NetBSD/sys/compat/ndis/subr_ntoskrnl.c

3070 lines
70 KiB
C

/*-
* Copyright (c) 2003
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifdef __FreeBSD__
__FBSDID("$FreeBSD: src/sys/compat/ndis/subr_ntoskrnl.c,v 1.43.2.5 2005/03/31 04:24:36 wpaul Exp $");
#endif
#ifdef __NetBSD__
__KERNEL_RCSID(0, "$NetBSD: subr_ntoskrnl.c,v 1.18 2009/03/18 17:06:48 cegger Exp $");
#endif
#ifdef __FreeBSD__
#include <sys/ctype.h>
#endif
#include <sys/unistd.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#ifdef __FreeBSD__
#include <sys/mutex.h>
#endif
#include <sys/callout.h>
#if __FreeBSD_version > 502113
#include <sys/kdb.h>
#endif
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#include <sys/module.h>
#include <sys/atomic.h>
#ifdef __FreeBSD__
#include <machine/clock.h>
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#endif
#include <sys/bus.h>
#include <machine/stdarg.h>
#ifdef __FreeBSD__
#include <sys/bus.h>
#include <sys/rman.h>
#endif
#ifdef __NetBSD__
#include <uvm/uvm.h>
#include <uvm/uvm_param.h>
#include <uvm/uvm_pmap.h>
#include <sys/pool.h>
#include <sys/reboot.h> /* for AB_VERBOSE */
#else
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/uma.h>
#endif
#include <compat/ndis/pe_var.h>
#include <compat/ndis/ntoskrnl_var.h>
#include <compat/ndis/hal_var.h>
#include <compat/ndis/resource_var.h>
#include <compat/ndis/ndis_var.h>
#ifdef __NetBSD__
#include <compat/ndis/nbcompat.h>
#endif
#define __regparm __attribute__((regparm(3)))
#ifdef __NetBSD__
/* Turn on DbgPrint() from Windows Driver*/
#define boothowto AB_VERBOSE
#endif
__stdcall static uint8_t RtlEqualUnicodeString(ndis_unicode_string *,
ndis_unicode_string *, uint8_t);
__stdcall static void RtlCopyUnicodeString(ndis_unicode_string *,
ndis_unicode_string *);
__stdcall static ndis_status RtlUnicodeStringToAnsiString(ndis_ansi_string *,
ndis_unicode_string *, uint8_t);
__stdcall static ndis_status RtlAnsiStringToUnicodeString(ndis_unicode_string *,
ndis_ansi_string *, uint8_t);
__stdcall static irp *IoBuildSynchronousFsdRequest(uint32_t, device_object *,
void *, uint32_t, uint64_t *, nt_kevent *, io_status_block *);
__stdcall static irp *IoBuildAsynchronousFsdRequest(uint32_t,
device_object *, void *, uint32_t, uint64_t *, io_status_block *);
__stdcall static irp *IoBuildDeviceIoControlRequest(uint32_t,
device_object *, void *, uint32_t, void *, uint32_t,
uint8_t, nt_kevent *, io_status_block *);
__stdcall static irp *IoAllocateIrp(uint8_t, uint8_t);
__stdcall static void IoReuseIrp(irp *, uint32_t);
__stdcall static void IoFreeIrp(irp *);
__stdcall static void IoInitializeIrp(irp *, uint16_t, uint8_t);
__stdcall static irp *IoMakeAssociatedIrp(irp *, uint8_t);
__stdcall static uint32_t KeWaitForMultipleObjects(uint32_t,
nt_dispatch_header **, uint32_t, uint32_t, uint32_t, uint8_t,
int64_t *, wait_block *);
static void ntoskrnl_wakeup(void *);
static void ntoskrnl_timercall(void *);
static void ntoskrnl_run_dpc(void *);
__stdcall static void WRITE_REGISTER_USHORT(uint16_t *, uint16_t);
__stdcall static uint16_t READ_REGISTER_USHORT(uint16_t *);
__stdcall static void WRITE_REGISTER_ULONG(uint32_t *, uint32_t);
__stdcall static uint32_t READ_REGISTER_ULONG(uint32_t *);
__stdcall static void WRITE_REGISTER_UCHAR(uint8_t *, uint8_t);
__stdcall static uint8_t READ_REGISTER_UCHAR(uint8_t *);
__stdcall static int64_t _allmul(int64_t, int64_t);
__stdcall static int64_t _alldiv(int64_t, int64_t);
__stdcall static int64_t _allrem(int64_t, int64_t);
__regparm static int64_t _allshr(int64_t, uint8_t);
__regparm static int64_t _allshl(int64_t, uint8_t);
__stdcall static uint64_t _aullmul(uint64_t, uint64_t);
__stdcall static uint64_t _aulldiv(uint64_t, uint64_t);
__stdcall static uint64_t _aullrem(uint64_t, uint64_t);
__regparm static uint64_t _aullshr(uint64_t, uint8_t);
__regparm static uint64_t _aullshl(uint64_t, uint8_t);
static slist_entry *ntoskrnl_pushsl(slist_header *, slist_entry *);
static slist_entry *ntoskrnl_popsl(slist_header *);
__stdcall static void ExInitializePagedLookasideList(paged_lookaside_list *,
lookaside_alloc_func *, lookaside_free_func *,
uint32_t, size_t, uint32_t, uint16_t);
__stdcall static void ExDeletePagedLookasideList(paged_lookaside_list *);
__stdcall static void ExInitializeNPagedLookasideList(npaged_lookaside_list *,
lookaside_alloc_func *, lookaside_free_func *,
uint32_t, size_t, uint32_t, uint16_t);
__stdcall static void ExDeleteNPagedLookasideList(npaged_lookaside_list *);
__fastcall static slist_entry
*InterlockedPushEntrySList(REGARGS2(slist_header *head,
slist_entry *entry));
__fastcall static slist_entry *InterlockedPopEntrySList(REGARGS1(slist_header
*head));
__fastcall static slist_entry
*ExInterlockedPushEntrySList(REGARGS2(slist_header *head,
slist_entry *entry), kspin_lock *lock);
__fastcall static slist_entry
*ExInterlockedPopEntrySList(REGARGS2(slist_header *head,
kspin_lock *lock));
__stdcall static uint16_t
ExQueryDepthSList(slist_header *);
__fastcall static uint32_t
InterlockedIncrement(REGARGS1(volatile uint32_t *addend));
__fastcall static uint32_t
InterlockedDecrement(REGARGS1(volatile uint32_t *addend));
__fastcall static void
ExInterlockedAddLargeStatistic(REGARGS2(uint64_t *addend, uint32_t));
__stdcall static uint32_t MmSizeOfMdl(void *, size_t);
__stdcall static void MmBuildMdlForNonPagedPool(mdl *);
__stdcall static void *MmMapLockedPages(mdl *, uint8_t);
__stdcall static void *MmMapLockedPagesSpecifyCache(mdl *,
uint8_t, uint32_t, void *, uint32_t, uint32_t);
__stdcall static void MmUnmapLockedPages(void *, mdl *);
__stdcall static size_t RtlCompareMemory(const void *, const void *, size_t);
__stdcall static void RtlInitAnsiString(ndis_ansi_string *, char *);
__stdcall static void RtlInitUnicodeString(ndis_unicode_string *,
uint16_t *);
__stdcall static void RtlFreeUnicodeString(ndis_unicode_string *);
__stdcall static void RtlFreeAnsiString(ndis_ansi_string *);
__stdcall static ndis_status RtlUnicodeStringToInteger(ndis_unicode_string *,
uint32_t, uint32_t *);
static int atoi (const char *);
static long atol (const char *);
static int rand(void);
static void srand(unsigned int);
static void ntoskrnl_time(uint64_t *);
__stdcall static uint8_t IoIsWdmVersionAvailable(uint8_t, uint8_t);
static void ntoskrnl_thrfunc(void *);
__stdcall static ndis_status PsCreateSystemThread(ndis_handle *,
uint32_t, void *, ndis_handle, void *, void *, void *);
__stdcall static ndis_status PsTerminateSystemThread(ndis_status);
__stdcall static ndis_status IoGetDeviceProperty(device_object *, uint32_t,
uint32_t, void *, uint32_t *);
__stdcall static void KeInitializeMutex(kmutant *, uint32_t);
__stdcall static uint32_t KeReleaseMutex(kmutant *, uint8_t);
__stdcall static uint32_t KeReadStateMutex(kmutant *);
__stdcall static ndis_status ObReferenceObjectByHandle(ndis_handle,
uint32_t, void *, uint8_t, void **, void **);
__fastcall static void ObfDereferenceObject(REGARGS1(void *object));
__stdcall static uint32_t ZwClose(ndis_handle);
static void *ntoskrnl_memset(void *, int, size_t);
static funcptr ntoskrnl_findwrap(funcptr);
static uint32_t DbgPrint(char *, ...);
__stdcall static void DbgBreakPoint(void);
__stdcall static void dummy(void);
#ifdef __FreeBSD__
static struct mtx ntoskrnl_dispatchlock;
#else /* __NetBSD__ */
static struct simplelock ntoskrnl_dispatchlock;
#define DISPATCH_LOCK() do {s = splnet(); simple_lock(&ntoskrnl_dispatchlock);} while(0)
#define DISPATCH_UNLOCK() do {simple_unlock(&ntoskrnl_dispatchlock); splx(s);} while(0)
#endif
static kspin_lock ntoskrnl_global;
static kspin_lock ntoskrnl_cancellock;
static int ntoskrnl_kth = 0;
static struct nt_objref_head ntoskrnl_reflist;
#ifdef __FreeBSD__
static uma_zone_t mdl_zone;
#else
static struct pool mdl_pool;
#endif
int
ntoskrnl_libinit(void)
{
image_patch_table *patch;
#ifdef __FreeBSD__
mtx_init(&ntoskrnl_dispatchlock,
"ntoskrnl dispatch lock", MTX_NDIS_LOCK, MTX_DEF);
#else /* __NetBSD__ */
simple_lock_init(&ntoskrnl_dispatchlock);
#endif
KeInitializeSpinLock(&ntoskrnl_global);
KeInitializeSpinLock(&ntoskrnl_cancellock);
TAILQ_INIT(&ntoskrnl_reflist);
patch = ntoskrnl_functbl;
while (patch->ipt_func != NULL) {
windrv_wrap((funcptr)patch->ipt_func,
(funcptr *)&patch->ipt_wrap);
patch++;
}
/*
* MDLs are supposed to be variable size (they describe
* buffers containing some number of pages, but we don't
* know ahead of time how many pages that will be). But
* always allocating them off the heap is very slow. As
* a compromize, we create an MDL UMA zone big enough to
* handle any buffer requiring up to 16 pages, and we
* use those for any MDLs for buffers of 16 pages or less
* in size. For buffers larger than that (which we assume
* will be few and far between, we allocate the MDLs off
* the heap.
