NetBSD/sys/arch/mips/rmi/rmixl_pcie.c
2011-07-10 23:13:22 +00:00

1601 lines
42 KiB
C

/* $NetBSD: rmixl_pcie.c,v 1.8 2011/07/10 23:13:22 matt Exp $ */
/*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* PCI configuration support for RMI XLS SoC
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rmixl_pcie.c,v 1.8 2011/07/10 23:13:22 matt Exp $");
#include "opt_pci.h"
#include "pci.h"
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <sys/extent.h>
#include <sys/intr.h>
#include <sys/kernel.h> /* for 'hz' */
#include <sys/malloc.h>
#include <sys/systm.h>
#include <uvm/uvm_extern.h>
#include <mips/rmi/rmixlreg.h>
#include <mips/rmi/rmixlvar.h>
#include <mips/rmi/rmixl_intr.h>
#include <mips/rmi/rmixl_pcievar.h>
#include <mips/rmi/rmixl_obiovar.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pciconf.h>
#ifdef PCI_NETBSD_CONFIGURE
#include <mips/cache.h>
#endif
#ifdef PCI_DEBUG
int rmixl_pcie_debug = PCI_DEBUG;
# define DPRINTF(x) do { if (rmixl_pcie_debug) printf x ; } while (0)
#else
# define DPRINTF(x)
#endif
#ifndef DDB
# define STATIC static
#else
# define STATIC
#endif
/*
* XLS PCIe Extended Configuration Registers
*/
#define RMIXL_PCIE_ECFG_UESR 0x104 /* Uncorrectable Error Status Reg */
#define RMIXL_PCIE_ECFG_UEMR 0x108 /* Uncorrectable Error Mask Reg */
#define RMIXL_PCIE_ECFG_UEVR 0x10c /* Uncorrectable Error seVerity Reg */
#define PCIE_ECFG_UEVR_DFLT \
(__BITS(18,17) | __BIT(31) | __BITS(5,4) | __BIT(0))
#define PCIE_ECFG_UExR_RESV (__BITS(31,21) | __BITS(11,6) | __BITS(3,1))
#define RMIXL_PCIE_ECFG_CESR 0x110 /* Correctable Error Status Reg */
#define RMIXL_PCIE_ECFG_CEMR 0x114 /* Correctable Error Mask Reg */
#define PCIE_ECFG_CExR_RESV (__BITS(31,14) | __BITS(11,9) | __BITS(5,1))
#define RMIXL_PCIE_ECFG_ACCR 0x118 /* Adv. Capabilities Control Reg */
#define RMIXL_PCIE_ECFG_HLRn(n) (0x11c + ((n) * 4)) /* Header Log Regs */
#define RMIXL_PCIE_ECFG_RECR 0x12c /* Root Error Command Reg */
#define PCIE_ECFG_RECR_RESV __BITS(31,3)
#define RMIXL_PCIE_ECFG_RESR 0x130 /* Root Error Status Reg */
#define PCIE_ECFG_RESR_RESV __BITS(26,7)
#define RMIXL_PCIE_ECFG_ESI 0x134 /* Error Source Identification Reg */
#define RMIXL_PCIE_ECFG_DSNCR 0x140 /* Dev Serial Number Capability Regs */
static const struct {
u_int offset;
u_int32_t rw1c;
} pcie_ecfg_errs_tab[] = {
{ RMIXL_PCIE_ECFG_UESR, (__BITS(20,12) | __BIT(4)) },
{ RMIXL_PCIE_ECFG_CESR, (__BITS(20,12) | __BIT(4)) },
{ RMIXL_PCIE_ECFG_HLRn(0), 0 },
{ RMIXL_PCIE_ECFG_HLRn(1), 0 },
{ RMIXL_PCIE_ECFG_HLRn(2), 0 },
{ RMIXL_PCIE_ECFG_HLRn(3), 0 },
{ RMIXL_PCIE_ECFG_RESR, __BITS(6,0) },
{ RMIXL_PCIE_ECFG_ESI, 0 },
};
#define PCIE_ECFG_ERRS_OFFTAB_NENTRIES \
(sizeof(pcie_ecfg_errs_tab)/sizeof(pcie_ecfg_errs_tab[0]))
typedef struct rmixl_pcie_int_csr {
uint r0;
uint r1;
} rmixl_pcie_int_csr_t;
static const rmixl_pcie_int_csr_t int_enb_offset[4] = {
{ RMIXL_PCIE_LINK0_INT_ENABLE0, RMIXL_PCIE_LINK0_INT_ENABLE1 },
{ RMIXL_PCIE_LINK1_INT_ENABLE0, RMIXL_PCIE_LINK1_INT_ENABLE1 },
{ RMIXL_PCIE_LINK2_INT_ENABLE0, RMIXL_PCIE_LINK2_INT_ENABLE1 },
{ RMIXL_PCIE_LINK3_INT_ENABLE0, RMIXL_PCIE_LINK3_INT_ENABLE1 },
};
static const rmixl_pcie_int_csr_t int_sts_offset[4] = {
{ RMIXL_PCIE_LINK0_INT_STATUS0, RMIXL_PCIE_LINK0_INT_STATUS1 },
{ RMIXL_PCIE_LINK1_INT_STATUS0, RMIXL_PCIE_LINK1_INT_STATUS1 },
{ RMIXL_PCIE_LINK2_INT_STATUS0, RMIXL_PCIE_LINK2_INT_STATUS1 },
{ RMIXL_PCIE_LINK3_INT_STATUS0, RMIXL_PCIE_LINK3_INT_STATUS1 },
};
static const u_int msi_enb_offset[4] = {
RMIXL_PCIE_LINK0_MSI_ENABLE,
RMIXL_PCIE_LINK1_MSI_ENABLE,
RMIXL_PCIE_LINK2_MSI_ENABLE,
RMIXL_PCIE_LINK3_MSI_ENABLE
};
#define RMIXL_PCIE_LINK_STATUS0_ERRORS __BITS(6,4)
#define RMIXL_PCIE_LINK_STATUS1_ERRORS __BITS(10,0)
#define RMIXL_PCIE_LINK_STATUS_ERRORS \
((((uint64_t)RMIXL_PCIE_LINK_STATUS1_ERRORS) << 32) | \
(uint64_t)RMIXL_PCIE_LINK_STATUS0_ERRORS)
#define RMIXL_PCIE_EVCNT(sc, link, bitno, cpu) \
&(sc)->sc_evcnts[link][(bitno) * (ncpu) + (cpu)]
static int rmixl_pcie_match(device_t, cfdata_t, void *);
static void rmixl_pcie_attach(device_t, device_t, void *);
static void rmixl_pcie_init(struct rmixl_pcie_softc *);
static void rmixl_pcie_init_ecfg(struct rmixl_pcie_softc *);
static void rmixl_pcie_attach_hook(struct device *, struct device *,
struct pcibus_attach_args *);
static void rmixl_pcie_lnkcfg_4xx(rmixl_pcie_lnktab_t *, uint32_t);
static void rmixl_pcie_lnkcfg_408Lite(rmixl_pcie_lnktab_t *, uint32_t);
static void rmixl_pcie_lnkcfg_2xx(rmixl_pcie_lnktab_t *, uint32_t);
static void rmixl_pcie_lnkcfg_1xx(rmixl_pcie_lnktab_t *, uint32_t);
static void rmixl_pcie_lnkcfg(struct rmixl_pcie_softc *);
static void rmixl_pcie_intcfg(struct rmixl_pcie_softc *);
static void rmixl_pcie_errata(struct rmixl_pcie_softc *);
