload(dmatag, sc->sc_dmamap);
bus_dmamem_free(dmatag, &seg, rseg);
return;
}
if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
printf("%s: DMA map create error %d\n",
sc->sc_dev.dv_xname, error);
return;
}
/* Load the buffer */
if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
sc->sc_rb.rb_membase, size, NULL, BUS_DMA_NOWAIT)) != 0) {
printf("%s: DMA buffer map load error %d\n",
sc->sc_dev.dv_xname, error);
bus_dmamem_free(dmatag, &seg, rseg);
return;
}
sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
/* Initialize ifnet structure. */
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = hme_start;
ifp->if_ioctl = hme_ioctl;
ifp->if_watchdog = hme_watchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
/* Initialize ifmedia structures and MII info */
mii->mii_ifp = ifp;
mii->mii_readreg = hme_mii_readreg;
mii->mii_writereg = hme_mii_writereg;
mii->mii_statchg = hme_mii_statchg;
ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
hme_mifinit(sc);
mii_attach(&sc->sc_dev, mii, 0xffffffff,
MII_PHY_ANY, MII_OFFSET_ANY, 0);
child = LIST_FIRST(&mii->mii_phys);
if (child == NULL) {
/* No PHY attached */
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
} else {
/*
* Walk along the list of attached MII devices and
* establish an `MII instance' to `phy number'
* mapping. We'll use this mapping in media change
* requests to determine which phy to use to program
* the MIF configuration register.
*/
for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
/*
* Note: we support just two PHYs: the built-in
* internal device and an external on the MII
* connector.
*/
if (child->mii_phy > 1 || child->mii_inst > 1) {
printf("%s: cannot accomodate MII device %s"
" at phy %d, instance %d\n",
sc->sc_dev.dv_xname,
child->mii_dev.dv_xname,
child->mii_phy, child->mii_inst);
continue;
}
sc->sc_phys[child->mii_inst] = child->mii_phy;
}
/*
* XXX - we can really do the following ONLY if the
* phy indeed has the auto negotiation capability!!
*/
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
}
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, sc->sc_enaddr);
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
if (sc->sc_sh == NULL)
panic("hme_config: can't establish shutdownhook");
#if 0
printf("%s: %d receive buffers, %d transmit buffers\n",
sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
M_WAITOK);
sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
M_WAITOK);
#endif
#if NRND > 0
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
RND_TYPE_NET, 0);
#endif
callout_init(&sc->sc_tick_ch);
}
void
hme_tick(arg)
void *arg;
{
struct hme_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
}
void
hme_reset(sc)
struct hme_softc *sc;
{
int s;
s = splnet();
hme_init(sc);
splx(s);
}
void
hme_stop(sc)
struct hme_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t seb = sc->sc_seb;
int n;
callout_stop(&sc->sc_tick_ch);
mii_down(&sc->sc_mii);
/* Reset transmitter and receiver */
bus_space_write_4(t, seb, HME_SEBI_RESET,
(HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
for (n = 0; n < 20; n++) {
u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
return;
DELAY(20);
}
printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
}
void
hme_meminit(sc)
struct hme_softc *sc;
{
bus_addr_t txbufdma, rxbufdma;
bus_addr_t dma;
caddr_t p;
unsigned int ntbuf, nrbuf, i;
struct hme_ring *hr = &sc->sc_rb;
p = hr->rb_membase;
dma = hr->rb_dmabase;
ntbuf = hr->rb_ntbuf;
nrbuf = hr->rb_nrbuf;
/*
* Allocate transmit descriptors
*/
hr->rb_txd = p;
hr->rb_txddma = dma;
p += ntbuf * HME_XD_SIZE;
dma += ntbuf * HME_XD_SIZE;