*/
#ifdef __FreeBSD__
mdl_zone = uma_zcreate("Windows MDL", MDL_ZONE_SIZE,
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
#else
pool_init(&mdl_pool, MDL_ZONE_SIZE, 0, 0, 0, "winmdl", NULL,
IPL_VM);
#endif
return(0);
}
int
ntoskrnl_libfini(void)
{
image_patch_table *patch;
patch = ntoskrnl_functbl;
while (patch->ipt_func != NULL) {
windrv_unwrap(patch->ipt_wrap);
patch++;
}
#ifdef __FreeBSD__
uma_zdestroy(mdl_zone);
mtx_destroy(&ntoskrnl_dispatchlock);
#else
pool_destroy(&mdl_pool);
/* XXX destroy lock */
#endif
return(0);
}
/*
* We need to be able to reference this externally from the wrapper;
* GCC only generates a local implementation of memset.
*/
static void *
ntoskrnl_memset(void *buf, int ch, size_t size)
{
return(memset(buf, ch, size));
}
__stdcall static uint8_t
RtlEqualUnicodeString(ndis_unicode_string *str1, ndis_unicode_string *str2, uint8_t caseinsensitive)
{
int i;
if (str1->us_len != str2->us_len)
return(FALSE);
for (i = 0; i < str1->us_len; i++) {
if (caseinsensitive == TRUE) {
if (toupper((char)(str1->us_buf[i] & 0xFF)) !=
toupper((char)(str2->us_buf[i] & 0xFF)))
return(FALSE);
} else {
if (str1->us_buf[i] != str2->us_buf[i])
return(FALSE);
}
}
return(TRUE);
}
__stdcall static void
RtlCopyUnicodeString(ndis_unicode_string *dest, ndis_unicode_string *src)
{
if (dest->us_maxlen >= src->us_len)
dest->us_len = src->us_len;
else
dest->us_len = dest->us_maxlen;
memcpy(dest->us_buf, src->us_buf, dest->us_len);
return;
}
__stdcall static ndis_status
RtlUnicodeStringToAnsiString(ndis_ansi_string *dest, ndis_unicode_string *src, uint8_t allocate)
{
char *astr = NULL;
if (dest == NULL || src == NULL)
return(NDIS_STATUS_FAILURE);
if (allocate == TRUE) {
if (ndis_unicode_to_ascii(src->us_buf, src->us_len, &astr))
return(NDIS_STATUS_FAILURE);
dest->nas_buf = astr;
dest->nas_len = dest->nas_maxlen = strlen(astr);
} else {
dest->nas_len = src->us_len / 2; /* XXX */
if (dest->nas_maxlen < dest->nas_len)
dest->nas_len = dest->nas_maxlen;
ndis_unicode_to_ascii(src->us_buf, dest->nas_len * 2,
&dest->nas_buf);
}
return (NDIS_STATUS_SUCCESS);
}
__stdcall static ndis_status
RtlAnsiStringToUnicodeString(ndis_unicode_string *dest, ndis_ansi_string *src, uint8_t allocate)
{
uint16_t *ustr = NULL;
if (dest == NULL || src == NULL)
return(NDIS_STATUS_FAILURE);
if (allocate == TRUE) {
if (ndis_ascii_to_unicode(src->nas_buf, &ustr))
return(NDIS_STATUS_FAILURE);
dest->us_buf = ustr;
dest->us_len = dest->us_maxlen = strlen(src->nas_buf) * 2;
} else {
dest->us_len = src->nas_len * 2; /* XXX */
if (dest->us_maxlen < dest->us_len)
dest->us_len = dest->us_maxlen;
ndis_ascii_to_unicode(src->nas_buf, &dest->us_buf);
}
return (NDIS_STATUS_SUCCESS);
}
__stdcall void *
ExAllocatePoolWithTag(
uint32_t pooltype,
size_t len,
uint32_t tag)
{
void *buf;
buf = malloc(len, M_DEVBUF, M_NOWAIT);
if (buf == NULL)
return(NULL);
return(buf);
}
__stdcall void
ExFreePool(void *buf)
{
free(buf, M_DEVBUF);
return;
}
__stdcall uint32_t
IoAllocateDriverObjectExtension(driver_object *drv, void *clid, uint32_t extlen, void **ext)
{
custom_extension *ce;
ce = ExAllocatePoolWithTag(NonPagedPool, sizeof(custom_extension)
+ extlen, 0);
if (ce == NULL)
return(STATUS_INSUFFICIENT_RESOURCES);
ce->ce_clid = clid;
INSERT_LIST_TAIL((&drv->dro_driverext->dre_usrext), (&ce->ce_list));
*ext = (void *)(ce + 1);
return(STATUS_SUCCESS);
}
__stdcall void *
IoGetDriverObjectExtension(driver_object *drv, void *clid)
{
list_entry *e;
custom_extension *ce;
printf("in IoGetDriverObjectExtension\n");
e = drv->dro_driverext->dre_usrext.nle_flink;
while (e != &drv->dro_driverext->dre_usrext) {
ce = (custom_extension *)e;
if (ce->ce_clid == clid)
printf("found\n");
return((void *)(ce + 1));
e = e->nle_flink;
}
printf("not found\n");
return(NULL);
}
__stdcall uint32_t
IoCreateDevice(
driver_object *drv,
uint32_t devextlen,
unicode_string *devname,
uint32_t devtype,
uint32_t devchars,
uint8_t exclusive,
device_object **newdev)
{
device_object *dev;
#ifdef NDIS_LKM
printf("In IoCreateDevice: drv = %x, devextlen = %x\n", drv, devextlen);
#endif
dev = ExAllocatePoolWithTag(NonPagedPool, sizeof(device_object), 0);
#ifdef NDIS_LKM
printf("dev = %x\n", dev);
#endif
if (dev == NULL)
return(STATUS_INSUFFICIENT_RESOURCES);
dev->do_type = devtype;
dev->do_drvobj = drv;
dev->do_currirp = NULL;
dev->do_flags = 0;
if (devextlen) {
dev->do_devext = ExAllocatePoolWithTag(NonPagedPool,
devextlen, 0);
if (dev->do_devext == NULL) {
ExFreePool(dev);
return(STATUS_INSUFFICIENT_RESOURCES);
}
memset(dev->do_devext, 0, devextlen);
} else
dev->do_devext = NULL;
dev->do_size = sizeof(device_object) + devextlen;
dev->do_refcnt = 1;
dev->do_attacheddev = NULL;
dev->do_nextdev = NULL;
dev->do_devtype = devtype;
dev->do_stacksize = 1;
dev->do_alignreq = 1;
dev->do_characteristics = devchars;
dev->do_iotimer = NULL;
KeInitializeEvent(&dev->do_devlock, EVENT_TYPE_SYNC, TRUE);
/*
* Vpd is used for disk/tape devices,
* but we don't support those. (Yet.)
*/
dev->do_vpb = NULL;
dev->do_devobj_ext = ExAllocatePoolWithTag(NonPagedPool,
sizeof(devobj_extension), 0);
if (dev->do_devobj_ext == NULL) {
if (dev->do_devext != NULL)
ExFreePool(dev->do_devext);
ExFreePool(dev);
return(STATUS_INSUFFICIENT_RESOURCES);
}
dev->do_devobj_ext->dve_type = 0;
dev->do_devobj_ext->dve_size = sizeof(devobj_extension);
dev->do_devobj_ext->dve_devobj = dev;
/*
* Attach this device to the driver object's list
* of devices. Note: this is not the same as attaching
* the device to the device stack. The driver's AddDevice
* routine must explicitly call IoAddDeviceToDeviceStack()
* to do that.
*/
if (drv->dro_devobj == NULL) {
drv->dro_devobj = dev;
dev->do_nextdev = NULL;
} else {
dev->do_nextdev = drv->dro_devobj;
drv->dro_devobj = dev;
}
*newdev = dev;
return(STATUS_SUCCESS);
}
__stdcall void
IoDeleteDevice(device_object *dev)
{
device_object *prev;
if (dev == NULL)
return;
if (dev->do_devobj_ext != NULL)
ExFreePool(dev->do_devobj_ext);
if (dev->do_devext != NULL)
ExFreePool(dev->do_devext);
/* Unlink the device from the driver's device list. */
prev = dev->do_drvobj->dro_devobj;
if (prev == dev)
dev->do_drvobj->dro_devobj = dev->do_nextdev;
else {
while (prev->do_nextdev != dev)
prev = prev->do_nextdev;
prev->do_nextdev = dev->do_nextdev;
}
ExFreePool(dev);
return;
}
__stdcall device_object *
IoGetAttachedDevice(device_object *dev)
{
device_object *d;
if (dev == NULL)
return (NULL);
d = dev;
while (d->do_attacheddev != NULL)
d = d->do_attacheddev;
return (d);
}
__stdcall static irp *
IoBuildSynchronousFsdRequest(uint32_t func, device_object *dobj, void *buf, uint32_t len, uint64_t *off, nt_kevent *event, io_status_block *status)
{
irp *ip;
ip = IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status);
if (ip == NULL)
return(NULL);
ip->irp_usrevent = event;
return(ip);
}
__stdcall static irp *
IoBuildAsynchronousFsdRequest(uint32_t func, device_object *dobj, void *buf, uint32_t len, uint64_t *off, io_status_block *status)
{
irp *ip;
io_stack_location *sl;
ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
if (ip == NULL)
return(NULL);
ip->irp_usriostat = status;
ip->irp_tail.irp_overlay.irp_thread = NULL;
sl = IoGetNextIrpStackLocation(ip);
sl->isl_major = func;
sl->isl_minor = 0;
sl->isl_flags = 0;
sl->isl_ctl = 0;
sl->isl_devobj = dobj;
sl->isl_fileobj = NULL;
sl->isl_completionfunc = NULL;
ip->irp_userbuf = buf;
if (dobj->do_flags & DO_BUFFERED_IO) {
ip->irp_assoc.irp_sysbuf =
ExAllocatePoolWithTag(NonPagedPool, len, 0);
if (ip->irp_assoc.irp_sysbuf == NULL) {
IoFreeIrp(ip);
return(NULL);
}
memcpy( ip->irp_assoc.irp_sysbuf, buf, len);
}
if (dobj->do_flags & DO_DIRECT_IO) {
ip->irp_mdl = IoAllocateMdl(buf, len, FALSE, FALSE, ip);
if (ip->irp_mdl == NULL) {
if (ip->irp_assoc.irp_sysbuf != NULL)
ExFreePool(ip->irp_assoc.irp_sysbuf);
IoFreeIrp(ip);
return(NULL);
}
ip->irp_userbuf = NULL;
ip->irp_assoc.irp_sysbuf = NULL;
}
if (func == IRP_MJ_READ) {
sl->isl_parameters.isl_read.isl_len = len;
if (off != NULL)
sl->isl_parameters.isl_read.isl_byteoff = *off;
else
sl->isl_parameters.isl_read.isl_byteoff = 0;
}
if (func == IRP_MJ_WRITE) {
sl->isl_parameters.isl_write.isl_len = len;
if (off != NULL)
sl->isl_parameters.isl_write.isl_byteoff = *off;
else
sl->isl_parameters.isl_write.isl_byteoff = 0;
}
return(ip);
}
__stdcall static irp *
IoBuildDeviceIoControlRequest(iocode, dobj, ibuf, ilen, obuf, olen,
isinternal, event, status)
uint32_t iocode;
device_object *dobj;
void *ibuf;
uint32_t ilen;
void *obuf;
uint32_t olen;
uint8_t isinternal;
nt_kevent *event;
io_status_block *status;
{
irp *ip;
io_stack_location *sl;
uint32_t buflen;
ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
if (ip == NULL)
return(NULL);
ip->irp_usrevent = event;
ip->irp_usriostat = status;
ip->irp_tail.irp_overlay.irp_thread = NULL;
sl = IoGetNextIrpStackLocation(ip);
sl->isl_major = isinternal == TRUE ?