static void rmixl_conf_interrupt(void *, int, int, int, int, int *);
static int rmixl_pcie_bus_maxdevs(void *, int);
static pcitag_t rmixl_tag_to_ecfg(pcitag_t);
static pcitag_t rmixl_pcie_make_tag(void *, int, int, int);
static void rmixl_pcie_decompose_tag(void *, pcitag_t, int *, int *, int *);
void rmixl_pcie_tag_print(const char *restrict, void *, pcitag_t, int, vaddr_t, u_long);
static int rmixl_pcie_conf_setup(struct rmixl_pcie_softc *,
pcitag_t, int *, bus_space_tag_t *,
bus_space_handle_t *);
static pcireg_t rmixl_pcie_conf_read(void *, pcitag_t, int);
static void rmixl_pcie_conf_write(void *, pcitag_t, int, pcireg_t);
static int rmixl_pcie_intr_map(const struct pci_attach_args *,
pci_intr_handle_t *);
static const char *
rmixl_pcie_intr_string(void *, pci_intr_handle_t);
static const struct evcnt *
rmixl_pcie_intr_evcnt(void *, pci_intr_handle_t);
static pci_intr_handle_t
rmixl_pcie_make_pih(u_int, u_int, u_int);
static void rmixl_pcie_decompose_pih(pci_intr_handle_t, u_int *, u_int *, u_int *);
static void rmixl_pcie_intr_disestablish(void *, void *);
static void *rmixl_pcie_intr_establish(void *, pci_intr_handle_t,
int, int (*)(void *), void *);
static rmixl_pcie_link_intr_t *
rmixl_pcie_lip_add_1(rmixl_pcie_softc_t *, u_int, int, int);
static void rmixl_pcie_lip_free_callout(rmixl_pcie_link_intr_t *);
static void rmixl_pcie_lip_free(void *);
static int rmixl_pcie_intr(void *);
static void rmixl_pcie_link_error_intr(u_int, uint32_t, uint32_t);
#if defined(DEBUG) || defined(DDB)
int rmixl_pcie_error_check(void);
#endif
static int _rmixl_pcie_error_check(void *);
static int rmixl_pcie_error_intr(void *);
#define RMIXL_PCIE_CONCAT3(a,b,c) a ## b ## c
#define RMIXL_PCIE_BAR_INIT(reg, bar, size, align) { \
struct extent *ext = rmixl_configuration.rc_phys_ex; \
u_long region_start; \
uint64_t ba; \
int err; \
\
err = extent_alloc(ext, (size), (align), 0UL, EX_NOWAIT, \
&region_start); \
if (err != 0) \
panic("%s: extent_alloc(%p, %#lx, %#lx, %#lx, %#x, %p)",\
__func__, ext, size, align, 0UL, EX_NOWAIT, \
&region_start); \
ba = (uint64_t)region_start; \
ba *= (1024 * 1024); \
bar = RMIXL_PCIE_CONCAT3(RMIXL_PCIE_,reg,_BAR)(ba, 1); \
DPRINTF(("PCIE %s BAR was not enabled by firmware\n" \
"enabling %s at phys %#" PRIxBUSADDR ", size %lu MB\n", \
__STRING(reg), __STRING(reg), ba, size)); \
RMIXL_IOREG_WRITE(RMIXL_IO_DEV_BRIDGE + \
RMIXL_PCIE_CONCAT3(RMIXLS_SBC_PCIE_,reg,_BAR), bar); \
bar = RMIXL_IOREG_READ(RMIXL_IO_DEV_BRIDGE + \
RMIXL_PCIE_CONCAT3(RMIXLS_SBC_PCIE_,reg,_BAR)); \
DPRINTF(("%s: %s BAR %#x\n", __func__, __STRING(reg), bar)); \
}
#if defined(DEBUG) || defined(DDB)
static void *rmixl_pcie_v;
#endif
CFATTACH_DECL_NEW(rmixl_pcie, sizeof(struct rmixl_pcie_softc),
rmixl_pcie_match, rmixl_pcie_attach, NULL, NULL);
static int rmixl_pcie_found;
static int
rmixl_pcie_match(device_t parent, cfdata_t cf, void *aux)
{
uint32_t r;
/*
* PCIe interface exists on XLS chips only
*/
if (! cpu_rmixls(mips_options.mips_cpu))
return 0;
/* XXX
* for now there is only one PCIe Interface on chip
* this could change with furture RMI XL family designs
*/
if (rmixl_pcie_found)
return 0;
/* read GPIO Reset Configuration register */
r = RMIXL_IOREG_READ(RMIXL_IO_DEV_GPIO + RMIXL_GPIO_RESET_CFG);
r >>= 26;
r &= 3;
if (r != 0)
return 0; /* strapped for SRIO */
return 1;
}
static void
rmixl_pcie_attach(device_t parent, device_t self, void *aux)
{
struct rmixl_pcie_softc *sc = device_private(self);
struct obio_attach_args *obio = aux;
struct rmixl_config *rcp = &rmixl_configuration;
struct pcibus_attach_args pba;
uint32_t bar;
rmixl_pcie_found = 1;
sc->sc_dev = self;
aprint_normal(" RMI XLS PCIe Interface\n");
mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_HIGH);
rmixl_pcie_lnkcfg(sc);
rmixl_pcie_intcfg(sc);
rmixl_pcie_errata(sc);
sc->sc_29bit_dmat = obio->obio_29bit_dmat;
sc->sc_32bit_dmat = obio->obio_32bit_dmat;
sc->sc_64bit_dmat = obio->obio_64bit_dmat;
sc->sc_tmsk = obio->obio_tmsk;
/*
* get PCI config space base addr from SBC PCIe CFG BAR
* initialize it if necessary
*/
bar = RMIXL_IOREG_READ(RMIXL_IO_DEV_BRIDGE + RMIXLS_SBC_PCIE_CFG_BAR);
DPRINTF(("%s: PCIE_CFG_BAR %#x\n", __func__, bar));
if ((bar & RMIXL_PCIE_CFG_BAR_ENB) == 0) {
u_long n = RMIXL_PCIE_CFG_SIZE / (1024 * 1024);
RMIXL_PCIE_BAR_INIT(CFG, bar, n, n);
}
rcp->rc_pci_cfg_pbase = (bus_addr_t)RMIXL_PCIE_CFG_BAR_TO_BA(bar);
rcp->rc_pci_cfg_size = (bus_size_t)RMIXL_PCIE_CFG_SIZE;
/*
* get PCIE Extended config space base addr from SBC PCIe ECFG BAR
* initialize it if necessary
*/
bar = RMIXL_IOREG_READ(RMIXL_IO_DEV_BRIDGE + RMIXLS_SBC_PCIE_ECFG_BAR);
DPRINTF(("%s: PCIE_ECFG_BAR %#x\n", __func__, bar));
if ((bar & RMIXL_PCIE_ECFG_BAR_ENB) == 0) {
u_long n = RMIXL_PCIE_ECFG_SIZE / (1024 * 1024);