/* We have reserved descriptor space until the next 2048 byte boundary.*/
dma = (bus_addr_t)roundup((u_long)dma, 2048);
p = (caddr_t)roundup((u_long)p, 2048);
/*
* Allocate receive descriptors
*/
hr->rb_rxd = p;
hr->rb_rxddma = dma;
p += nrbuf * HME_XD_SIZE;
dma += nrbuf * HME_XD_SIZE;
/* Again move forward to the next 2048 byte boundary.*/
dma = (bus_addr_t)roundup((u_long)dma, 2048);
p = (caddr_t)roundup((u_long)p, 2048);
/*
* Allocate transmit buffers
*/
hr->rb_txbuf = p;
txbufdma = dma;
p += ntbuf * _HME_BUFSZ;
dma += ntbuf * _HME_BUFSZ;
/*
* Allocate receive buffers
*/
hr->rb_rxbuf = p;
rxbufdma = dma;
p += nrbuf * _HME_BUFSZ;
dma += nrbuf * _HME_BUFSZ;
/*
* Initialize transmit buffer descriptors
*/
for (i = 0; i < ntbuf; i++) {
HME_XD_SETADDR(hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
HME_XD_SETFLAGS(hr->rb_txd, i, 0);
}
/*
* Initialize receive buffer descriptors
*/
for (i = 0; i < nrbuf; i++) {
HME_XD_SETADDR(hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
HME_XD_SETFLAGS(hr->rb_rxd, i,
HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
}
hr->rb_tdhead = hr->rb_tdtail = 0;
hr->rb_td_nbusy = 0;
hr->rb_rdtail = 0;
}
/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
void
hme_init(sc)
struct hme_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t seb = sc->sc_seb;
bus_space_handle_t etx = sc->sc_etx;
bus_space_handle_t erx = sc->sc_erx;
bus_space_handle_t mac = sc->sc_mac;
bus_space_handle_t mif = sc->sc_mif;
u_int8_t *ea;
u_int32_t v;
/*
* Initialization sequence. The numbered steps below correspond
* to the sequence outlined in section 6.3.5.1 in the Ethernet
* Channel Engine manual (part of the PCIO manual).
* See also the STP2002-STQ document from Sun Microsystems.
*/
/* step 1 & 2. Reset the Ethernet Channel */
hme_stop(sc);
/* Re-initialize the MIF */
hme_mifinit(sc);
/* Call MI reset function if any */
if (sc->sc_hwreset)
(*sc->sc_hwreset)(sc);
#if 0
/* Mask all MIF interrupts, just in case */
bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
#endif
/* step 3. Setup data structures in host memory */
hme_meminit(sc);
/* step 4. TX MAC registers & counters */
bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
/* Load station MAC address */
ea = sc->sc_enaddr;
bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
/*
* Init seed for backoff
* (source suggested by manual: low 10 bits of MAC address)
*/
v = ((ea[4] << 8) | ea[5]) & 0x3fff;
bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
/* Note: Accepting power-on default for other MAC registers here.. */
/* step 5. RX MAC registers & counters */
hme_setladrf(sc);
/* step 6 & 7. Program Descriptor Ring Base Addresses */
bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
/* step 8. Global Configuration & Interrupt Mask */
bus_space_write_4(t, seb, HME_SEBI_IMASK,
~(
/*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
HME_SEB_STAT_HOSTTOTX |
HME_SEB_STAT_RXTOHOST |
HME_SEB_STAT_TXALL |
HME_SEB_STAT_TXPERR |
HME_SEB_STAT_RCNTEXP |
HME_SEB_STAT_ALL_ERRORS ));
switch (sc->sc_burst) {
default:
v = 0;
break;
case 16:
v = HME_SEB_CFG_BURST16;
break;
case 32:
v = HME_SEB_CFG_BURST32;
break;
case 64:
v = HME_SEB_CFG_BURST64;
break;
}
bus_space_write_4(t, seb, HME_SEBI_CFG, v);
/* step 9. ETX Configuration: use mostly default values */
/* Enable DMA */
v = bus_space_read_4(t, etx, HME_ETXI_CFG);
v |= HME_ETX_CFG_DMAENABLE;
bus_space_write_4(t, etx, HME_ETXI_CFG, v);
/* Transmit Descriptor ring size: in increments of 16 */
bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
/* step 10. ERX Configuration */
v = bus_space_read_4(t, erx, HME_ERXI_CFG);
/* Encode Receive Descriptor ring size: four possible values */