IRP_MJ_INTERNAL_DEVICE_CONTROL : IRP_MJ_DEVICE_CONTROL;
sl->isl_minor = 0;
sl->isl_flags = 0;
sl->isl_ctl = 0;
sl->isl_devobj = dobj;
sl->isl_fileobj = NULL;
sl->isl_completionfunc = NULL;
sl->isl_parameters.isl_ioctl.isl_iocode = iocode;
sl->isl_parameters.isl_ioctl.isl_ibuflen = ilen;
sl->isl_parameters.isl_ioctl.isl_obuflen = olen;
switch(IO_METHOD(iocode)) {
case METHOD_BUFFERED:
if (ilen > olen)
buflen = ilen;
else
buflen = olen;
if (buflen) {
ip->irp_assoc.irp_sysbuf =
ExAllocatePoolWithTag(NonPagedPool, buflen, 0);
if (ip->irp_assoc.irp_sysbuf == NULL) {
IoFreeIrp(ip);
return(NULL);
}
}
if (ilen && ibuf != NULL) {
memcpy( ip->irp_assoc.irp_sysbuf, ibuf, ilen);
memset((char *)ip->irp_assoc.irp_sysbuf + ilen, 0,
buflen - ilen);
} else
memset(ip->irp_assoc.irp_sysbuf, 0, ilen);
ip->irp_userbuf = obuf;
break;
case METHOD_IN_DIRECT:
case METHOD_OUT_DIRECT:
if (ilen && ibuf != NULL) {
ip->irp_assoc.irp_sysbuf =
ExAllocatePoolWithTag(NonPagedPool, ilen, 0);
if (ip->irp_assoc.irp_sysbuf == NULL) {
IoFreeIrp(ip);
return(NULL);
}
memcpy( ip->irp_assoc.irp_sysbuf, ibuf, ilen);
}
if (olen && obuf != NULL) {
ip->irp_mdl = IoAllocateMdl(obuf, olen,
FALSE, FALSE, ip);
/*
* Normally we would MmProbeAndLockPages()
* here, but we don't have to in our
* imlementation.
*/
}
break;
case METHOD_NEITHER:
ip->irp_userbuf = obuf;
sl->isl_parameters.isl_ioctl.isl_type3ibuf = ibuf;
break;
default:
break;
}
/*
* Ideally, we should associate this IRP with the calling
* thread here.
*/
return (ip);
}
__stdcall static irp *
IoAllocateIrp(
uint8_t stsize,
uint8_t chargequota)
{
irp *i;
i = ExAllocatePoolWithTag(NonPagedPool, IoSizeOfIrp(stsize), 0);
if (i == NULL)
return (NULL);
IoInitializeIrp(i, IoSizeOfIrp(stsize), stsize);
return (i);
}
__stdcall static irp *
IoMakeAssociatedIrp(irp *ip, uint8_t stsize)
{
irp *associrp;
#ifdef __NetBSD__
int s;
#endif
associrp = IoAllocateIrp(stsize, FALSE);
if (associrp == NULL)
return(NULL);
#ifdef __NetBSD__
DISPATCH_LOCK();
#else
mtx_lock(&ntoskrnl_dispatchlock);
#endif
associrp->irp_flags |= IRP_ASSOCIATED_IRP;
associrp->irp_tail.irp_overlay.irp_thread =
ip->irp_tail.irp_overlay.irp_thread;
associrp->irp_assoc.irp_master = ip;
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(associrp);
}
__stdcall static void
IoFreeIrp(irp *ip)
{
ExFreePool(ip);
return;
}
__stdcall static void
IoInitializeIrp(irp *io, uint16_t psize, uint8_t ssize)
{
memset((char *)io, 0, IoSizeOfIrp(ssize));
io->irp_size = psize;
io->irp_stackcnt = ssize;
io->irp_currentstackloc = ssize;
INIT_LIST_HEAD(&io->irp_thlist);
io->irp_tail.irp_overlay.irp_csl =
(io_stack_location *)(io + 1) + ssize;
return;
}
__stdcall static void
IoReuseIrp(irp *ip, uint32_t status)
{
uint8_t allocflags;
allocflags = ip->irp_allocflags;
IoInitializeIrp(ip, ip->irp_size, ip->irp_stackcnt);
ip->irp_iostat.isb_status = status;
ip->irp_allocflags = allocflags;
return;
}
__stdcall void
IoAcquireCancelSpinLock(uint8_t *irql)
{
KeAcquireSpinLock(&ntoskrnl_cancellock, irql);
return;
}
__stdcall void
IoReleaseCancelSpinLock(uint8_t irql)
{
KeReleaseSpinLock(&ntoskrnl_cancellock, irql);
return;
}
__stdcall uint8_t
IoCancelIrp(irp *ip)
{
cancel_func cfunc;
IoAcquireCancelSpinLock(&ip->irp_cancelirql);
cfunc = IoSetCancelRoutine(ip, NULL);
ip->irp_cancel = TRUE;
if (ip->irp_cancelfunc == NULL) {
IoReleaseCancelSpinLock(ip->irp_cancelirql);
return(FALSE);
}
MSCALL2(cfunc, IoGetCurrentIrpStackLocation(ip)->isl_devobj, ip);
return(TRUE);
}
__fastcall uint32_t
IofCallDriver(REGARGS2(device_object *dobj, irp *ip))
{
driver_object *drvobj;
io_stack_location *sl;
uint32_t status;
driver_dispatch disp;
drvobj = dobj->do_drvobj;
if (ip->irp_currentstackloc <= 0)
panic("IoCallDriver(): out of stack locations");
IoSetNextIrpStackLocation(ip);
sl = IoGetCurrentIrpStackLocation(ip);
sl->isl_devobj = dobj;
disp = drvobj->dro_dispatch[sl->isl_major];
status = MSCALL2(disp, dobj, ip);
return(status);
}
__fastcall void
IofCompleteRequest(REGARGS2(irp *ip, uint8_t prioboost))
{
uint32_t i;
uint32_t status;
device_object *dobj;
io_stack_location *sl;
completion_func cf;
ip->irp_pendingreturned =
IoGetCurrentIrpStackLocation(ip)->isl_ctl & SL_PENDING_RETURNED;
sl = (io_stack_location *)(ip + 1);
for (i = ip->irp_currentstackloc; i < (uint32_t)ip->irp_stackcnt; i++) {
if (ip->irp_currentstackloc < ip->irp_stackcnt - 1) {
IoSkipCurrentIrpStackLocation(ip);
dobj = IoGetCurrentIrpStackLocation(ip)->isl_devobj;
} else
dobj = NULL;
if (sl[i].isl_completionfunc != NULL &&
((ip->irp_iostat.isb_status == STATUS_SUCCESS &&
sl->isl_ctl & SL_INVOKE_ON_SUCCESS) ||
(ip->irp_iostat.isb_status != STATUS_SUCCESS &&
sl->isl_ctl & SL_INVOKE_ON_ERROR) ||
(ip->irp_cancel == TRUE &&
sl->isl_ctl & SL_INVOKE_ON_CANCEL))) {
cf = sl->isl_completionfunc;
status = MSCALL3(cf, dobj, ip, sl->isl_completionctx);
if (status == STATUS_MORE_PROCESSING_REQUIRED)
return;
}
if (IoGetCurrentIrpStackLocation(ip)->isl_ctl &
SL_PENDING_RETURNED)
ip->irp_pendingreturned = TRUE;
}
/* Handle any associated IRPs. */
if (ip->irp_flags & IRP_ASSOCIATED_IRP) {
uint32_t masterirpcnt;
irp *masterirp;
mdl *m;
masterirp = ip->irp_assoc.irp_master;
masterirpcnt = FASTCALL1(InterlockedDecrement,
&masterirp->irp_assoc.irp_irpcnt);
while ((m = ip->irp_mdl) != NULL) {
ip->irp_mdl = m->mdl_next;
IoFreeMdl(m);
}
IoFreeIrp(ip);
if (masterirpcnt == 0)
IoCompleteRequest(masterirp, IO_NO_INCREMENT);
return;
}
/* With any luck, these conditions will never arise. */
if (ip->irp_flags & (IRP_PAGING_IO|IRP_CLOSE_OPERATION)) {
if (ip->irp_usriostat != NULL)
*ip->irp_usriostat = ip->irp_iostat;
if (ip->irp_usrevent != NULL)
KeSetEvent(ip->irp_usrevent, prioboost, FALSE);
if (ip->irp_flags & IRP_PAGING_IO) {
if (ip->irp_mdl != NULL)
IoFreeMdl(ip->irp_mdl);
IoFreeIrp(ip);
}
}
return;
}
__stdcall device_object *
IoAttachDeviceToDeviceStack(device_object *src, device_object *dst)
{
device_object *attached;
#ifdef __NetBSD__
int s;
#endif
#ifdef __NetBSD__
DISPATCH_LOCK();
#else
mtx_lock(&ntoskrnl_dispatchlock);
#endif
attached = IoGetAttachedDevice(dst);
attached->do_attacheddev = src;
src->do_attacheddev = NULL;
src->do_stacksize = attached->do_stacksize + 1;
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(attached);
}
__stdcall void
IoDetachDevice(device_object *topdev)
{
device_object *tail;
#ifdef __NetBSD__
int s;
#endif
#ifdef __NetBSD__
DISPATCH_LOCK();
#else
mtx_lock(&ntoskrnl_dispatchlock);
#endif
/* First, break the chain. */
tail = topdev->do_attacheddev;
if (tail == NULL) {
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return;
}
topdev->do_attacheddev = tail->do_attacheddev;
topdev->do_refcnt--;
/* Now reduce the stacksize count for the tail objects. */
tail = topdev->do_attacheddev;
while (tail != NULL) {
tail->do_stacksize--;
tail = tail->do_attacheddev;
}
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return;
}
/* Always called with dispatcher lock held. */
static void
ntoskrnl_wakeup(void *arg)
{
nt_dispatch_header *obj;
wait_block *w;
list_entry *e;
#ifdef __FreeBSD__
struct thread *td;
#endif
obj = arg;
obj->dh_sigstate = TRUE;
e = obj->dh_waitlisthead.nle_flink;
while (e != &obj->dh_waitlisthead) {
w = (wait_block *)e;
/* TODO: is this correct? */
#ifdef __FreeBSD__
td = w->wb_kthread;
ndis_thresume(td->td_proc);
#else
ndis_thresume(curproc);
#endif
/*
* For synchronization objects, only wake up
* the first waiter.