RMIXL_PCIE_BAR_INIT(ECFG, bar, n, n);
}
rcp->rc_pci_ecfg_pbase = (bus_addr_t)RMIXL_PCIE_ECFG_BAR_TO_BA(bar);
rcp->rc_pci_ecfg_size = (bus_size_t)RMIXL_PCIE_ECFG_SIZE;
/*
* get PCI MEM space base [addr, size] from SBC PCIe MEM BAR
* initialize it if necessary
*/
bar = RMIXL_IOREG_READ(RMIXL_IO_DEV_BRIDGE + RMIXLS_SBC_PCIE_MEM_BAR);
DPRINTF(("%s: PCIE_MEM_BAR %#x\n", __func__, bar));
if ((bar & RMIXL_PCIE_MEM_BAR_ENB) == 0) {
u_long n = 256; /* 256 MB */
RMIXL_PCIE_BAR_INIT(MEM, bar, n, n);
}
rcp->rc_pci_mem_pbase = (bus_addr_t)RMIXL_PCIE_MEM_BAR_TO_BA(bar);
rcp->rc_pci_mem_size = (bus_size_t)RMIXL_PCIE_MEM_BAR_TO_SIZE(bar);
/*
* get PCI IO space base [addr, size] from SBC PCIe IO BAR
* initialize it if necessary
*/
bar = RMIXL_IOREG_READ(RMIXL_IO_DEV_BRIDGE + RMIXLS_SBC_PCIE_IO_BAR);
DPRINTF(("%s: PCIE_IO_BAR %#x\n", __func__, bar));
if ((bar & RMIXL_PCIE_IO_BAR_ENB) == 0) {
u_long n = 32; /* 32 MB */
RMIXL_PCIE_BAR_INIT(IO, bar, n, n);
}
rcp->rc_pci_io_pbase = (bus_addr_t)RMIXL_PCIE_IO_BAR_TO_BA(bar);
rcp->rc_pci_io_size = (bus_size_t)RMIXL_PCIE_IO_BAR_TO_SIZE(bar);
/*
* initialize the PCI CFG, ECFG bus space tags
*/
rmixl_pci_cfg_bus_mem_init(&rcp->rc_pci_cfg_memt, rcp);
sc->sc_pci_cfg_memt = &rcp->rc_pci_cfg_memt;
rmixl_pci_ecfg_bus_mem_init(&rcp->rc_pci_ecfg_memt, rcp);
sc->sc_pci_ecfg_memt = &rcp->rc_pci_ecfg_memt;
/*
* initialize the PCI MEM and IO bus space tags
*/
rmixl_pci_bus_mem_init(&rcp->rc_pci_memt, rcp);
rmixl_pci_bus_io_init(&rcp->rc_pci_iot, rcp);
/*
* initialize the extended configuration regs
*/
rmixl_pcie_init_ecfg(sc);
/*
* initialize the PCI chipset tag
*/
rmixl_pcie_init(sc);
/*
* attach the PCI bus
*/
memset(&pba, 0, sizeof(pba));
pba.pba_memt = &rcp->rc_pci_memt;
pba.pba_iot = &rcp->rc_pci_iot;
pba.pba_dmat = sc->sc_32bit_dmat;
pba.pba_dmat64 = sc->sc_64bit_dmat;
pba.pba_pc = &sc->sc_pci_chipset;
pba.pba_bus = 0;
pba.pba_bridgetag = NULL;
pba.pba_intrswiz = 0;
pba.pba_intrtag = 0;
pba.pba_flags = PCI_FLAGS_IO_OKAY | PCI_FLAGS_MEM_OKAY |
PCI_FLAGS_MRL_OKAY | PCI_FLAGS_MRM_OKAY | PCI_FLAGS_MWI_OKAY;
(void) config_found_ia(self, "pcibus", &pba, pcibusprint);
}
/*
* rmixl_pcie_lnkcfg_4xx - link configs for XLS4xx and XLS6xx
* use IO_AD[11] and IO_AD[10], observable in
* Bits[21:20] of the GPIO Reset Configuration register
*/
static void
rmixl_pcie_lnkcfg_4xx(rmixl_pcie_lnktab_t *ltp, uint32_t grcr)
{
u_int index;
static const rmixl_pcie_lnkcfg_t lnktab_4xx[4][4] = {
{{ LCFG_EP, 4}, {LCFG_NO, 0}, {LCFG_NO, 0}, {LCFG_NO, 0}},
{{ LCFG_RC, 4}, {LCFG_NO, 0}, {LCFG_NO, 0}, {LCFG_NO, 0}},
{{ LCFG_EP, 1}, {LCFG_RC, 1}, {LCFG_RC, 1}, {LCFG_RC, 1}},
{{ LCFG_RC, 1}, {LCFG_RC, 1}, {LCFG_RC, 1}, {LCFG_RC, 1}},
};
static const char *lnkstr_4xx[4] = {
"1EPx4",
"1RCx4",
"1EPx1, 3RCx1",
"4RCx1"
};
index = (grcr >> 20) & 3;
ltp->ncfgs = 4;
ltp->cfg = lnktab_4xx[index];
ltp->str = lnkstr_4xx[index];
}
/*
* rmixl_pcie_lnkcfg_408Lite - link configs for XLS408Lite and XLS04A
* use IO_AD[11] and IO_AD[10], observable in
* Bits[21:20] of the GPIO Reset Configuration register
*/
static void
rmixl_pcie_lnkcfg_408Lite(rmixl_pcie_lnktab_t *ltp, uint32_t grcr)
{
u_int index;
static const rmixl_pcie_lnkcfg_t lnktab_408Lite[4][2] = {
{{ LCFG_EP, 4}, {LCFG_NO, 0}},
{{ LCFG_RC, 4}, {LCFG_NO, 0}},
{{ LCFG_EP, 1}, {LCFG_RC, 1}},
{{ LCFG_RC, 1}, {LCFG_RC, 1}},
};
static const char *lnkstr_408Lite[4] = {
"4EPx4",
"1RCx4",
"1EPx1, 1RCx1",
"2RCx1"
};
index = (grcr >> 20) & 3;
ltp->ncfgs = 2;
ltp->cfg = lnktab_408Lite[index];
ltp->str = lnkstr_408Lite[index];
}
/*
* rmixl_pcie_lnkcfg_2xx - link configs for XLS2xx
* use IO_AD[10], observable in Bit[20] of the
* GPIO Reset Configuration register
*/
static void
rmixl_pcie_lnkcfg_2xx(rmixl_pcie_lnktab_t *ltp, uint32_t grcr)
{
u_int index;
static const rmixl_pcie_lnkcfg_t lnktab_2xx[2][4] = {
{{ LCFG_EP, 1}, {LCFG_RC, 1}, {LCFG_RC, 1}, {LCFG_RC, 1}},
{{ LCFG_RC, 1}, {LCFG_RC, 1}, {LCFG_RC, 1}, {LCFG_RC, 1}}
};
static const char *lnkstr_2xx[2] = {
"1EPx1, 3RCx1",
"4RCx1",
};
index = (grcr >> 20) & 1;
ltp->ncfgs = 4;
ltp->cfg = lnktab_2xx[index];
ltp->str = lnkstr_2xx[index];
}
/*
* rmixl_pcie_lnkcfg_1xx - link configs for XLS1xx
* use IO_AD[10], observable in Bit[20] of the
* GPIO Reset Configuration register
*/
static void
rmixl_pcie_lnkcfg_1xx(rmixl_pcie_lnktab_t *ltp, uint32_t grcr)
{
u_int index;
static const rmixl_pcie_lnkcfg_t lnktab_1xx[2][2] = {
{{ LCFG_EP, 1}, {LCFG_RC, 1}},
{{ LCFG_RC, 1}, {LCFG_RC, 1}}
};
static const char *lnkstr_1xx[2] = {
"1EPx1, 1RCx1",
"2RCx1",
};
index = (grcr >> 20) & 1;
ltp->ncfgs = 2;
ltp->cfg = lnktab_1xx[index];
ltp->str = lnkstr_1xx[index];
}
/*
* rmixl_pcie_lnkcfg - determine PCI Express Link Configuration
*/
static void
rmixl_pcie_lnkcfg(struct rmixl_pcie_softc *sc)
{
uint32_t r;