switch (_HME_NDESC /*XXX*/) {
case 32:
v |= HME_ERX_CFG_RINGSIZE32;
break;
case 64:
v |= HME_ERX_CFG_RINGSIZE64;
break;
case 128:
v |= HME_ERX_CFG_RINGSIZE128;
break;
case 256:
v |= HME_ERX_CFG_RINGSIZE256;
break;
default:
printf("hme: invalid Receive Descriptor ring size\n");
break;
}
/* Enable DMA */
v |= HME_ERX_CFG_DMAENABLE;
bus_space_write_4(t, erx, HME_ERXI_CFG, v);
/* step 11. XIF Configuration */
v = bus_space_read_4(t, mac, HME_MACI_XIF);
v |= HME_MAC_XIF_OE;
/* If an external transceiver is connected, enable its MII drivers */
if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
v |= HME_MAC_XIF_MIIENABLE;
bus_space_write_4(t, mac, HME_MACI_XIF, v);
/* step 12. RX_MAC Configuration Register */
v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
v |= HME_MAC_RXCFG_ENABLE;
bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
/* step 13. TX_MAC Configuration Register */
v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
/* step 14. Issue Transmit Pending command */
/* Call MI initialization function if any */
if (sc->sc_hwinit)
(*sc->sc_hwinit)(sc);
/* Start the one second timer. */
callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
hme_start(ifp);
}
/*
* Compare two Ether/802 addresses for equality, inlined and unrolled for
* speed.
*/
static __inline__ int
ether_cmp(a, b)
u_char *a, *b;
{
if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
return (0);
return (1);
}
/*
* Routine to copy from mbuf chain to transmit buffer in
* network buffer memory.
* Returns the amount of data copied.
*/
int
hme_put(sc, ri, m)
struct hme_softc *sc;
int ri; /* Ring index */
struct mbuf *m;
{
struct mbuf *n;
int len, tlen = 0;
caddr_t bp;
bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
for (; m; m = n) {
len = m->m_len;
if (len == 0) {
MFREE(m, n);
continue;
}
bcopy(mtod(m, caddr_t), bp, len);
bp += len;
tlen += len;
MFREE(m, n);
}
return (tlen);
}
/*
* Pull data off an interface.
* Len is length of data, with local net header stripped.
* We copy the data into mbufs. When full cluster sized units are present
* we copy into clusters.
*/
struct mbuf *
hme_get(sc, ri, totlen)
struct hme_softc *sc;
int ri, totlen;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m, *m0, *newm;
caddr_t bp;
int len;
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 == 0)
return (0);
m0->m_pkthdr.rcvif = ifp;
m0->m_pkthdr.len = totlen;
len = MHLEN;
m = m0;
bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
while (totlen > 0) {
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0)
goto bad;
len = MCLBYTES;
}
if (m == m0) {
caddr_t newdata = (caddr_t)
ALIGN(m->m_data + sizeof(struct ether_header)) -
sizeof(struct ether_header);
len -= newdata - m->m_data;
m->m_data = newdata;
}
m->m_len = len = min(totlen, len);
bcopy(bp, mtod(m, caddr_t), len);
bp += len;
totlen -= len;
if (totlen > 0) {
MGET(newm, M_DONTWAIT, MT_DATA);
if (newm == 0)
goto bad;
len = MLEN;
m = m->m_next = newm;
}
}
return (m0);
bad:
m_freem(m0);
return (0);
}
/*
* Pass a packet to the higher levels.
*/
void
hme_read(sc, ix, len)
struct hme_softc *sc;
int ix, len;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m;
if (len <= sizeof(struct ether_header) ||
len > ETHERMTU + sizeof(struct ether_header)) {
#ifdef HMEDEBUG
printf("%s: invalid packet size %d; dropping\n",
sc->sc_dev.dv_xname, len);
#endif
ifp->if_ierrors++;
return;
}
/* Pull packet off interface. */
m = hme_get(sc, ix, len);
if (m == 0) {
ifp->if_ierrors++;
return;
}
ifp->if_ipackets++;
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface.
* If so, hand off the raw packet to BPF.