*/
if (obj->dh_type == EVENT_TYPE_SYNC)
break;
e = e->nle_flink;
}
return;
}
static void
ntoskrnl_time(uint64_t *tval)
{
struct timespec ts;
#ifdef __NetBSD__
struct timeval tv;
microtime(&tv);
TIMEVAL_TO_TIMESPEC(&tv,&ts);
#else
nanotime(&ts);
#endif
*tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 +
(uint64_t)11644473600ULL;
return;
}
/*
* KeWaitForSingleObject() is a tricky beast, because it can be used
* with several different object types: semaphores, timers, events,
* mutexes and threads. Semaphores don't appear very often, but the
* other object types are quite common. KeWaitForSingleObject() is
* what's normally used to acquire a mutex, and it can be used to
* wait for a thread termination.
*
* The Windows NDIS API is implemented in terms of Windows kernel
* primitives, and some of the object manipulation is duplicated in
* NDIS. For example, NDIS has timers and events, which are actually
* Windows kevents and ktimers. Now, you're supposed to only use the
* NDIS variants of these objects within the confines of the NDIS API,
* but there are some naughty developers out there who will use
* KeWaitForSingleObject() on NDIS timer and event objects, so we
* have to support that as well. Conseqently, our NDIS timer and event
* code has to be closely tied into our ntoskrnl timer and event code,
* just as it is in Windows.
*
* KeWaitForSingleObject() may do different things for different kinds
* of objects:
*
* - For events, we check if the event has been signalled. If the
* event is already in the signalled state, we just return immediately,
* otherwise we wait for it to be set to the signalled state by someone
* else calling KeSetEvent(). Events can be either synchronization or
* notification events.
*
* - For timers, if the timer has already fired and the timer is in
* the signalled state, we just return, otherwise we wait on the
* timer. Unlike an event, timers get signalled automatically when
* they expire rather than someone having to trip them manually.
* Timers initialized with KeInitializeTimer() are always notification
* events: KeInitializeTimerEx() lets you initialize a timer as
* either a notification or synchronization event.
*
* - For mutexes, we try to acquire the mutex and if we can't, we wait
* on the mutex until it's available and then grab it. When a mutex is
* released, it enters the signaled state, which wakes up one of the
* threads waiting to acquire it. Mutexes are always synchronization
* events.
*
* - For threads, the only thing we do is wait until the thread object
* enters a signalled state, which occurs when the thread terminates.
* Threads are always notification events.
*
* A notification event wakes up all threads waiting on an object. A
* synchronization event wakes up just one. Also, a synchronization event
* is auto-clearing, which means we automatically set the event back to
* the non-signalled state once the wakeup is done.
*/
__stdcall uint32_t
KeWaitForSingleObject(
nt_dispatch_header *obj,
uint32_t reason,
uint32_t mode,
uint8_t alertable,
int64_t *duetime)
{
#ifdef __FreeBSD__
struct thread *td = curthread;
#endif
kmutant *km;
wait_block w;
struct timeval tv;
int error = 0;
uint64_t curtime;
#ifdef __NetBSD__
int s;
#endif
if (obj == NULL)
return(STATUS_INVALID_PARAMETER);
#ifdef __NetBSD__
DISPATCH_LOCK();
#else
mtx_lock(&ntoskrnl_dispatchlock);
#endif
/*
* See if the object is a mutex. If so, and we already own
* it, then just increment the acquisition count and return.
*
* For any other kind of object, see if it's already in the
* signalled state, and if it is, just return. If the object
* is marked as a synchronization event, reset the state to
* unsignalled.
*/
if (obj->dh_size == OTYPE_MUTEX) {
km = (kmutant *)obj;
if (km->km_ownerthread == NULL ||
#ifdef __FreeBSD__
km->km_ownerthread == curthread->td_proc) {
#else
km->km_ownerthread == curproc) {
#endif
obj->dh_sigstate = FALSE;
km->km_acquirecnt++;
#ifdef __FreeBSD__
km->km_ownerthread = curthread->td_proc;
#else
km->km_ownerthread = curproc;
#endif
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return (STATUS_SUCCESS);
}
} else if (obj->dh_sigstate == TRUE) {
if (obj->dh_type == EVENT_TYPE_SYNC)
obj->dh_sigstate = FALSE;
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return (STATUS_SUCCESS);
}
w.wb_object = obj;
#ifdef __FreeBSD__
w.wb_kthread = td;
#endif
INSERT_LIST_TAIL((&obj->dh_waitlisthead), (&w.wb_waitlist));
/*
* The timeout value is specified in 100 nanosecond units
* and can be a positive or negative number. If it's positive,
* then the duetime is absolute, and we need to convert it
* to an absolute offset relative to now in order to use it.
* If it's negative, then the duetime is relative and we
* just have to convert the units.
*/
if (duetime != NULL) {
if (*duetime < 0) {
tv.tv_sec = - (*duetime) / 10000000;
tv.tv_usec = (- (*duetime) / 10) -
(tv.tv_sec * 1000000);
} else {
ntoskrnl_time(&curtime);
if (*duetime < curtime)
tv.tv_sec = tv.tv_usec = 0;
else {
tv.tv_sec = ((*duetime) - curtime) / 10000000;
tv.tv_usec = ((*duetime) - curtime) / 10 -
(tv.tv_sec * 1000000);
}
}
}
#ifdef __FreeBSD__
error = ndis_thsuspend(td->td_proc, &ntoskrnl_dispatchlock,
duetime == NULL ? 0 : tvtohz(&tv));
#else
error = ndis_thsuspend(curproc, &ntoskrnl_dispatchlock,
duetime == NULL ? 0 : tvtohz(&tv));
#endif
/* We timed out. Leave the object alone and return status. */
if (error == EWOULDBLOCK) {
REMOVE_LIST_ENTRY((&w.wb_waitlist));
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(STATUS_TIMEOUT);
}
/*
* Mutexes are always synchronization objects, which means
* if several threads are waiting to acquire it, only one will
* be woken up. If that one is us, and the mutex is up for grabs,
* grab it.
*/
if (obj->dh_size == OTYPE_MUTEX) {
km = (kmutant *)obj;
if (km->km_ownerthread == NULL) {
#ifdef __FreeBSD__
km->km_ownerthread = curthread->td_proc;
#else
km->km_ownerthread = curproc;
#endif
km->km_acquirecnt++;
}
}
if (obj->dh_type == EVENT_TYPE_SYNC)
obj->dh_sigstate = FALSE;
REMOVE_LIST_ENTRY((&w.wb_waitlist));
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(STATUS_SUCCESS);
}
__stdcall static uint32_t
KeWaitForMultipleObjects(
uint32_t cnt,
nt_dispatch_header *obj[],
uint32_t wtype,
uint32_t reason,
uint32_t mode,
uint8_t alertable,
int64_t *duetime,
wait_block *wb_array)
{
#ifdef __FreeBSD__
struct thread *td = curthread;
#endif
kmutant *km;
wait_block _wb_array[THREAD_WAIT_OBJECTS];
wait_block *w;
struct timeval tv;
int i, wcnt = 0, widx = 0, error = 0;
uint64_t curtime;
struct timespec t1, t2;
#ifdef __NetBSD__
struct timeval tv1,tv2;
int s;
#endif
if (cnt > MAX_WAIT_OBJECTS)
return(STATUS_INVALID_PARAMETER);
if (cnt > THREAD_WAIT_OBJECTS && wb_array == NULL)
return(STATUS_INVALID_PARAMETER);
#ifdef __NetBSD__
DISPATCH_LOCK();
#else
mtx_lock(&ntoskrnl_dispatchlock);
#endif
if (wb_array == NULL)
w = &_wb_array[0];
else
w = wb_array;
/* First pass: see if we can satisfy any waits immediately. */
for (i = 0; i < cnt; i++) {
if (obj[i]->dh_size == OTYPE_MUTEX) {
km = (kmutant *)obj[i];
if (km->km_ownerthread == NULL ||
#ifdef __FreeBSD__
km->km_ownerthread == curthread->td_proc) {
#else
km->km_ownerthread == curproc) {
#endif
obj[i]->dh_sigstate = FALSE;
km->km_acquirecnt++;
#ifdef __FreeBSD__
km->km_ownerthread = curthread->td_proc;
#else
km->km_ownerthread = curproc;
#endif
if (wtype == WAITTYPE_ANY) {
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return (STATUS_WAIT_0 + i);
}
}
} else if (obj[i]->dh_sigstate == TRUE) {
if (obj[i]->dh_type == EVENT_TYPE_SYNC)
obj[i]->dh_sigstate = FALSE;
if (wtype == WAITTYPE_ANY) {
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return (STATUS_WAIT_0 + i);
}
}
}
/*
* Second pass: set up wait for anything we can't
* satisfy immediately.