/* read GPIO Reset Configuration register */
r = RMIXL_IOREG_READ(RMIXL_IO_DEV_GPIO + RMIXL_GPIO_RESET_CFG);
DPRINTF(("%s: GPIO RCR %#x\n", __func__, r));
switch (MIPS_PRID_IMPL(mips_options.mips_cpu_id)) {
case MIPS_XLS104:
case MIPS_XLS108:
rmixl_pcie_lnkcfg_1xx(&sc->sc_pcie_lnktab, r);
break;
case MIPS_XLS204:
case MIPS_XLS208:
rmixl_pcie_lnkcfg_2xx(&sc->sc_pcie_lnktab, r);
break;
case MIPS_XLS404LITE:
case MIPS_XLS408LITE:
rmixl_pcie_lnkcfg_408Lite(&sc->sc_pcie_lnktab, r);
break;
case MIPS_XLS404:
case MIPS_XLS408:
case MIPS_XLS416:
case MIPS_XLS608:
case MIPS_XLS616:
/* 6xx uses same table as 4xx */
rmixl_pcie_lnkcfg_4xx(&sc->sc_pcie_lnktab, r);
break;
default:
panic("%s: unknown RMI PRID IMPL", __func__);
}
aprint_normal("%s: link config %s\n",
device_xname(sc->sc_dev), sc->sc_pcie_lnktab.str);
}
/*
* rmixl_pcie_intcfg - init PCIe Link interrupt enables
*/
static void
rmixl_pcie_intcfg(struct rmixl_pcie_softc *sc)
{
int link;
size_t size;
rmixl_pcie_evcnt_t *ev;
DPRINTF(("%s: disable all link interrupts\n", __func__));
for (link=0; link < sc->sc_pcie_lnktab.ncfgs; link++) {
RMIXL_IOREG_WRITE(RMIXL_IO_DEV_PCIE_LE + int_enb_offset[link].r0,
RMIXL_PCIE_LINK_STATUS0_ERRORS);
RMIXL_IOREG_WRITE(RMIXL_IO_DEV_PCIE_LE + int_enb_offset[link].r1,
RMIXL_PCIE_LINK_STATUS1_ERRORS);
RMIXL_IOREG_WRITE(RMIXL_IO_DEV_PCIE_LE + msi_enb_offset[link], 0);
sc->sc_link_intr[link] = NULL;
/*
* allocate per-cpu, per-pin interrupt event counters
*/
size = ncpu * PCI_INTERRUPT_PIN_MAX * sizeof(rmixl_pcie_evcnt_t);
ev = malloc(size, M_DEVBUF, M_NOWAIT);
if (ev == NULL)
panic("%s: cannot malloc evcnts\n", __func__);
sc->sc_evcnts[link] = ev;
for (int pin=PCI_INTERRUPT_PIN_A; pin <= PCI_INTERRUPT_PIN_MAX; pin++) {
for (int cpu=0; cpu < ncpu; cpu++) {
ev = RMIXL_PCIE_EVCNT(sc, link, pin - 1, cpu);
snprintf(ev->name, sizeof(ev->name),
"cpu%d, link %d, pin %d", cpu, link, pin);
evcnt_attach_dynamic(&ev->evcnt, EVCNT_TYPE_INTR,
NULL, "rmixl_pcie", ev->name);
}
}
}
}
static void
rmixl_pcie_errata(struct rmixl_pcie_softc *sc)
{
const mips_prid_t cpu_id = mips_options.mips_cpu_id;
u_int rev;
u_int lanes;
bool e391 = false;
/*
* 3.9.1 PCIe Link-0 Registers Reset to Incorrect Values
* check if it allies to this CPU implementation and revision
*/
rev = MIPS_PRID_REV(cpu_id);
switch (MIPS_PRID_IMPL(cpu_id)) {
case MIPS_XLS104:
case MIPS_XLS108:
break;
case MIPS_XLS204:
case MIPS_XLS208:
/* stepping A0 is affected */
if (rev == 0)
e391 = true;
break;
case MIPS_XLS404LITE:
case MIPS_XLS408LITE:
break;
case MIPS_XLS404:
case MIPS_XLS408:
case MIPS_XLS416:
/* steppings A0 and A1 are affected */
if ((rev == 0) || (rev == 1))
e391 = true;
break;
case MIPS_XLS608:
case MIPS_XLS616:
break;
default:
panic("unknown RMI PRID IMPL");
}
/*
* for XLS we only need to check entry #0
* this may need to change for later XL family chips
*/
lanes = sc->sc_pcie_lnktab.cfg[0].lanes;
if ((e391 != false) && ((lanes == 2) || (lanes == 4))) {
/*
* attempt work around for errata 3.9.1
* "PCIe Link-0 Registers Reset to Incorrect Values"
* the registers are write-once: if the firmware already wrote,
* then our writes are ignored; hope they did it right.
*/
uint32_t queuectrl;
uint32_t bufdepth;
#ifdef DIAGNOSTIC
uint32_t r;
#endif
aprint_normal("%s: attempt work around for errata 3.9.1",
device_xname(sc->sc_dev));
if (lanes == 4) {
queuectrl = 0x00018074;
bufdepth = 0x001901D1;
} else {
queuectrl = 0x00018036;
bufdepth = 0x001900D9;
}
RMIXL_IOREG_WRITE(RMIXL_IO_DEV_PCIE_BE +
RMIXL_VC0_POSTED_RX_QUEUE_CTRL, queuectrl);
RMIXL_IOREG_WRITE(RMIXL_IO_DEV_PCIE_BE +
RMIXL_VC0_POSTED_BUFFER_DEPTH, bufdepth);
#ifdef DIAGNOSTIC
r = RMIXL_IOREG_READ(RMIXL_IO_DEV_PCIE_BE +
RMIXL_VC0_POSTED_RX_QUEUE_CTRL);
printf("\nVC0_POSTED_RX_QUEUE_CTRL %#x\n", r);
r = RMIXL_IOREG_READ(RMIXL_IO_DEV_PCIE_BE +
RMIXL_VC0_POSTED_BUFFER_DEPTH);
printf("VC0_POSTED_BUFFER_DEPTH %#x\n", r);
#endif
}
}
static void
rmixl_pcie_init(struct rmixl_pcie_softc *sc)
{
pci_chipset_tag_t pc = &sc->sc_pci_chipset;
#if NPCI > 0 && defined(PCI_NETBSD_CONFIGURE)
struct extent *ioext, *memext;
#endif
pc->pc_conf_v = (void *)sc;
pc->pc_attach_hook = rmixl_pcie_attach_hook;
pc->pc_bus_maxdevs = rmixl_pcie_bus_maxdevs;
pc->pc_make_tag = rmixl_pcie_make_tag;
pc->pc_decompose_tag = rmixl_pcie_decompose_tag;
pc->pc_conf_read = rmixl_pcie_conf_read;
pc->pc_conf_write = rmixl_pcie_conf_write;
pc->pc_intr_v = (void *)sc;
pc->pc_intr_map = rmixl_pcie_intr_map;
pc->pc_intr_string = rmixl_pcie_intr_string;
pc->pc_intr_evcnt = rmixl_pcie_intr_evcnt;
pc->pc_intr_establish = rmixl_pcie_intr_establish;
pc->pc_intr_disestablish = rmixl_pcie_intr_disestablish;
pc->pc_conf_interrupt = rmixl_conf_interrupt;
#if NPCI > 0 && defined(PCI_NETBSD_CONFIGURE)
/*
* Configure the PCI bus.
