NetBSD/sys/netinet/sctp_pcb.c

4771 lines
132 KiB
C

/* $KAME: sctp_pcb.c,v 1.39 2005/06/16 18:29:25 jinmei Exp $ */
/* $NetBSD: sctp_pcb.c,v 1.15 2017/10/17 19:23:42 rjs Exp $ */
/*
* Copyright (c) 2001, 2002, 2003, 2004 Cisco Systems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Cisco Systems, Inc.
* 4. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY CISCO SYSTEMS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL CISCO SYSTEMS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sctp_pcb.c,v 1.15 2017/10/17 19:23:42 rjs Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_ipsec.h"
#include "opt_sctp.h"
#endif /* _KERNEL_OPT */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/rnd.h>
#include <sys/callout.h>
#include <machine/limits.h>
#include <machine/cpu.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/scope6_var.h>
#include <netinet6/in6_pcb.h>
#endif /* INET6 */
#ifdef IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/key.h>
#endif /* IPSEC */
#include <netinet/sctp_var.h>
#include <netinet/sctp_pcb.h>
#include <netinet/sctputil.h>
#include <netinet/sctp.h>
#include <netinet/sctp_header.h>
#include <netinet/sctp_asconf.h>
#include <netinet/sctp_output.h>
#include <netinet/sctp_timer.h>
#ifndef SCTP_PCBHASHSIZE
/* default number of association hash buckets in each endpoint */
#define SCTP_PCBHASHSIZE 256
#endif
#ifdef SCTP_DEBUG
u_int32_t sctp_debug_on = SCTP_DEBUG_ALL;
#endif /* SCTP_DEBUG */
u_int32_t sctp_pegs[SCTP_NUMBER_OF_PEGS];
int sctp_pcbtblsize = SCTP_PCBHASHSIZE;
struct sctp_epinfo sctppcbinfo;
/* FIX: we don't handle multiple link local scopes */
/* "scopeless" replacement IN6_ARE_ADDR_EQUAL */
int
SCTP6_ARE_ADDR_EQUAL(const struct in6_addr *a, const struct in6_addr *b)
{
struct in6_addr tmp_a, tmp_b;
/* use a copy of a and b */
tmp_a = *a;
tmp_b = *b;
in6_clearscope(&tmp_a);
in6_clearscope(&tmp_b);
return (IN6_ARE_ADDR_EQUAL(&tmp_a, &tmp_b));
}
#if defined(__FreeBSD__) && __FreeBSD_version > 500000
#ifndef xyzzy
void sctp_validate_no_locks(void);
void
SCTP_INP_RLOCK(struct sctp_inpcb *inp)
{
struct sctp_tcb *stcb;
LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
if (mtx_owned(&(stcb)->tcb_mtx))
panic("I own TCB lock?");
}
if (mtx_owned(&(inp)->inp_mtx))
panic("INP Recursive Lock-R");
mtx_lock(&(inp)->inp_mtx);
}
void
SCTP_INP_WLOCK(struct sctp_inpcb *inp)
{
SCTP_INP_RLOCK(inp);
}
void
SCTP_INP_INFO_RLOCK()
{
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
LIST_FOREACH(inp, &sctppcbinfo.listhead, sctp_list) {
if (mtx_owned(&(inp)->inp_mtx))
panic("info-lock and own inp lock?");
LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
if (mtx_owned(&(stcb)->tcb_mtx))
panic("Info lock and own a tcb lock?");
}
}
if (mtx_owned(&sctppcbinfo.ipi_ep_mtx))
panic("INP INFO Recursive Lock-R");
mtx_lock(&sctppcbinfo.ipi_ep_mtx);
}
void
SCTP_INP_INFO_WLOCK()
{
SCTP_INP_INFO_RLOCK();
}
void sctp_validate_no_locks()
{
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
if (mtx_owned(&sctppcbinfo.ipi_ep_mtx))
panic("INP INFO lock is owned?");
LIST_FOREACH(inp, &sctppcbinfo.listhead, sctp_list) {
if (mtx_owned(&(inp)->inp_mtx))
panic("You own an INP lock?");
LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
if (mtx_owned(&(stcb)->tcb_mtx))
panic("You own a TCB lock?");
}
}
}
#endif
#endif
void
sctp_fill_pcbinfo(struct sctp_pcbinfo *spcb)
{
/* We really don't need
* to lock this, but I will
* just because it does not hurt.
*/
SCTP_INP_INFO_RLOCK();
spcb->ep_count = sctppcbinfo.ipi_count_ep;
spcb->asoc_count = sctppcbinfo.ipi_count_asoc;
spcb->laddr_count = sctppcbinfo.ipi_count_laddr;
spcb->raddr_count = sctppcbinfo.ipi_count_raddr;
spcb->chk_count = sctppcbinfo.ipi_count_chunk;
spcb->sockq_count = sctppcbinfo.ipi_count_sockq;
spcb->mbuf_track = sctppcbinfo.mbuf_track;
SCTP_INP_INFO_RUNLOCK();
}
/*
* Notes on locks for FreeBSD 5 and up. All association
* lookups that have a definte ep, the INP structure is
* assumed to be locked for reading. If we need to go
* find the INP (ususally when a **inp is passed) then
* we must lock the INFO structure first and if needed
* lock the INP too. Note that if we lock it we must
*
*/
/*
* Given a endpoint, look and find in its association list any association
* with the "to" address given. This can be a "from" address, too, for
* inbound packets. For outbound packets it is a true "to" address.