*/
for (i = 0; i < cnt; i++) {
if (obj[i]->dh_sigstate == TRUE)
continue;
INSERT_LIST_TAIL((&obj[i]->dh_waitlisthead),
(&w[i].wb_waitlist));
#ifdef __FreeBSD__
w[i].wb_kthread = td;
#endif
w[i].wb_object = obj[i];
wcnt++;
}
if (duetime != NULL) {
if (*duetime < 0) {
tv.tv_sec = - (*duetime) / 10000000;
tv.tv_usec = (- (*duetime) / 10) -
(tv.tv_sec * 1000000);
} else {
ntoskrnl_time(&curtime);
if (*duetime < curtime)
tv.tv_sec = tv.tv_usec = 0;
else {
tv.tv_sec = ((*duetime) - curtime) / 10000000;
tv.tv_usec = ((*duetime) - curtime) / 10 -
(tv.tv_sec * 1000000);
}
}
}
while (wcnt) {
#ifdef __FreeBSD__
nanotime(&t1);
#else
microtime(&tv1);
TIMEVAL_TO_TIMESPEC(&tv1,&t1);
#endif
#ifdef __FreeBSD__
error = ndis_thsuspend(td->td_proc, &ntoskrnl_dispatchlock,
duetime == NULL ? 0 : tvtohz(&tv));
#else
error = ndis_thsuspend(curproc, &ntoskrnl_dispatchlock,
duetime == NULL ? 0 : tvtohz(&tv));
#endif
#ifdef __FreeBSD__
nanotime(&t2);
#else
microtime(&tv2);
TIMEVAL_TO_TIMESPEC(&tv2,&t2);
#endif
for (i = 0; i < cnt; i++) {
if (obj[i]->dh_size == OTYPE_MUTEX) {
km = (kmutant *)obj;
if (km->km_ownerthread == NULL) {
km->km_ownerthread =
#ifdef __FreeBSD__
curthread->td_proc;
#else
curproc;
#endif
km->km_acquirecnt++;
}
}
if (obj[i]->dh_sigstate == TRUE) {
widx = i;
if (obj[i]->dh_type == EVENT_TYPE_SYNC)
obj[i]->dh_sigstate = FALSE;
REMOVE_LIST_ENTRY((&w[i].wb_waitlist));
wcnt--;
}
}
if (error || wtype == WAITTYPE_ANY)
break;
if (duetime != NULL) {
tv.tv_sec -= (t2.tv_sec - t1.tv_sec);
tv.tv_usec -= (t2.tv_nsec - t1.tv_nsec) / 1000;
}
}
if (wcnt) {
for (i = 0; i < cnt; i++)
REMOVE_LIST_ENTRY((&w[i].wb_waitlist));
}
if (error == EWOULDBLOCK) {
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(STATUS_TIMEOUT);
}
if (wtype == WAITTYPE_ANY && wcnt) {
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(STATUS_WAIT_0 + widx);
}
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(STATUS_SUCCESS);
}
__stdcall static void
WRITE_REGISTER_USHORT(uint16_t *reg, uint16_t val)
{
bus_space_write_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
return;
}
__stdcall static uint16_t
READ_REGISTER_USHORT(uint16_t *reg)
{
return(bus_space_read_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
}
__stdcall static void
WRITE_REGISTER_ULONG(uint32_t *reg, uint32_t val)
{
bus_space_write_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
return;
}
__stdcall static uint32_t
READ_REGISTER_ULONG(uint32_t *reg)
{
return(bus_space_read_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
}
__stdcall static uint8_t
READ_REGISTER_UCHAR(uint8_t *reg)
{
return(bus_space_read_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
}
__stdcall static void
WRITE_REGISTER_UCHAR(uint8_t *reg, uint8_t val)
{
bus_space_write_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
return;
}
__stdcall static int64_t
_allmul(int64_t a, int64_t b)
{
return (a * b);
}
__stdcall static int64_t
_alldiv(int64_t a, int64_t b)
{
return (a / b);
}
__stdcall static int64_t
_allrem(int64_t a, int64_t b)
{
return (a % b);
}
__stdcall static uint64_t
_aullmul(uint64_t a, uint64_t b)
{
return (a * b);
}
__stdcall static uint64_t
_aulldiv(uint64_t a, uint64_t b)
{
return (a / b);
}
__stdcall static uint64_t
_aullrem(uint64_t a, uint64_t b)
{
return (a % b);
}
__regparm static int64_t
_allshl(int64_t a, uint8_t b)
{
return (a << b);
}
__regparm static uint64_t
_aullshl(uint64_t a, uint8_t b)
{
return (a << b);
}
__regparm static int64_t
_allshr(int64_t a, uint8_t b)
{
return (a >> b);
}
__regparm static uint64_t
_aullshr(uint64_t a, uint8_t b)
{
return (a >> b);
}
static slist_entry *
ntoskrnl_pushsl(slist_header *head, slist_entry *entry)
{
slist_entry *oldhead;
oldhead = head->slh_list.slh_next;
entry->sl_next = head->slh_list.slh_next;
head->slh_list.slh_next = entry;
head->slh_list.slh_depth++;
head->slh_list.slh_seq++;
return(oldhead);
}
static slist_entry *
ntoskrnl_popsl(slist_header *head)
{
slist_entry *first;
first = head->slh_list.slh_next;
if (first != NULL) {
head->slh_list.slh_next = first->sl_next;
head->slh_list.slh_depth--;
head->slh_list.slh_seq++;
}
return(first);
}
/*
* We need this to make lookaside lists work for amd64.
* We pass a pointer to ExAllocatePoolWithTag() the lookaside
* list structure. For amd64 to work right, this has to be a
* pointer to the wrapped version of the routine, not the
* original. Letting the Windows driver invoke the original
* function directly will result in a convention calling
* mismatch and a pretty crash. On x86, this effectively
* becomes a no-op since ipt_func and ipt_wrap are the same.
*/
static funcptr
ntoskrnl_findwrap(funcptr func)
{
image_patch_table *patch;
patch = ntoskrnl_functbl;
while (patch->ipt_func != NULL) {
if ((funcptr)patch->ipt_func == func)
return((funcptr)patch->ipt_wrap);
patch++;
}
return(NULL);
}
__stdcall static void
ExInitializePagedLookasideList(
paged_lookaside_list *lookaside,
lookaside_alloc_func *allocfunc,
lookaside_free_func *freefunc,
uint32_t flags,
size_t size,
uint32_t tag,
uint16_t depth)
{
memset((char *)lookaside, 0, sizeof(paged_lookaside_list));
if (size < sizeof(slist_entry))
lookaside->nll_l.gl_size = sizeof(slist_entry);
else
lookaside->nll_l.gl_size = size;
lookaside->nll_l.gl_tag = tag;
if (allocfunc == NULL)
lookaside->nll_l.gl_allocfunc =
ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
else
lookaside->nll_l.gl_allocfunc = allocfunc;
if (freefunc == NULL)
lookaside->nll_l.gl_freefunc =
ntoskrnl_findwrap((funcptr)ExFreePool);
else
lookaside->nll_l.gl_freefunc = freefunc;
#ifdef __i386__
KeInitializeSpinLock(&lookaside->nll_obsoletelock);
#endif
lookaside->nll_l.gl_type = NonPagedPool;
lookaside->nll_l.gl_depth = depth;
lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
return;
}
__stdcall static void
ExDeletePagedLookasideList(paged_lookaside_list *lookaside)
{
void *buf;
__stdcall void (*freefunc)(void *);
freefunc = lookaside->nll_l.gl_freefunc;
while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
MSCALL1(freefunc, buf);
return;
}
__stdcall static void
ExInitializeNPagedLookasideList(
npaged_lookaside_list *lookaside,
lookaside_alloc_func *allocfunc,
lookaside_free_func *freefunc,
uint32_t flags,
size_t size,
uint32_t tag,
uint16_t depth)
{
memset((char *)lookaside, 0, sizeof(npaged_lookaside_list));
if (size < sizeof(slist_entry))
lookaside->nll_l.gl_size = sizeof(slist_entry);
else
lookaside->nll_l.gl_size = size;
lookaside->nll_l.gl_tag = tag;
if (allocfunc == NULL)
lookaside->nll_l.gl_allocfunc =
ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
else
lookaside->nll_l.gl_allocfunc = allocfunc;
if (freefunc == NULL)
lookaside->nll_l.gl_freefunc =
ntoskrnl_findwrap((funcptr)ExFreePool);
else
lookaside->nll_l.gl_freefunc = freefunc;
#ifdef __i386__
KeInitializeSpinLock(&lookaside->nll_obsoletelock);
#endif
lookaside->nll_l.gl_type = NonPagedPool;
lookaside->nll_l.gl_depth = depth;
lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
return;
}
__stdcall static void
ExDeleteNPagedLookasideList(npaged_lookaside_list *lookaside)
{
void *buf;
__stdcall void (*freefunc)(void *);
freefunc = lookaside->nll_l.gl_freefunc;
while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
MSCALL1(freefunc, buf);
return;
}
/*
* Note: the interlocked slist push and pop routines are
* declared to be _fastcall in Windows. gcc 3.4 is supposed
* to have support for this calling convention, however we
* don't have that version available yet, so we kludge things
* up using __regparm__(3) and some argument shuffling.
*/
__fastcall static slist_entry *
InterlockedPushEntrySList(REGARGS2(slist_header *head, slist_entry *entry))
{
slist_entry *oldhead;
oldhead = (slist_entry *)FASTCALL3(ExInterlockedPushEntrySList,
head, entry, &ntoskrnl_global);
return(oldhead);
}
__fastcall static slist_entry *
InterlockedPopEntrySList(REGARGS1(slist_header *head))
{
slist_entry *first;
first = (slist_entry *)FASTCALL2(ExInterlockedPopEntrySList,
head, &ntoskrnl_global);
return(first);
}
__fastcall static slist_entry *
ExInterlockedPushEntrySList(REGARGS2(slist_header *head,
slist_entry *entry), kspin_lock *lock)
{
slist_entry *oldhead;
uint8_t irql;
KeAcquireSpinLock(lock, &irql);
oldhead = ntoskrnl_pushsl(head, entry);
KeReleaseSpinLock(lock, irql);
return(oldhead);
}
__fastcall static slist_entry *
ExInterlockedPopEntrySList(REGARGS2(slist_header *head, kspin_lock *lock))
{
slist_entry *first;
uint8_t irql;
KeAcquireSpinLock(lock, &irql);
first = ntoskrnl_popsl(head);
KeReleaseSpinLock(lock, irql);
return(first);
}
__stdcall static uint16_t
ExQueryDepthSList(slist_header *head)
{
uint16_t depth;
uint8_t irql;
KeAcquireSpinLock(&ntoskrnl_global, &irql);
depth = head->slh_list.slh_depth;
KeReleaseSpinLock(&ntoskrnl_global, irql);
return(depth);
}
/* TODO: Make sure that LOCKDEBUG isn't defined otherwise a "struct simplelock" will
* TODO: be more than 4 bytes. I'm using a kspin_lock as a simplelock, and the
* TODO: kspin lock is 4 bytes, so this is OK as long as LOCKDEBUG isn't defined.
*/
/*
* The KeInitializeSpinLock(), KefAcquireSpinLockAtDpcLevel()
* and KefReleaseSpinLockFromDpcLevel() appear to be analagous
* to splnet()/splx() in their use. We can't create a new mutex
* lock here because there is no complimentary KeFreeSpinLock()
* function. Instead, we grab a mutex from the mutex pool.