*/
struct rmixl_config *rcp = &rmixl_configuration;
aprint_normal("%s: configuring PCI bus\n",
device_xname(sc->sc_dev));
ioext = extent_create("pciio",
rcp->rc_pci_io_pbase,
rcp->rc_pci_io_pbase + rcp->rc_pci_io_size - 1,
M_DEVBUF, NULL, 0, EX_NOWAIT);
memext = extent_create("pcimem",
rcp->rc_pci_mem_pbase,
rcp->rc_pci_mem_pbase + rcp->rc_pci_mem_size - 1,
M_DEVBUF, NULL, 0, EX_NOWAIT);
pci_configure_bus(pc, ioext, memext, NULL, 0,
mips_cache_info.mci_dcache_align);
extent_destroy(ioext);
extent_destroy(memext);
#endif
}
static void
rmixl_pcie_init_ecfg(struct rmixl_pcie_softc *sc)
{
void *v;
pcitag_t tag;
pcireg_t r;
v = sc;
tag = rmixl_pcie_make_tag(v, 0, 0, 0);
#ifdef PCI_DEBUG
int i, offset;
static const int offtab[] =
{ 0, 4, 8, 0xc, 0x10, 0x14, 0x18, 0x1c,
0x2c, 0x30, 0x34 };
for (i=0; i < sizeof(offtab)/sizeof(offtab[0]); i++) {
offset = 0x100 + offtab[i];
r = rmixl_pcie_conf_read(v, tag, offset);
printf("%s: %#x: %#x\n", __func__, offset, r);
}
#endif
r = rmixl_pcie_conf_read(v, tag, 0x100);
if (r == -1)
return; /* cannot access */
/* check pre-existing uncorrectable errs */
r = rmixl_pcie_conf_read(v, tag, RMIXL_PCIE_ECFG_UESR);
r &= ~PCIE_ECFG_UExR_RESV;
if (r != 0)
panic("%s: Uncorrectable Error Status: %#x\n",
__func__, r);
/* unmask all uncorrectable errs */
r = rmixl_pcie_conf_read(v, tag, RMIXL_PCIE_ECFG_UEMR);
r &= ~PCIE_ECFG_UExR_RESV;
rmixl_pcie_conf_write(v, tag, RMIXL_PCIE_ECFG_UEMR, r);
/* ensure default uncorrectable err severity confniguration */
r = rmixl_pcie_conf_read(v, tag, RMIXL_PCIE_ECFG_UEVR);
r &= ~PCIE_ECFG_UExR_RESV;
r |= PCIE_ECFG_UEVR_DFLT;
rmixl_pcie_conf_write(v, tag, RMIXL_PCIE_ECFG_UEVR, r);
/* check pre-existing correctable errs */
r = rmixl_pcie_conf_read(v, tag, RMIXL_PCIE_ECFG_CESR);
r &= ~PCIE_ECFG_CExR_RESV;
#ifdef DIAGNOSTIC
if (r != 0)
aprint_normal("%s: Correctable Error Status: %#x\n",
device_xname(sc->sc_dev), r);
#endif
/* unmask all correctable errs */
r = rmixl_pcie_conf_read(v, tag, RMIXL_PCIE_ECFG_CEMR);
r &= ~PCIE_ECFG_CExR_RESV;
rmixl_pcie_conf_write(v, tag, RMIXL_PCIE_ECFG_UEMR, r);
/* check pre-existing Root Error Status */
r = rmixl_pcie_conf_read(v, tag, RMIXL_PCIE_ECFG_RESR);
r &= ~PCIE_ECFG_RESR_RESV;
if (r != 0)
panic("%s: Root Error Status: %#x\n", __func__, r);
/* XXX TMP FIXME */
/* enable all Root errs */
r = (pcireg_t)(~PCIE_ECFG_RECR_RESV);
rmixl_pcie_conf_write(v, tag, RMIXL_PCIE_ECFG_RECR, r);
/*
* establish ISR for PCIE Fatal Error interrupt
* - for XLS4xxLite, XLS2xx, XLS1xx only
*/
switch (MIPS_PRID_IMPL(mips_options.mips_cpu_id)) {
case MIPS_XLS104:
case MIPS_XLS108:
case MIPS_XLS204:
case MIPS_XLS208:
case MIPS_XLS404LITE:
case MIPS_XLS408LITE:
sc->sc_fatal_ih = rmixl_intr_establish(29, sc->sc_tmsk,
IPL_HIGH, RMIXL_TRIG_LEVEL, RMIXL_POLR_HIGH,
rmixl_pcie_error_intr, v, false);
break;
default:
break;
}
#if defined(DEBUG) || defined(DDB)
rmixl_pcie_v = v;
#endif
}
void
rmixl_conf_interrupt(void *v, int bus, int dev, int ipin, int swiz, int *iline)
{
DPRINTF(("%s: %p, %d, %d, %d, %d, %p\n",
__func__, v, bus, dev, ipin, swiz, iline));
}
void
rmixl_pcie_attach_hook(struct device *parent, struct device *self,
struct pcibus_attach_args *pba)
{
DPRINTF(("%s: pba_bus %d, pba_bridgetag %p, pc_conf_v %p\n",
__func__, pba->pba_bus, pba->pba_bridgetag,
pba->pba_pc->pc_conf_v));
}
int
rmixl_pcie_bus_maxdevs(void *v, int busno)
{
return (32); /* XXX depends on the family of XLS SoC */
}
/*
* rmixl_tag_to_ecfg - convert cfg address (generic tag) to ecfg address
*
* 39:29 (reserved)
* 28 Swap (0=little, 1=big endian)
* 27:20 Bus number
* 19:15 Device number
* 14:12 Function number
* 11:8 Extended Register number
* 7:0 Register number
*/
static pcitag_t
rmixl_tag_to_ecfg(pcitag_t tag)
{
KASSERT((tag & __BITS(7,0)) == 0);
return (tag << 4);
}
/*
* XLS pci tag is a 40 bit address composed thusly:
* 39:25 (reserved)
* 24 Swap (0=little, 1=big endian)
* 23:16 Bus number
* 15:11 Device number
* 10:8 Function number
* 7:0 Register number
*
* Note: this is the "native" composition for addressing CFG space, but not for ECFG space.