*/
if (ifp->if_bpf) {
struct ether_header *eh;
bpf_mtap(ifp->if_bpf, m);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
/* We assume that the header fit entirely in one mbuf. */
eh = mtod(m, struct ether_header *);
if ((ifp->if_flags & IFF_PROMISC) != 0 &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
ether_cmp(eh->ether_dhost, sc->sc_enaddr) == 0) {
m_freem(m);
return;
}
}
#endif
/* Pass the packet up. */
(*ifp->if_input)(ifp, m);
}
void
hme_start(ifp)
struct ifnet *ifp;
{
struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
caddr_t txd = sc->sc_rb.rb_txd;
struct mbuf *m;
unsigned int ri, len;
unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
ri = sc->sc_rb.rb_tdhead;
for (;;) {
IF_DEQUEUE(&ifp->if_snd, m);
if (m == 0)
break;
#if NBPFILTER > 0
/*
* If BPF is listening on this interface, let it see the
* packet before we commit it to the wire.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/*
* Copy the mbuf chain into the transmit buffer.
*/
len = hme_put(sc, ri, m);
/*
* Initialize transmit registers and start transmission
*/
HME_XD_SETFLAGS(txd, ri,
HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
HME_XD_ENCODE_TSIZE(len));
/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
HME_ETX_TP_DMAWAKEUP);
if (++ri == ntbuf)
ri = 0;
if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
}
sc->sc_rb.rb_tdhead = ri;
}
/*
* Transmit interrupt.
*/
int
hme_tint(sc)
struct hme_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mac = sc->sc_mac;
unsigned int ri, txflags;
/*
* Unload collision counters
*/
ifp->if_collisions +=
bus_space_read_4(t, mac, HME_MACI_NCCNT) +
bus_space_read_4(t, mac, HME_MACI_FCCNT) +
bus_space_read_4(t, mac, HME_MACI_EXCNT) +
bus_space_read_4(t, mac, HME_MACI_LTCNT);
/*
* then clear the hardware counters.
*/
bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
/* Fetch current position in the transmit ring */
ri = sc->sc_rb.rb_tdtail;
for (;;) {
if (sc->sc_rb.rb_td_nbusy <= 0)
break;
txflags = HME_XD_GETFLAGS(sc->sc_rb.rb_txd, ri);
if (txflags & HME_XD_OWN)
break;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_opackets++;
if (++ri == sc->sc_rb.rb_ntbuf)
ri = 0;
--sc->sc_rb.rb_td_nbusy;
}
/* Update ring */
sc->sc_rb.rb_tdtail = ri;
hme_start(ifp);
if (sc->sc_rb.rb_td_nbusy == 0)
ifp->if_timer = 0;
return (1);
}
/*
* Receive interrupt.
*/
int
hme_rint(sc)
struct hme_softc *sc;
{
caddr_t xdr = sc->sc_rb.rb_rxd;
unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
unsigned int ri, len;
u_int32_t flags;
ri = sc->sc_rb.rb_rdtail;
/*
* Process all buffers with valid data.