*/
__stdcall void
KeInitializeSpinLock(kspin_lock *lock)
{
#ifdef __FreeBSD__
*lock = 0;
#else /* __NetBSD__ */
simple_lock_init((struct simplelock *)lock);
#endif
return;
}
#ifdef __i386__
__fastcall void
KefAcquireSpinLockAtDpcLevel(REGARGS1(kspin_lock *lock))
{
#ifdef __FreeBSD__
while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0)
/* sit and spin */;
#else /* __NetBSD__ */
simple_lock((struct simplelock *)lock);
#endif
return;
}
__fastcall void
KefReleaseSpinLockFromDpcLevel(REGARGS1(kspin_lock *lock))
{
#ifdef __FreeBSD__
atomic_store_rel_int((volatile u_int *)lock, 0);
#else /* __NetBSD__ */
simple_unlock((struct simplelock *)lock);
#endif
return;
}
__stdcall uint8_t
KeAcquireSpinLockRaiseToDpc(kspin_lock *lock)
{
uint8_t oldirql;
if (KeGetCurrentIrql() > DISPATCH_LEVEL)
panic("IRQL_NOT_LESS_THAN_OR_EQUAL");
oldirql = KeRaiseIrql(DISPATCH_LEVEL);
KeAcquireSpinLockAtDpcLevel(lock);
return(oldirql);
}
#else
__stdcall void
KeAcquireSpinLockAtDpcLevel(kspin_lock *lock)
{
while (atomic_swap_uint((volatile u_int *)lock, 1) == 1)
/* sit and spin */;
return;
}
__stdcall void
KeReleaseSpinLockFromDpcLevel(kspin_lock *lock)
{
*(volatile u_int *)lock = 0;
return;
}
#endif /* __i386__ */
__fastcall uintptr_t
InterlockedExchange(REGARGS2(volatile uint32_t *dst, uintptr_t val))
{
uint8_t irql;
uintptr_t r;
KeAcquireSpinLock(&ntoskrnl_global, &irql);
r = *dst;
*dst = val;
KeReleaseSpinLock(&ntoskrnl_global, irql);
return(r);
}
__fastcall static uint32_t
InterlockedIncrement(REGARGS1(volatile uint32_t *addend))
{
atomic_inc_32(addend);
return(*addend);
}
__fastcall static uint32_t
InterlockedDecrement(REGARGS1(volatile uint32_t *addend))
{
atomic_dec_32(addend);
return(*addend);
}
__fastcall static void
ExInterlockedAddLargeStatistic(REGARGS2(uint64_t *addend, uint32_t inc))
{
uint8_t irql;
KeAcquireSpinLock(&ntoskrnl_global, &irql);
*addend += inc;
KeReleaseSpinLock(&ntoskrnl_global, irql);
return;
};
__stdcall mdl *
IoAllocateMdl(
void *vaddr,
uint32_t len,
uint8_t secondarybuf,
uint8_t chargequota,
irp *iopkt)
{
mdl *m;
int zone = 0;
if (MmSizeOfMdl(vaddr, len) > MDL_ZONE_SIZE)
m = ExAllocatePoolWithTag(NonPagedPool,
MmSizeOfMdl(vaddr, len), 0);
else {
#ifdef __FreeBSD__
m = uma_zalloc(mdl_zone, M_NOWAIT | M_ZERO);
#else
m = pool_get(&mdl_pool, PR_WAITOK);
#endif
zone++;
}
if (m == NULL)
return (NULL);
MmInitializeMdl(m, vaddr, len);
/*
* MmInitializMdl() clears the flags field, so we
* have to set this here. If the MDL came from the
* MDL UMA zone, tag it so we can release it to
* the right place later.
*/
if (zone)
m->mdl_flags = MDL_ZONE_ALLOCED;
if (iopkt != NULL) {
if (secondarybuf == TRUE) {
mdl *last;
last = iopkt->irp_mdl;
while (last->mdl_next != NULL)
last = last->mdl_next;
last->mdl_next = m;
} else {
if (iopkt->irp_mdl != NULL)
panic("leaking an MDL in IoAllocateMdl()");
iopkt->irp_mdl = m;
}
}
return (m);
}
__stdcall void
IoFreeMdl(mdl *m)
{
if (m == NULL)
return;
if (m->mdl_flags & MDL_ZONE_ALLOCED)
#ifdef __FreeBSD__
uma_zfree(mdl_zone, m);
#else
pool_put(&mdl_pool, m);
#endif
else
ExFreePool(m);
return;
}
__stdcall static uint32_t
MmSizeOfMdl(void *vaddr, size_t len)
{
uint32_t l;
l = sizeof(struct mdl) +
(sizeof(vm_offset_t *) * SPAN_PAGES(vaddr, len));
return(l);
}
/*
* The Microsoft documentation says this routine fills in the
* page array of an MDL with the _physical_ page addresses that
* comprise the buffer, but we don't really want to do that here.
* Instead, we just fill in the page array with the kernel virtual
* addresses of the buffers.
*/
__stdcall static void
MmBuildMdlForNonPagedPool(mdl *m)
{
vm_offset_t *mdl_pages;
int pagecnt, i;
pagecnt = SPAN_PAGES(m->mdl_byteoffset, m->mdl_bytecount);
if (pagecnt > (m->mdl_size - sizeof(mdl)) / sizeof(vm_offset_t *))
panic("not enough pages in MDL to describe buffer");
mdl_pages = MmGetMdlPfnArray(m);
for (i = 0; i < pagecnt; i++)
*mdl_pages = (vm_offset_t)m->mdl_startva + (i * PAGE_SIZE);
m->mdl_flags |= MDL_SOURCE_IS_NONPAGED_POOL;
m->mdl_mappedsystemva = MmGetMdlVirtualAddress(m);
return;
}
__stdcall static void *
MmMapLockedPages(
mdl *buf,
uint8_t accessmode)
{
buf->mdl_flags |= MDL_MAPPED_TO_SYSTEM_VA;
return(MmGetMdlVirtualAddress(buf));
}
__stdcall static void *
MmMapLockedPagesSpecifyCache(
mdl *buf,
uint8_t accessmode,
uint32_t cachetype,
void *vaddr,
uint32_t bugcheck,
uint32_t prio)
{
return(MmMapLockedPages(buf, accessmode));
}
__stdcall static void
MmUnmapLockedPages(
void *vaddr,
mdl *buf)
{
buf->mdl_flags &= ~MDL_MAPPED_TO_SYSTEM_VA;
return;
}
__stdcall static size_t
RtlCompareMemory(const void *s1, const void *s2, size_t len)
{
size_t i, total = 0;
uint8_t *m1, *m2;
m1 = __DECONST(char *, s1);
m2 = __DECONST(char *, s2);
for (i = 0; i < len; i++) {
if (m1[i] == m2[i])
total++;
}
return(total);
}
__stdcall static void
RtlInitAnsiString(ndis_ansi_string *dst, char *src)
{
ndis_ansi_string *a;
a = dst;
if (a == NULL)
return;
if (src == NULL) {
a->nas_len = a->nas_maxlen = 0;
a->nas_buf = NULL;
} else {
a->nas_buf = src;
a->nas_len = a->nas_maxlen = strlen(src);
}
return;
}
__stdcall static void
RtlInitUnicodeString(ndis_unicode_string *dst, uint16_t *src)
{
ndis_unicode_string *u;
int i;
u = dst;
if (u == NULL)
return;
if (src == NULL) {
u->us_len = u->us_maxlen = 0;
u->us_buf = NULL;
} else {
i = 0;
while(src[i] != 0)
i++;
u->us_buf = src;
u->us_len = u->us_maxlen = i * 2;
}
return;
}
__stdcall ndis_status
RtlUnicodeStringToInteger(ndis_unicode_string *ustr, uint32_t base, uint32_t *val)
{
uint16_t *uchr;
int len, neg = 0;
char abuf[64];
char *astr;
uchr = ustr->us_buf;
len = ustr->us_len;
memset(abuf, 0, sizeof(abuf));
if ((char)((*uchr) & 0xFF) == '-') {
neg = 1;
uchr++;
len -= 2;
} else if ((char)((*uchr) & 0xFF) == '+') {
neg = 0;
uchr++;
len -= 2;
}
if (base == 0) {
if ((char)((*uchr) & 0xFF) == 'b') {
base = 2;
uchr++;
len -= 2;
} else if ((char)((*uchr) & 0xFF) == 'o') {
base = 8;
uchr++;
len -= 2;
} else if ((char)((*uchr) & 0xFF) == 'x') {
base = 16;
uchr++;
len -= 2;
} else
base = 10;
}
astr = abuf;
if (neg) {
strcpy(astr, "-");
astr++;
}
ndis_unicode_to_ascii(uchr, len, &astr);
*val = strtoul(abuf, NULL, base);
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
RtlFreeUnicodeString(ndis_unicode_string *ustr)
{
if (ustr->us_buf == NULL)
return;
free(ustr->us_buf, M_DEVBUF);
ustr->us_buf = NULL;
return;
}
__stdcall static void
RtlFreeAnsiString(ndis_ansi_string *astr)
{
if (astr->nas_buf == NULL)
return;
free(astr->nas_buf, M_DEVBUF);
astr->nas_buf = NULL;
return;
}
static int
atoi(const char *str)
{
#ifdef __FreeBSD__
return (int)strtol(str, (char **)NULL, 10);
#else
int n;
for (n = 0; *str && *str >= '0' && *str <= '9'; str++)
n = n * 10 + *str - '0';
return n;
#endif
}
static long
atol(const char *str)
{
#ifdef __FreeBSD__
return strtol(str, (char **)NULL, 10);
#else
long n;
for (n = 0; *str && *str >= '0' && *str <= '9'; str++)
n = n * 10 + *str - '0';
return n;
#endif
}
/*
* stolen from ./netipsec/key.c
*/
#ifdef __NetBSD__
void srandom(int);
void srandom(int arg) {return;}
#endif
static int
rand(void)
{
struct timeval tv;
microtime(&tv);
srandom(tv.tv_usec);
return((int)random());
}
static void
srand(unsigned int seed)
{
srandom(seed);
return;
}
__stdcall static uint8_t
IoIsWdmVersionAvailable(uint8_t major, uint8_t minor)
{
if (major == WDM_MAJOR && minor == WDM_MINOR_WINXP)
return(TRUE);
return(FALSE);
}
__stdcall static ndis_status
IoGetDeviceProperty(
device_object *devobj,
uint32_t regprop,
uint32_t buflen,
void *prop,
uint32_t *reslen)
{
driver_object *drv;
uint16_t **name;
drv = devobj->do_drvobj;
switch (regprop) {
case DEVPROP_DRIVER_KEYNAME:
name = prop;