*/
pcitag_t
rmixl_pcie_make_tag(void *v, int bus, int dev, int fun)
{
return ((bus << 16) | (dev << 11) | (fun << 8));
}
void
rmixl_pcie_decompose_tag(void *v, pcitag_t tag, int *bp, int *dp, int *fp)
{
if (bp != NULL)
*bp = (tag >> 16) & 0xff;
if (dp != NULL)
*dp = (tag >> 11) & 0x1f;
if (fp != NULL)
*fp = (tag >> 8) & 0x7;
}
void
rmixl_pcie_tag_print(const char *restrict s, void *v, pcitag_t tag, int offset,
vaddr_t va, u_long r)
{
int bus, dev, fun;
rmixl_pcie_decompose_tag(v, tag, &bus, &dev, &fun);
printf("%s: %d/%d/%d/%d - %#" PRIxVADDR ":%#lx\n",
s, bus, dev, fun, offset, va, r);
}
static int
rmixl_pcie_conf_setup(struct rmixl_pcie_softc *sc,
pcitag_t tag, int *offp, bus_space_tag_t *bstp,
bus_space_handle_t *bshp)
{
struct rmixl_config *rcp = &rmixl_configuration;
bus_space_tag_t bst;
bus_space_handle_t bsh;
bus_size_t size;
pcitag_t mask;
bus_addr_t ba;
int err;
static bus_space_handle_t cfg_bsh;
static bus_addr_t cfg_oba = -1;
static bus_space_handle_t ecfg_bsh;
static bus_addr_t ecfg_oba = -1;
/*
* bus space depends on offset
*/
if ((*offp >= 0) && (*offp < 0x100)) {
mask = __BITS(15,0);
bst = sc->sc_pci_cfg_memt;
ba = rcp->rc_pci_cfg_pbase;
ba += (tag & ~mask);
*offp += (tag & mask);
if (ba != cfg_oba) {
size = (bus_size_t)(mask + 1);
if (cfg_oba != -1)
bus_space_unmap(bst, cfg_bsh, size);
err = bus_space_map(bst, ba, size, 0, &cfg_bsh);
if (err != 0) {
#ifdef DEBUG
panic("%s: bus_space_map err %d, CFG space",
__func__, err); /* XXX */
#endif
return -1;
}
cfg_oba = ba;
}
bsh = cfg_bsh;
} else if ((*offp >= 0x100) && (*offp <= 0x700)) {
mask = __BITS(14,0);
tag = rmixl_tag_to_ecfg(tag); /* convert to ECFG format */
bst = sc->sc_pci_ecfg_memt;
ba = rcp->rc_pci_ecfg_pbase;
ba += (tag & ~mask);
*offp += (tag & mask);
if (ba != ecfg_oba) {
size = (bus_size_t)(mask + 1);
if (ecfg_oba != -1)
bus_space_unmap(bst, ecfg_bsh, size);
err = bus_space_map(bst, ba, size, 0, &ecfg_bsh);
if (err != 0) {
#ifdef DEBUG
panic("%s: bus_space_map err %d, ECFG space",
__func__, err); /* XXX */
#endif
return -1;
}
ecfg_oba = ba;
}
bsh = ecfg_bsh;
} else {
#ifdef DEBUG
panic("%s: offset %#x: unknown", __func__, *offp);
#endif
return -1;
}
*bstp = bst;
*bshp = bsh;
return 0;
}
pcireg_t
rmixl_pcie_conf_read(void *v, pcitag_t tag, int offset)
{
struct rmixl_pcie_softc *sc = v;
static bus_space_handle_t bsh;
bus_space_tag_t bst;
pcireg_t rv;
uint64_t cfg0;
mutex_enter(&sc->sc_mutex);
if (rmixl_pcie_conf_setup(sc, tag, &offset, &bst, &bsh) == 0) {
cfg0 = rmixl_cache_err_dis();
rv = bus_space_read_4(bst, bsh, (bus_size_t)offset);
if (rmixl_cache_err_check() != 0) {
#ifdef DIAGNOSTIC
int bus, dev, fun;
rmixl_pcie_decompose_tag(v, tag, &bus, &dev, &fun);
printf("%s: %d/%d/%d, offset %#x: bad address\n",
__func__, bus, dev, fun, offset);
#endif
rv = (pcireg_t) -1;
}
rmixl_cache_err_restore(cfg0);
} else {
rv = -1;
}
mutex_exit(&sc->sc_mutex);
return rv;
}
void
rmixl_pcie_conf_write(void *v, pcitag_t tag, int offset, pcireg_t val)
{
struct rmixl_pcie_softc *sc = v;
static bus_space_handle_t bsh;
bus_space_tag_t bst;
uint64_t cfg0;
mutex_enter(&sc->sc_mutex);
if (rmixl_pcie_conf_setup(sc, tag, &offset, &bst, &bsh) == 0) {
cfg0 = rmixl_cache_err_dis();
bus_space_write_4(bst, bsh, (bus_size_t)offset, val);
if (rmixl_cache_err_check() != 0) {
#ifdef DIAGNOSTIC
int bus, dev, fun;
rmixl_pcie_decompose_tag(v, tag, &bus, &dev, &fun);
printf("%s: %d/%d/%d, offset %#x: bad address\n",
__func__, bus, dev, fun, offset);
#endif
}
rmixl_cache_err_restore(cfg0);
}
mutex_exit(&sc->sc_mutex);
}
int
rmixl_pcie_intr_map(const struct pci_attach_args *pa, pci_intr_handle_t *pih)
{
int device;
u_int link;
u_int irq;
/*
* The bus is unimportant since it can change depending on the
* configuration. We are tied to device # of PCIe bridge we are
* ultimately attached to.
*/
pci_decompose_tag(pa->pa_pc, pa->pa_intrtag,
NULL, &device, NULL);
#ifdef DEBUG
DPRINTF(("%s: ps_bus %d, pa_intrswiz %#x, pa_intrtag %#lx,"
" pa_intrpin %d, pa_intrline %d, pa_rawintrpin %d\n",
__func__, pa->pa_bus, pa->pa_intrswiz, pa->pa_intrtag,
pa->pa_intrpin, pa->pa_intrline, pa->pa_rawintrpin));
#endif
/*
* PCIe Link INT irq assignment is cpu implementation specific
*/
switch (MIPS_PRID_IMPL(mips_options.mips_cpu_id)) {
case MIPS_XLS104:
case MIPS_XLS108:
case MIPS_XLS404LITE:
case MIPS_XLS408LITE:
if (device > 1)
panic("%s: bad bus %d", __func__, device);
link = device;
irq = device + 26;
break;
case MIPS_XLS204:
case MIPS_XLS208: {
if (device > 3)
panic("%s: bad bus %d", __func__, device);
link = device;
irq = device + (device & 2 ? 21 : 26);
break;
}
case MIPS_XLS404:
case MIPS_XLS408:
case MIPS_XLS416:
case MIPS_XLS608:
case MIPS_XLS616:
if (device > 3)
panic("%s: bad bus %d", __func__, device);
link = device;
irq = device + 26;
break;
default:
panic("%s: cpu IMPL %#x not supported\n",
__func__, MIPS_PRID_IMPL(mips_options.mips_cpu_id));
}
if (pa->pa_intrpin != PCI_INTERRUPT_PIN_NONE)
*pih = rmixl_pcie_make_pih(link, pa->pa_intrpin - 1, irq);
else
*pih = ~0;
return 0;
}
const char *
rmixl_pcie_intr_string(void *v, pci_intr_handle_t pih)
{
const char *name = "(illegal)";
u_int link, bitno, irq;
rmixl_pcie_decompose_pih(pih, &link, &bitno, &irq);
switch (MIPS_PRID_IMPL(mips_options.mips_cpu_id)) {
case MIPS_XLS104:
case MIPS_XLS108:
case MIPS_XLS404LITE:
case MIPS_XLS408LITE:
switch (irq) {
case 26:
case 27:
name = rmixl_intr_string(RMIXL_IRT_VECTOR(irq));
break;
}
break;
case MIPS_XLS204:
case MIPS_XLS208:
switch (irq) {
case 23:
case 24:
case 26:
case 27:
name = rmixl_intr_string(RMIXL_IRT_VECTOR(irq));
break;
}
break;
case MIPS_XLS404:
case MIPS_XLS408:
case MIPS_XLS416:
case MIPS_XLS608:
case MIPS_XLS616:
switch (irq) {
case 26:
case 27:
case 28:
case 29:
name = rmixl_intr_string(RMIXL_IRT_VECTOR(irq));
break;
}
break;
default:
panic("%s: cpu IMPL %#x not supported\n",