*/
for (;;) {
flags = HME_XD_GETFLAGS(xdr, ri);
if (flags & HME_XD_OWN)
break;
if (flags & HME_XD_OFL) {
printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
sc->sc_dev.dv_xname, ri, flags);
} else {
len = HME_XD_DECODE_RSIZE(flags);
hme_read(sc, ri, len);
}
/* This buffer can be used by the hardware again */
HME_XD_SETFLAGS(xdr, ri,
HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
if (++ri == nrbuf)
ri = 0;
}
sc->sc_rb.rb_rdtail = ri;
return (1);
}
int
hme_eint(sc, status)
struct hme_softc *sc;
u_int status;
{
char bits[128];
if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
return (1);
}
printf("%s: status=%s\n", sc->sc_dev.dv_xname,
bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
return (1);
}
int
hme_intr(v)
void *v;
{
struct hme_softc *sc = (struct hme_softc *)v;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t seb = sc->sc_seb;
u_int32_t status;
int r = 0;
status = bus_space_read_4(t, seb, HME_SEBI_STAT);
if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
r |= hme_eint(sc, status);
if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
r |= hme_tint(sc);
if ((status & HME_SEB_STAT_RXTOHOST) != 0)
r |= hme_rint(sc);
return (r);
}
void
hme_watchdog(ifp)
struct ifnet *ifp;
{
struct hme_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++ifp->if_oerrors;
hme_reset(sc);
}
/*
* Initialize the MII Management Interface
*/
void
hme_mifinit(sc)
struct hme_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_mif;
u_int32_t v;
/* Configure the MIF in frame mode */
v = bus_space_read_4(t, mif, HME_MIFI_CFG);
v &= ~HME_MIF_CFG_BBMODE;
bus_space_write_4(t, mif, HME_MIFI_CFG, v);
}
/*
* MII interface
*/
static int
hme_mii_readreg(self, phy, reg)
struct device *self;
int phy, reg;
{
struct hme_softc *sc = (void *)self;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_mif;
int n;
u_int32_t v;
/* Select the desired PHY in the MIF configuration register */
v = bus_space_read_4(t, mif, HME_MIFI_CFG);
/* Clear PHY select bit */
v &= ~HME_MIF_CFG_PHY;
if (phy == HME_PHYAD_EXTERNAL)
/* Set PHY select bit to get at external device */
v |= HME_MIF_CFG_PHY;
bus_space_write_4(t, mif, HME_MIFI_CFG, v);
/* Construct the frame command */
v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
HME_MIF_FO_TAMSB |
(MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
(phy << HME_MIF_FO_PHYAD_SHIFT) |
(reg << HME_MIF_FO_REGAD_SHIFT);
bus_space_write_4(t, mif, HME_MIFI_FO, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = bus_space_read_4(t, mif, HME_MIFI_FO);
if (v & HME_MIF_FO_TALSB)
return (v & HME_MIF_FO_DATA);
}
printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
return (0);
}
static void
hme_mii_writereg(self, phy, reg, val)
struct device *self;
int phy, reg, val;
{
struct hme_softc *sc = (void *)self;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_mif;
int n;
u_int32_t v;
/* Select the desired PHY in the MIF configuration register */
v = bus_space_read_4(t, mif, HME_MIFI_CFG);
/* Clear PHY select bit */
v &= ~HME_MIF_CFG_PHY;
if (phy == HME_PHYAD_EXTERNAL)
/* Set PHY select bit to get at external device */
v |= HME_MIF_CFG_PHY;
bus_space_write_4(t, mif, HME_MIFI_CFG, v);
/* Construct the frame command */
v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
HME_MIF_FO_TAMSB |
(MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
(phy << HME_MIF_FO_PHYAD_SHIFT) |
(reg << HME_MIF_FO_REGAD_SHIFT) |
(val & HME_MIF_FO_DATA);
bus_space_write_4(t, mif, HME_MIFI_FO, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = bus_space_read_4(t, mif, HME_MIFI_FO);
if (v & HME_MIF_FO_TALSB)
return;
}
printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
}
static void
hme_mii_statchg(dev)
struct device *dev;
{
struct hme_softc *sc = (void *)dev;
int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
int phy = sc->sc_phys[instance];
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_mif;
bus_space_handle_t mac = sc->sc_mac;
u_int32_t v;
#ifdef HMEDEBUG
if (sc->sc_debug)
printf("hme_mii_statchg: status change: phy = %d\n", phy);
#endif
/* Select the current PHY in the MIF configuration register */
v = bus_space_read_4(t, mif, HME_MIFI_CFG);
v &= ~HME_MIF_CFG_PHY;
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MIF_CFG_PHY;
bus_space_write_4(t, mif, HME_MIFI_CFG, v);
/* Set the MAC Full Duplex bit appropriately */
v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
v |= HME_MAC_TXCFG_FULLDPLX;
else
v &= ~HME_MAC_TXCFG_FULLDPLX;
bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
/* If an external transceiver is selected, enable its MII drivers */
v = bus_space_read_4(t, mac, HME_MACI_XIF);
v &= ~HME_MAC_XIF_MIIENABLE;
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MAC_XIF_MIIENABLE;
bus_space_write_4(t, mac, HME_MACI_XIF, v);
}
int
hme_mediachange(ifp)
struct ifnet *ifp;
{
struct hme_softc *sc = ifp->if_softc;
if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
return (EINVAL);
return (mii_mediachg(&sc->sc_mii));
}
void
hme_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct hme_softc *sc = ifp->if_softc;
if ((ifp->if_flags & IFF_UP) == 0)
return;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_active = sc->sc_mii.mii_media_active;
ifmr->ifm_status = sc->sc_mii.mii_media_status;
}
/*
* Process an ioctl request.