*name = drv->dro_drivername.us_buf;
*reslen = drv->dro_drivername.us_len;
break;
default:
return(STATUS_INVALID_PARAMETER_2);
break;
}
return(STATUS_SUCCESS);
}
__stdcall static void
KeInitializeMutex(
kmutant *kmutex,
uint32_t level)
{
INIT_LIST_HEAD((&kmutex->km_header.dh_waitlisthead));
kmutex->km_abandoned = FALSE;
kmutex->km_apcdisable = 1;
kmutex->km_header.dh_sigstate = TRUE;
kmutex->km_header.dh_type = EVENT_TYPE_SYNC;
kmutex->km_header.dh_size = OTYPE_MUTEX;
kmutex->km_acquirecnt = 0;
kmutex->km_ownerthread = NULL;
return;
}
__stdcall static uint32_t
KeReleaseMutex(
kmutant *kmutex,
uint8_t kwait)
{
#ifdef __NetBSD__
int s;
#endif
#ifdef __NetBSD__
DISPATCH_LOCK();
#else
mtx_lock(&ntoskrnl_dispatchlock);
#endif
#ifdef __FreeBSD__
if (kmutex->km_ownerthread != curthread->td_proc) {
#else
if (kmutex->km_ownerthread != curproc) {
#endif
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(STATUS_MUTANT_NOT_OWNED);
}
kmutex->km_acquirecnt--;
if (kmutex->km_acquirecnt == 0) {
kmutex->km_ownerthread = NULL;
ntoskrnl_wakeup(&kmutex->km_header);
}
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(kmutex->km_acquirecnt);
}
__stdcall static uint32_t
KeReadStateMutex(kmutant *kmutex)
{
return(kmutex->km_header.dh_sigstate);
}
__stdcall void
KeInitializeEvent(nt_kevent *kevent, uint32_t type, uint8_t state)
{
INIT_LIST_HEAD((&kevent->k_header.dh_waitlisthead));
kevent->k_header.dh_sigstate = state;
kevent->k_header.dh_type = type;
kevent->k_header.dh_size = OTYPE_EVENT;
return;
}
__stdcall uint32_t
KeResetEvent(nt_kevent *kevent)
{
uint32_t prevstate;
#ifdef __NetBSD__
int s;
#endif
#ifdef __NetBSD__
DISPATCH_LOCK();
#else
mtx_lock(&ntoskrnl_dispatchlock);
#endif
prevstate = kevent->k_header.dh_sigstate;
kevent->k_header.dh_sigstate = FALSE;
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(prevstate);
}
__stdcall uint32_t
KeSetEvent(
nt_kevent *kevent,
uint32_t increment,
uint8_t kwait)
{
uint32_t prevstate;
#ifdef __NetBSD__
int s;
#endif
#ifdef __NetBSD__
DISPATCH_LOCK();
#else
mtx_lock(&ntoskrnl_dispatchlock);
#endif
prevstate = kevent->k_header.dh_sigstate;
ntoskrnl_wakeup(&kevent->k_header);
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(prevstate);
}
__stdcall void
KeClearEvent(nt_kevent *kevent)
{
kevent->k_header.dh_sigstate = FALSE;
return;
}
__stdcall uint32_t
KeReadStateEvent(nt_kevent *kevent)
{
return(kevent->k_header.dh_sigstate);
}
__stdcall static ndis_status
ObReferenceObjectByHandle(
ndis_handle handle,
uint32_t reqaccess,
void *otype,
uint8_t accessmode,
void **object,
void **handleinfo)
{
nt_objref *nr;
nr = malloc(sizeof(nt_objref), M_DEVBUF, M_NOWAIT|M_ZERO);
if (nr == NULL)
return(NDIS_STATUS_FAILURE);
INIT_LIST_HEAD((&nr->no_dh.dh_waitlisthead));
nr->no_obj = handle;
nr->no_dh.dh_size = OTYPE_THREAD;
TAILQ_INSERT_TAIL(&ntoskrnl_reflist, nr, link);
*object = nr;
return(NDIS_STATUS_SUCCESS);
}
__fastcall static void
ObfDereferenceObject(REGARGS1(void *object))
{
nt_objref *nr;
nr = object;
TAILQ_REMOVE(&ntoskrnl_reflist, nr, link);
free(nr, M_DEVBUF);
return;
}
__stdcall static uint32_t
ZwClose(ndis_handle handle)
{
return(STATUS_SUCCESS);
}
/*
* This is here just in case the thread returns without calling
* PsTerminateSystemThread().
*/
static void
ntoskrnl_thrfunc(void *arg)
{
thread_context *thrctx;
__stdcall uint32_t (*tfunc)(void *);
void *tctx;
uint32_t rval;
thrctx = arg;
tfunc = thrctx->tc_thrfunc;
tctx = thrctx->tc_thrctx;
free(thrctx, M_TEMP);
rval = MSCALL1(tfunc, tctx);
PsTerminateSystemThread(rval);
return; /* notreached */
}
__stdcall static ndis_status
PsCreateSystemThread(
ndis_handle *handle,
uint32_t reqaccess,
void *objattrs,
ndis_handle phandle,
void *clientid,
void *thrfunc,
void *thrctx)
{
int error;
char tname[128];
thread_context *tc;
struct proc *p;
tc = malloc(sizeof(thread_context), M_TEMP, M_NOWAIT);
if (tc == NULL)
return(NDIS_STATUS_FAILURE);
tc->tc_thrctx = thrctx;
tc->tc_thrfunc = thrfunc;
sprintf(tname, "windows kthread %d", ntoskrnl_kth);
#ifdef __FreeBSD__
error = kthread_create(ntoskrnl_thrfunc, tc, &p,
RFHIGHPID, NDIS_KSTACK_PAGES, tname);
#else
/* TODO: Provide a larger stack for these threads (NDIS_KSTACK_PAGES) */
error = ndis_kthread_create(ntoskrnl_thrfunc, tc, &p, NULL, 0, tname);
#endif
*handle = p;
ntoskrnl_kth++;
return(error);
}
/*
* In Windows, the exit of a thread is an event that you're allowed
* to wait on, assuming you've obtained a reference to the thread using
* ObReferenceObjectByHandle(). Unfortunately, the only way we can
* simulate this behavior is to register each thread we create in a
* reference list, and if someone holds a reference to us, we poke
* them.
*/
__stdcall static ndis_status
PsTerminateSystemThread(ndis_status status)
{
struct nt_objref *nr;
#ifdef __NetBSD__
int s;
#endif
#ifdef __NetBSD__
DISPATCH_LOCK();
#else
mtx_lock(&ntoskrnl_dispatchlock);
#endif
TAILQ_FOREACH(nr, &ntoskrnl_reflist, link) {
#ifdef __FreeBSD__
if (nr->no_obj != curthread->td_proc)
#else
if (nr->no_obj != curproc)
#endif
continue;
ntoskrnl_wakeup(&nr->no_dh);
break;
}
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
ntoskrnl_kth--;
#ifdef __FreeBSD__
#if __FreeBSD_version < 502113
mtx_lock(&Giant);
#endif
#endif /* __FreeBSD__ */
kthread_exit(0);
return(0); /* notreached */
}
static uint32_t
DbgPrint(char *fmt, ...)
{
//va_list ap;
if (bootverbose) {
//va_start(ap, fmt);
//vprintf(fmt, ap);
}
return(STATUS_SUCCESS);
}
__stdcall static void
DbgBreakPoint(void)
{
#if defined(__FreeBSD__) && __FreeBSD_version < 502113
Debugger("DbgBreakPoint(): breakpoint");
#elif defined(__FreeBSD__) && __FreeBSD_version >= 502113
kdb_enter("DbgBreakPoint(): breakpoint");
#else /* NetBSD case */
; /* TODO Search how to go into debugger without panic */
#endif
}
static void
ntoskrnl_timercall(void *arg)
{
ktimer *timer;
struct timeval tv;
#ifdef __NetBSD__
int s;
#endif
#ifdef __FreeBSD__
mtx_unlock(&Giant);
#endif
#ifdef __NetBSD__
DISPATCH_LOCK();
#else
mtx_lock(&ntoskrnl_dispatchlock);
#endif
timer = arg;
timer->k_header.dh_inserted = FALSE;
/*
* If this is a periodic timer, re-arm it
* so it will fire again. We do this before
* calling any deferred procedure calls because
* it's possible the DPC might cancel the timer,
* in which case it would be wrong for us to
* re-arm it again afterwards.
*/
if (timer->k_period) {
tv.tv_sec = 0;
tv.tv_usec = timer->k_period * 1000;
timer->k_header.dh_inserted = TRUE;
#ifdef __FreeBSD__
timer->k_handle = timeout(ntoskrnl_timercall,
timer, tvtohz(&tv));
#else /* __NetBSD__ */
callout_reset(timer->k_handle, tvtohz(&tv), ntoskrnl_timercall, timer);
#endif /* __NetBSD__ */
}
if (timer->k_dpc != NULL)
KeInsertQueueDpc(timer->k_dpc, NULL, NULL);
ntoskrnl_wakeup(&timer->k_header);
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
#ifdef __FreeBSD__
mtx_lock(&Giant);
#endif
return;
}
__stdcall void
KeInitializeTimer(ktimer *timer)
{
if (timer == NULL)
return;
KeInitializeTimerEx(timer, EVENT_TYPE_NOTIFY);
return;
}
__stdcall void
KeInitializeTimerEx(ktimer *timer, uint32_t type)
{
if (timer == NULL)
return;
INIT_LIST_HEAD((&timer->k_header.dh_waitlisthead));
timer->k_header.dh_sigstate = FALSE;
timer->k_header.dh_inserted = FALSE;
timer->k_header.dh_type = type;
timer->k_header.dh_size = OTYPE_TIMER;
#ifdef __FreeBSD__
callout_handle_init(&timer->k_handle);
#else
callout_init(timer->k_handle, 0);
#endif
return;
}
/*
* This is a wrapper for Windows deferred procedure calls that
* have been placed on an NDIS thread work queue. We need it
* since the DPC could be a _stdcall function. Also, as far as
* I can tell, defered procedure calls must run at DISPATCH_LEVEL.