__func__, MIPS_PRID_IMPL(mips_options.mips_cpu_id));
}
return name;
}
const struct evcnt *
rmixl_pcie_intr_evcnt(void *v, pci_intr_handle_t pih)
{
return NULL;
}
static pci_intr_handle_t
rmixl_pcie_make_pih(u_int link, u_int bitno, u_int irq)
{
pci_intr_handle_t pih;
KASSERT(link < RMIXL_PCIE_NLINKS_MAX);
KASSERT(bitno < 64);
KASSERT(irq < 32);
pih = (irq << 10);
pih |= (bitno << 4);
pih |= link;
return pih;
}
static void
rmixl_pcie_decompose_pih(pci_intr_handle_t pih, u_int *link, u_int *bitno, u_int *irq)
{
*link = (u_int)(pih & 0xf);
*bitno = (u_int)((pih >> 4) & 0x3f);
*irq = (u_int)(pih >> 10);
KASSERT(*link < RMIXL_PCIE_NLINKS_MAX);
KASSERT(*bitno < 64);
KASSERT(*irq < 32);
}
static void
rmixl_pcie_intr_disestablish(void *v, void *ih)
{
rmixl_pcie_softc_t *sc = v;
rmixl_pcie_link_dispatch_t *dip = ih;
rmixl_pcie_link_intr_t *lip = sc->sc_link_intr[dip->link];
uint32_t r;
uint32_t bit;
u_int offset;
u_int other;
bool busy;
DPRINTF(("%s: link=%d pin=%d irq=%d\n",
__func__, dip->link, dip->bitno + 1, dip->irq));
mutex_enter(&sc->sc_mutex);
dip->func = NULL; /* mark unused, prevent further dispatch */
/*
* if no other dispatch handle is using this interrupt,
* we can disable it
*/
busy = false;
for (int i=0; i < lip->dispatch_count; i++) {
rmixl_pcie_link_dispatch_t *d = &lip->dispatch_data[i];
if (d == dip)
continue;
if (d->bitno == dip->bitno) {
busy = true;
break;
}
}
if (! busy) {
if (dip->bitno < 32) {
bit = 1 << dip->bitno;
offset = int_enb_offset[dip->link].r0;
other = int_enb_offset[dip->link].r1;
} else {
bit = 1 << (dip->bitno - 32);
offset = int_enb_offset[dip->link].r1;
other = int_enb_offset[dip->link].r0;
}
/* disable this interrupt in the PCIe bridge */
r = RMIXL_IOREG_READ(RMIXL_IO_DEV_PCIE_LE + offset);
r &= ~bit;
RMIXL_IOREG_WRITE(RMIXL_IO_DEV_PCIE_LE + offset, r);
/*
* if both ENABLE0 and ENABLE1 are 0
* disable the link interrupt
*/
if (r == 0) {
/* check the other reg */
if (RMIXL_IOREG_READ(RMIXL_IO_DEV_PCIE_LE + other) == 0) {
DPRINTF(("%s: disable link %d\n", __func__, lip->link));
/* tear down interrupt on this link */
rmixl_intr_disestablish(lip->ih);
/* commit NULL interrupt set */
sc->sc_link_intr[dip->link] = NULL;
/* schedule delayed free of the old link interrupt set */
rmixl_pcie_lip_free_callout(lip);
}
}
}
mutex_exit(&sc->sc_mutex);
}
static void *
rmixl_pcie_intr_establish(void *v, pci_intr_handle_t pih, int ipl,
int (*func)(void *), void *arg)
{
rmixl_pcie_softc_t *sc = v;
u_int link, bitno, irq;
uint32_t r;
rmixl_pcie_link_intr_t *lip;
rmixl_pcie_link_dispatch_t *dip = NULL;
uint32_t bit;
u_int offset;
if (pih == ~0) {
DPRINTF(("%s: bad pih=%#lx, implies PCI_INTERRUPT_PIN_NONE\n",
__func__, pih));
return NULL;
}
rmixl_pcie_decompose_pih(pih, &link, &bitno, &irq);
DPRINTF(("%s: link=%d pin=%d irq=%d\n",
__func__, link, bitno + 1, irq));
mutex_enter(&sc->sc_mutex);
lip = rmixl_pcie_lip_add_1(sc, link, irq, ipl);
if (lip == NULL)
return NULL;
/*
* initializae our new interrupt, the last element in dispatch_data[]
*/
dip = &lip->dispatch_data[lip->dispatch_count - 1];
dip->link = link;
dip->bitno = bitno;
dip->irq = irq;
dip->func = func;
dip->arg = arg;
dip->counts = RMIXL_PCIE_EVCNT(sc, link, bitno, 0);
if (bitno < 32) {
offset = int_enb_offset[link].r0;
bit = 1 << bitno;
} else {
offset = int_enb_offset[link].r1;
bit = 1 << (bitno - 32);
}
/* commit the new link interrupt set */
sc->sc_link_intr[link] = lip;
/* enable this interrupt in the PCIe bridge */
r = RMIXL_IOREG_READ(RMIXL_IO_DEV_PCIE_LE + offset);
r |= bit;
RMIXL_IOREG_WRITE(RMIXL_IO_DEV_PCIE_LE + offset, r);
mutex_exit(&sc->sc_mutex);
return dip;
}
rmixl_pcie_link_intr_t *
rmixl_pcie_lip_add_1(rmixl_pcie_softc_t *sc, u_int link, int irq, int ipl)
{
rmixl_pcie_link_intr_t *lip_old = sc->sc_link_intr[link];
rmixl_pcie_link_intr_t *lip_new;
u_int dispatch_count;
size_t size;
dispatch_count = 1;
size = sizeof(rmixl_pcie_link_intr_t);
if (lip_old != NULL) {
/*
* count only those dispatch elements still in use
* unused ones will be pruned during copy
* i.e. we are "lazy" there is no rmixl_pcie_lip_sub_1
*/
for (int i=0; i < lip_old->dispatch_count; i++) {
if (lip_old->dispatch_data[i].func != NULL) {
dispatch_count++;
size += sizeof(rmixl_pcie_link_intr_t);
}
}
}
/*
* allocate and initialize link intr struct
* with one or more dispatch handles
*/
lip_new = malloc(size, M_DEVBUF, M_NOWAIT);
if (lip_new == NULL) {
#ifdef DIAGNOSTIC
printf("%s: cannot malloc\n", __func__);
#endif
return NULL;
}
if (lip_old == NULL) {
/* initialize the link interrupt struct */
lip_new->sc = sc;
lip_new->link = link;
lip_new->ipl = ipl;
lip_new->ih = rmixl_intr_establish(irq, sc->sc_tmsk,
ipl, RMIXL_TRIG_LEVEL, RMIXL_POLR_HIGH,
rmixl_pcie_intr, lip_new, false);
if (lip_new->ih == NULL)
panic("%s: cannot establish irq %d", __func__, irq);
} else {
/*
* all intrs on a link get same ipl and sc
* first intr established sets the standard
*/
KASSERT(sc == lip_old->sc);
if (sc != lip_old->sc) {
printf("%s: sc %p mismatch\n", __func__, sc);
free(lip_new, M_DEVBUF);
return NULL;
}
KASSERT (ipl == lip_old->ipl);
if (ipl != lip_old->ipl) {
printf("%s: ipl %d mismatch\n", __func__, ipl);
free(lip_new, M_DEVBUF);
return NULL;
}
/*
* copy lip_old to lip_new, skipping unused dispatch elemets
*/
memcpy(lip_new, lip_old, sizeof(rmixl_pcie_link_intr_t));
for (int j=0, i=0; i < lip_old->dispatch_count; i++) {
if (lip_old->dispatch_data[i].func != NULL) {
memcpy(&lip_new->dispatch_data[j],
&lip_old->dispatch_data[i],
sizeof(rmixl_pcie_link_dispatch_t));
j++;
}
}
/*
* schedule delayed free of old link interrupt set
*/
rmixl_pcie_lip_free_callout(lip_old);
}
lip_new->dispatch_count = dispatch_count;
return lip_new;
}
/*
* delay free of the old link interrupt set
* to allow anyone still using it to do so safely
* XXX 2 seconds should be plenty?