*/
int
hme_ioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct hme_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
hme_init(sc);
arp_ifinit(ifp, ifa);
break;
#endif
#ifdef NS
case AF_NS:
{
struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)LLADDR(ifp->if_sadl);
else {
bcopy(ina->x_host.c_host,
LLADDR(ifp->if_sadl),
sizeof(sc->sc_enaddr));
}
/* Set new address. */
hme_init(sc);
break;
}
#endif
default:
hme_init(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
hme_stop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
hme_init(sc);
} else if ((ifp->if_flags & IFF_UP) != 0) {
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
/*hme_stop(sc);*/
hme_init(sc);
}
#ifdef HMEDEBUG
sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
#endif
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ethercom) :
ether_delmulti(ifr, &sc->sc_ethercom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
hme_setladrf(sc);
error = 0;
}
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
break;
default:
error = EINVAL;
break;
}
splx(s);
return (error);
}
void
hme_shutdown(arg)
void *arg;
{
hme_stop((struct hme_softc *)arg);
}
/*
* Set up the logical address filter.
*/
void
hme_setladrf(sc)
struct hme_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
struct ethercom *ec = &sc->sc_ethercom;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mac = sc->sc_mac;
u_char *cp;
u_int32_t crc;
u_int32_t hash[4];
u_int32_t v;
int len;
/* Clear hash table */
hash[3] = hash[2] = hash[1] = hash[0] = 0;
/* Get current RX configuration */
v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
if ((ifp->if_flags & IFF_PROMISC) != 0) {
/* Turn on promiscuous mode; turn off the hash filter */
v |= HME_MAC_RXCFG_PMISC;
v &= ~HME_MAC_RXCFG_HENABLE;
ifp->if_flags |= IFF_ALLMULTI;
goto chipit;
}
/* Turn off promiscuous mode; turn on the hash filter */
v &= ~HME_MAC_RXCFG_PMISC;
v |= HME_MAC_RXCFG_HENABLE;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
ifp->if_flags |= IFF_ALLMULTI;
goto chipit;
}
cp = enm->enm_addrlo;
crc = 0xffffffff;
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
int octet = *cp++;
int i;
#define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
for (i = 0; i < 8; i++) {
if ((crc & 1) ^ (octet & 1)) {
crc >>= 1;
crc ^= MC_POLY_LE;
} else {
crc >>= 1;
}
octet >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Set the corresponding bit in the filter. */
hash[crc >> 4] |= 1 << (crc & 0xf);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
chipit:
/* Now load the hash table into the chip */
bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
}
/*
* Routines for accessing the transmit and receive buffers.
* The various CPU and adapter configurations supported by this
* driver require three different access methods for buffers
* and descriptors:
* (1) contig (contiguous data; no padding),
* (2) gap2 (two bytes of data followed by two bytes of padding),
* (3) gap16 (16 bytes of data followed by 16 bytes of padding).
*/
#if 0
/*
* contig: contiguous data with no padding.
*
* Buffers may have any alignment.
*/
void
hme_copytobuf_contig(sc, from, ri, len)
struct hme_softc *sc;
void *from;
int ri, len;
{
volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
/*
* Just call bcopy() to do the work.
*/
bcopy(from, buf, len);
}
void
hme_copyfrombuf_contig(sc, to, boff, len)
struct hme_softc *sc;
void *to;
int boff, len;
{
volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
/*
* Just call bcopy() to do the work.
*/
bcopy(buf, to, len);
}
#endif