*/
static void
ntoskrnl_run_dpc(void *arg)
{
__stdcall kdpc_func dpcfunc;
kdpc *dpc;
uint8_t irql;
dpc = arg;
dpcfunc = dpc->k_deferedfunc;
irql = KeRaiseIrql(DISPATCH_LEVEL);
MSCALL4(dpcfunc, dpc, dpc->k_deferredctx,
dpc->k_sysarg1, dpc->k_sysarg2);
KeLowerIrql(irql);
return;
}
__stdcall void
KeInitializeDpc(kdpc *dpc, void *dpcfunc, void *dpcctx)
{
if (dpc == NULL)
return;
dpc->k_deferedfunc = dpcfunc;
dpc->k_deferredctx = dpcctx;
return;
}
__stdcall uint8_t
KeInsertQueueDpc(kdpc *dpc, void *sysarg1, void *sysarg2)
{
dpc->k_sysarg1 = sysarg1;
dpc->k_sysarg2 = sysarg2;
if (ndis_sched(ntoskrnl_run_dpc, dpc, NDIS_SWI))
return(FALSE);
return(TRUE);
}
__stdcall uint8_t
KeRemoveQueueDpc(kdpc *dpc)
{
if (ndis_unsched(ntoskrnl_run_dpc, dpc, NDIS_SWI))
return(FALSE);
return(TRUE);
}
__stdcall uint8_t
KeSetTimerEx(ktimer *timer, int64_t duetime, uint32_t period, kdpc *dpc)
{
struct timeval tv;
uint64_t curtime;
uint8_t pending;
#ifdef __NetBSD__
int s;
#endif
if (timer == NULL)
return(FALSE);
#ifdef __NetBSD__
DISPATCH_LOCK();
#else
mtx_lock(&ntoskrnl_dispatchlock);
#endif
if (timer->k_header.dh_inserted == TRUE) {
#ifdef __FreeBSD__
untimeout(ntoskrnl_timercall, timer, timer->k_handle);
#else /* __NetBSD__ */
callout_stop(timer->k_handle);
#endif
timer->k_header.dh_inserted = FALSE;
pending = TRUE;
} else
pending = FALSE;
timer->k_duetime = duetime;
timer->k_period = period;
timer->k_header.dh_sigstate = FALSE;
timer->k_dpc = dpc;
if (duetime < 0) {
tv.tv_sec = - (duetime) / 10000000;
tv.tv_usec = (- (duetime) / 10) -
(tv.tv_sec * 1000000);
} else {
ntoskrnl_time(&curtime);
if (duetime < curtime)
tv.tv_sec = tv.tv_usec = 0;
else {
tv.tv_sec = ((duetime) - curtime) / 10000000;
tv.tv_usec = ((duetime) - curtime) / 10 -
(tv.tv_sec * 1000000);
}
}
timer->k_header.dh_inserted = TRUE;
#ifdef __FreeBSD__
timer->k_handle = timeout(ntoskrnl_timercall, timer, tvtohz(&tv));
#else
callout_reset(timer->k_handle, tvtohz(&tv), ntoskrnl_timercall, timer);
#endif
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(pending);
}
__stdcall uint8_t
KeSetTimer(ktimer *timer, int64_t duetime, kdpc *dpc)
{
return (KeSetTimerEx(timer, duetime, 0, dpc));
}
__stdcall uint8_t
KeCancelTimer(ktimer *timer)
{
uint8_t pending;
#ifdef __NetBSD__
int s;
#endif
if (timer == NULL)
return(FALSE);
#ifdef __NetBSD__
DISPATCH_LOCK();
#else
mtx_lock(&ntoskrnl_dispatchlock);
#endif
if (timer->k_header.dh_inserted == TRUE) {
#ifdef __FreeBSD__
untimeout(ntoskrnl_timercall, timer, timer->k_handle);
#else /* __NetBSD__ */
callout_stop(timer->k_handle);
#endif
pending = TRUE;
} else
pending = KeRemoveQueueDpc(timer->k_dpc);
#ifdef __FreeBSD__
mtx_unlock(&ntoskrnl_dispatchlock);
#else /* __NetBSD__ */
DISPATCH_UNLOCK();
#endif
return(pending);
}
__stdcall uint8_t
KeReadStateTimer(ktimer *timer)
{
return(timer->k_header.dh_sigstate);
}
__stdcall static void
dummy(void)
{
printf ("ntoskrnl dummy called...\n");
return;
}
image_patch_table ntoskrnl_functbl[] = {
IMPORT_FUNC(RtlCompareMemory),
IMPORT_FUNC(RtlEqualUnicodeString),
IMPORT_FUNC(RtlCopyUnicodeString),
IMPORT_FUNC(RtlUnicodeStringToAnsiString),
IMPORT_FUNC(RtlAnsiStringToUnicodeString),
IMPORT_FUNC(RtlInitAnsiString),
IMPORT_FUNC_MAP(RtlInitString, RtlInitAnsiString),
IMPORT_FUNC(RtlInitUnicodeString),
IMPORT_FUNC(RtlFreeAnsiString),
IMPORT_FUNC(RtlFreeUnicodeString),
IMPORT_FUNC(RtlUnicodeStringToInteger),
IMPORT_FUNC(sprintf),
IMPORT_FUNC(vsprintf),
IMPORT_FUNC_MAP(_snprintf, snprintf),
IMPORT_FUNC_MAP(_vsnprintf, vsnprintf),
IMPORT_FUNC(DbgPrint),
IMPORT_FUNC(DbgBreakPoint),
IMPORT_FUNC(strncmp),
IMPORT_FUNC(strcmp),
IMPORT_FUNC(strncpy),
IMPORT_FUNC(strcpy),
IMPORT_FUNC(strlen),
IMPORT_FUNC(memcpy),
IMPORT_FUNC_MAP(memmove, ntoskrnl_memset),
IMPORT_FUNC_MAP(memset, ntoskrnl_memset),
IMPORT_FUNC(IoAllocateDriverObjectExtension),
IMPORT_FUNC(IoGetDriverObjectExtension),
IMPORT_FUNC(IofCallDriver),
IMPORT_FUNC(IofCompleteRequest),
IMPORT_FUNC(IoAcquireCancelSpinLock),
IMPORT_FUNC(IoReleaseCancelSpinLock),
IMPORT_FUNC(IoCancelIrp),
IMPORT_FUNC(IoCreateDevice),
IMPORT_FUNC(IoDeleteDevice),
IMPORT_FUNC(IoGetAttachedDevice),
IMPORT_FUNC(IoAttachDeviceToDeviceStack),
IMPORT_FUNC(IoDetachDevice),
IMPORT_FUNC(IoBuildSynchronousFsdRequest),
IMPORT_FUNC(IoBuildAsynchronousFsdRequest),
IMPORT_FUNC(IoBuildDeviceIoControlRequest),
IMPORT_FUNC(IoAllocateIrp),
IMPORT_FUNC(IoReuseIrp),
IMPORT_FUNC(IoMakeAssociatedIrp),
IMPORT_FUNC(IoFreeIrp),
IMPORT_FUNC(IoInitializeIrp),
IMPORT_FUNC(KeWaitForSingleObject),
IMPORT_FUNC(KeWaitForMultipleObjects),
IMPORT_FUNC(_allmul),
IMPORT_FUNC(_alldiv),
IMPORT_FUNC(_allrem),
IMPORT_FUNC(_allshr),
IMPORT_FUNC(_allshl),
IMPORT_FUNC(_aullmul),
IMPORT_FUNC(_aulldiv),
IMPORT_FUNC(_aullrem),
IMPORT_FUNC(_aullshr),
IMPORT_FUNC(_aullshl),
IMPORT_FUNC(atoi),
IMPORT_FUNC(atol),
IMPORT_FUNC(rand),
IMPORT_FUNC(srand),
IMPORT_FUNC(WRITE_REGISTER_USHORT),
IMPORT_FUNC(READ_REGISTER_USHORT),
IMPORT_FUNC(WRITE_REGISTER_ULONG),
IMPORT_FUNC(READ_REGISTER_ULONG),
IMPORT_FUNC(READ_REGISTER_UCHAR),
IMPORT_FUNC(WRITE_REGISTER_UCHAR),
IMPORT_FUNC(ExInitializePagedLookasideList),
IMPORT_FUNC(ExDeletePagedLookasideList),
IMPORT_FUNC(ExInitializeNPagedLookasideList),
IMPORT_FUNC(ExDeleteNPagedLookasideList),
IMPORT_FUNC(InterlockedPopEntrySList),
IMPORT_FUNC(InterlockedPushEntrySList),
IMPORT_FUNC(ExQueryDepthSList),
IMPORT_FUNC_MAP(ExpInterlockedPopEntrySList, InterlockedPopEntrySList),
IMPORT_FUNC_MAP(ExpInterlockedPushEntrySList,
InterlockedPushEntrySList),
IMPORT_FUNC(ExInterlockedPopEntrySList),
IMPORT_FUNC(ExInterlockedPushEntrySList),
IMPORT_FUNC(ExAllocatePoolWithTag),
IMPORT_FUNC(ExFreePool),
#ifdef __i386__
IMPORT_FUNC(KefAcquireSpinLockAtDpcLevel),
IMPORT_FUNC(KefReleaseSpinLockFromDpcLevel),
IMPORT_FUNC(KeAcquireSpinLockRaiseToDpc),
#else
/*
* For AMD64, we can get away with just mapping
* KeAcquireSpinLockRaiseToDpc() directly to KfAcquireSpinLock()
* because the calling conventions end up being the same.
* On i386, we have to be careful because KfAcquireSpinLock()
* is _fastcall but KeAcquireSpinLockRaiseToDpc() isn't.
*/
IMPORT_FUNC(KeAcquireSpinLockAtDpcLevel),
IMPORT_FUNC(KeReleaseSpinLockFromDpcLevel),
IMPORT_FUNC_MAP(KeAcquireSpinLockRaiseToDpc, KfAcquireSpinLock),
#endif
IMPORT_FUNC_MAP(KeReleaseSpinLock, KfReleaseSpinLock),
IMPORT_FUNC(InterlockedIncrement),
IMPORT_FUNC(InterlockedDecrement),
IMPORT_FUNC(ExInterlockedAddLargeStatistic),
IMPORT_FUNC(IoAllocateMdl),
IMPORT_FUNC(IoFreeMdl),
IMPORT_FUNC(MmSizeOfMdl),
IMPORT_FUNC(MmMapLockedPages),
IMPORT_FUNC(MmMapLockedPagesSpecifyCache),
IMPORT_FUNC(MmUnmapLockedPages),
IMPORT_FUNC(MmBuildMdlForNonPagedPool),
IMPORT_FUNC(KeInitializeSpinLock),
IMPORT_FUNC(IoIsWdmVersionAvailable),
IMPORT_FUNC(IoGetDeviceProperty),
IMPORT_FUNC(KeInitializeMutex),
IMPORT_FUNC(KeReleaseMutex),
IMPORT_FUNC(KeReadStateMutex),
IMPORT_FUNC(KeInitializeEvent),
IMPORT_FUNC(KeSetEvent),
IMPORT_FUNC(KeResetEvent),
IMPORT_FUNC(KeClearEvent),
IMPORT_FUNC(KeReadStateEvent),
IMPORT_FUNC(KeInitializeTimer),
IMPORT_FUNC(KeInitializeTimerEx),
IMPORT_FUNC(KeSetTimer),
IMPORT_FUNC(KeSetTimerEx),
IMPORT_FUNC(KeCancelTimer),
IMPORT_FUNC(KeReadStateTimer),
IMPORT_FUNC(KeInitializeDpc),
IMPORT_FUNC(KeInsertQueueDpc),
IMPORT_FUNC(KeRemoveQueueDpc),
IMPORT_FUNC(ObReferenceObjectByHandle),
IMPORT_FUNC(ObfDereferenceObject),
IMPORT_FUNC(ZwClose),
IMPORT_FUNC(PsCreateSystemThread),
IMPORT_FUNC(PsTerminateSystemThread),
/*
* This last entry is a catch-all for any function we haven't
* implemented yet. The PE import list patching routine will
* use it for any function that doesn't have an explicit match
* in this table.
*/
{ NULL, (FUNC)dummy, NULL },
/* End of list. */
{ NULL, NULL, NULL }
};