*/
static void
rmixl_pcie_lip_free_callout(rmixl_pcie_link_intr_t *lip)
{
callout_init(&lip->callout, 0);
callout_reset(&lip->callout, 2 * hz, rmixl_pcie_lip_free, lip);
}
static void
rmixl_pcie_lip_free(void *arg)
{
rmixl_pcie_link_intr_t *lip = arg;
callout_destroy(&lip->callout);
free(lip, M_DEVBUF);
}
static int
rmixl_pcie_intr(void *arg)
{
rmixl_pcie_link_intr_t *lip = arg;
u_int link = lip->link;
int rv = 0;
uint32_t status0 = RMIXL_IOREG_READ(RMIXL_IO_DEV_PCIE_LE + int_sts_offset[link].r0);
uint32_t status1 = RMIXL_IOREG_READ(RMIXL_IO_DEV_PCIE_LE + int_sts_offset[link].r1);
uint64_t status = ((uint64_t)status1 << 32) | status0;
DPRINTF(("%s: %d:%#"PRIx64"\n", __func__, link, status));
if (status != 0) {
rmixl_pcie_link_dispatch_t *dip;
if (status & RMIXL_PCIE_LINK_STATUS_ERRORS)
rmixl_pcie_link_error_intr(link, status0, status1);
for (u_int i=0; i < lip->dispatch_count; i++) {
dip = &lip->dispatch_data[i];
int (*func)(void *) = dip->func;
if (func != NULL) {
uint64_t bit = 1 << dip->bitno;
if ((status & bit) != 0) {
(void)(*func)(dip->arg);
dip->counts[cpu_index(curcpu())].evcnt.ev_count++;
rv = 1;
}
}
}
}
return rv;
}
static void
rmixl_pcie_link_error_intr(u_int link, uint32_t status0, uint32_t status1)
{
printf("%s: mask %#"PRIx64"\n",
__func__, RMIXL_PCIE_LINK_STATUS_ERRORS);
printf("%s: PCIe Link Error: link=%d status0=%#x status1=%#x\n",
__func__, link, status0, status1);
#if defined(DDB) && defined(DEBUG)
Debugger();
#endif
}
#if defined(DEBUG) || defined(DDB)
/* this function exists to facilitate call from ddb */
int
rmixl_pcie_error_check(void)
{
if (rmixl_pcie_v != 0)
return _rmixl_pcie_error_check(rmixl_pcie_v);
return -1;
}
#endif
STATIC int
_rmixl_pcie_error_check(void *v)
{
int i, offset;
pcireg_t r;
pcitag_t tag;
int err=0;
#ifdef DIAGNOSTIC
pcireg_t regs[PCIE_ECFG_ERRS_OFFTAB_NENTRIES];
#endif
tag = rmixl_pcie_make_tag(v, 0, 0, 0); /* XXX */
for (i=0; i < PCIE_ECFG_ERRS_OFFTAB_NENTRIES; i++) {
offset = pcie_ecfg_errs_tab[i].offset;
r = rmixl_pcie_conf_read(v, tag, offset);
#ifdef DIAGNOSTIC
regs[i] = r;
#endif
if (r != 0) {
pcireg_t rw1c = r & pcie_ecfg_errs_tab[i].rw1c;
if (rw1c != 0) {
/* attempt to clear the error */
rmixl_pcie_conf_write(v, tag, offset, rw1c);
};
if (offset == RMIXL_PCIE_ECFG_CESR)
err |= 1; /* correctable */
else
err |= 2; /* uncorrectable */
}
}
#ifdef DIAGNOSTIC
if (err != 0) {
for (i=0; i < PCIE_ECFG_ERRS_OFFTAB_NENTRIES; i++) {
offset = pcie_ecfg_errs_tab[i].offset;
printf("%s: %#x: %#x\n", __func__, offset, regs[i]);
}
}
#endif
return err;
}
static int
rmixl_pcie_error_intr(void *v)
{
if (_rmixl_pcie_error_check(v) < 2)
return 0; /* correctable */
/* uncorrectable */
#if DDB
Debugger();
#endif
/* XXX reset and recover? */
panic("%s\n", __func__);
}
/*
* rmixl_physaddr_init_pcie:
* called from rmixl_physaddr_init to get region addrs & sizes
* from PCIE CFG, ECFG, IO, MEM BARs
*/
void
rmixl_physaddr_init_pcie(struct extent *ext)
{
u_long base;
u_long size;
uint32_t r;
r = RMIXL_IOREG_READ(RMIXLS_SBC_PCIE_CFG_BAR);
if ((r & RMIXL_PCIE_CFG_BAR_ENB) != 0) {
base = (u_long)(RMIXL_PCIE_CFG_BAR_TO_BA((uint64_t)r)
/ (1024 * 1024));
size = (u_long)RMIXL_PCIE_CFG_SIZE / (1024 * 1024);
DPRINTF(("%s: %d: %s: 0x%08x -- 0x%010lx:%ld MB\n", __func__,
__LINE__, "CFG", r, base * 1024 * 1024, size));
if (extent_alloc_region(ext, base, size, EX_NOWAIT) != 0)
panic("%s: extent_alloc_region(%p, %#lx, %#lx, %#x) "
"failed", __func__, ext, base, size, EX_NOWAIT);
}
r = RMIXL_IOREG_READ(RMIXLS_SBC_PCIE_ECFG_BAR);
if ((r & RMIXL_PCIE_ECFG_BAR_ENB) != 0) {
base = (u_long)(RMIXL_PCIE_ECFG_BAR_TO_BA((uint64_t)r)
/ (1024 * 1024));
size = (u_long)RMIXL_PCIE_ECFG_SIZE / (1024 * 1024);
DPRINTF(("%s: %d: %s: 0x%08x -- 0x%010lx:%ld MB\n", __func__,
__LINE__, "ECFG", r, base * 1024 * 1024, size));
if (extent_alloc_region(ext, base, size, EX_NOWAIT) != 0)
panic("%s: extent_alloc_region(%p, %#lx, %#lx, %#x) "
"failed", __func__, ext, base, size, EX_NOWAIT);
}
r = RMIXL_IOREG_READ(RMIXLS_SBC_PCIE_MEM_BAR);
if ((r & RMIXL_PCIE_MEM_BAR_ENB) != 0) {
base = (u_long)(RMIXL_PCIE_MEM_BAR_TO_BA((uint64_t)r)
/ (1024 * 1024));
size = (u_long)(RMIXL_PCIE_MEM_BAR_TO_SIZE((uint64_t)r)
/ (1024 * 1024));
DPRINTF(("%s: %d: %s: 0x%08x -- 0x%010lx:%ld MB\n", __func__,
__LINE__, "MEM", r, base * 1024 * 1024, size));
if (extent_alloc_region(ext, base, size, EX_NOWAIT) != 0)
panic("%s: extent_alloc_region(%p, %#lx, %#lx, %#x) "
"failed", __func__, ext, base, size, EX_NOWAIT);
}
r = RMIXL_IOREG_READ(RMIXLS_SBC_PCIE_IO_BAR);
if ((r & RMIXL_PCIE_IO_BAR_ENB) != 0) {
base = (u_long)(RMIXL_PCIE_IO_BAR_TO_BA((uint64_t)r)
/ (1024 * 1024));
size = (u_long)(RMIXL_PCIE_IO_BAR_TO_SIZE((uint64_t)r)
/ (1024 * 1024));
DPRINTF(("%s: %d: %s: 0x%08x -- 0x%010lx:%ld MB\n", __func__,
__LINE__, "IO", r, base * 1024 * 1024, size));
if (extent_alloc_region(ext, base, size, EX_NOWAIT) != 0)
panic("%s: extent_alloc_region(%p, %#lx, %#lx, %#x) "
"failed", __func__, ext, base, size, EX_NOWAIT);
}
}