*/
static struct sctp_tcb *
sctp_tcb_special_locate(struct sctp_inpcb **inp_p, struct sockaddr *from,
struct sockaddr *to, struct sctp_nets **netp)
{
/**** ASSUMSES THE CALLER holds the INP_INFO_RLOCK */
/*
* Note for this module care must be taken when observing what to is
* for. In most of the rest of the code the TO field represents my
* peer and the FROM field represents my address. For this module it
* is reversed of that.
*/
/*
* If we support the TCP model, then we must now dig through to
* see if we can find our endpoint in the list of tcp ep's.
*/
uint16_t lport, rport;
struct sctppcbhead *ephead;
struct sctp_inpcb *inp;
struct sctp_laddr *laddr;
struct sctp_tcb *stcb;
struct sctp_nets *net;
if ((to == NULL) || (from == NULL)) {
return (NULL);
}
if (to->sa_family == AF_INET && from->sa_family == AF_INET) {
lport = ((struct sockaddr_in *)to)->sin_port;
rport = ((struct sockaddr_in *)from)->sin_port;
} else if (to->sa_family == AF_INET6 && from->sa_family == AF_INET6) {
lport = ((struct sockaddr_in6 *)to)->sin6_port;
rport = ((struct sockaddr_in6 *)from)->sin6_port;
} else {
return NULL;
}
ephead = &sctppcbinfo.sctp_tcpephash[SCTP_PCBHASH_ALLADDR(
(lport + rport), sctppcbinfo.hashtcpmark)];
/*
* Ok now for each of the guys in this bucket we must look
* and see:
* - Does the remote port match.
* - Does there single association's addresses match this
* address (to).
* If so we update p_ep to point to this ep and return the
* tcb from it.
*/
LIST_FOREACH(inp, ephead, sctp_hash) {
if (lport != inp->sctp_lport) {
continue;
}
SCTP_INP_RLOCK(inp);
/* check to see if the ep has one of the addresses */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) {
/* We are NOT bound all, so look further */
int match = 0;
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa == NULL) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("An ounce of prevention is worth a pound of cure\n");
}
#endif
continue;
}
if (laddr->ifa->ifa_addr == NULL) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("ifa with a NULL address\n");
}
#endif
continue;
}
if (laddr->ifa->ifa_addr->sa_family ==
to->sa_family) {
/* see if it matches */
struct sockaddr_in *intf_addr, *sin;
intf_addr = (struct sockaddr_in *)
laddr->ifa->ifa_addr;
sin = (struct sockaddr_in *)to;
if (from->sa_family == AF_INET) {
if (sin->sin_addr.s_addr ==
intf_addr->sin_addr.s_addr) {
match = 1;
SCTP_INP_RUNLOCK(inp);
break;
}
} else {
struct sockaddr_in6 *intf_addr6;
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)
to;
intf_addr6 = (struct sockaddr_in6 *)
laddr->ifa->ifa_addr;
if (SCTP6_ARE_ADDR_EQUAL(&sin6->sin6_addr,
&intf_addr6->sin6_addr)) {
match = 1;
SCTP_INP_RUNLOCK(inp);
break;
}
}
}
}
if (match == 0) {
/* This endpoint does not have this address */
SCTP_INP_RUNLOCK(inp);
continue;
}
}
/*
* Ok if we hit here the ep has the address, does it hold the
* tcb?
*/
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
SCTP_INP_RUNLOCK(inp);
continue;
}
SCTP_TCB_LOCK(stcb);
if (stcb->rport != rport) {
/* remote port does not match. */
SCTP_TCB_UNLOCK(stcb);
SCTP_INP_RUNLOCK(inp);
continue;
}
/* Does this TCB have a matching address? */
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
if (sctp_cmpaddr(from, rtcache_getdst(&net->ro))) {
/* found it */
if (netp != NULL) {
*netp = net;
}
/* Update the endpoint pointer */
*inp_p = inp;
SCTP_INP_RUNLOCK(inp);
return (stcb);
}
}
SCTP_TCB_UNLOCK(stcb);
SCTP_INP_RUNLOCK(inp);
}
return (NULL);
}
struct sctp_tcb *
sctp_findassociation_ep_asconf(struct mbuf *m, int iphlen, int offset,
struct sctphdr *sh, struct sctp_inpcb **inp_p, struct sctp_nets **netp)
{
struct sctp_tcb *stcb;
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
struct sockaddr_storage local_store, remote_store;
struct ip *iph;
struct sctp_paramhdr parm_buf, *phdr;
int ptype;
memset(&local_store, 0, sizeof(local_store));
memset(&remote_store, 0, sizeof(remote_store));
/* First get the destination address setup too. */
iph = mtod(m, struct ip *);
if (iph->ip_v == IPVERSION) {
/* its IPv4 */
sin = (struct sockaddr_in *)&local_store;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_port = sh->dest_port;
sin->sin_addr.s_addr = iph->ip_dst.s_addr ;
} else if (iph->ip_v == (IPV6_VERSION >> 4)) {
/* its IPv6 */
struct ip6_hdr *ip6;
ip6 = mtod(m, struct ip6_hdr *);
sin6 = (struct sockaddr_in6 *)&local_store;
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_port = sh->dest_port;
sin6->sin6_addr = ip6->ip6_dst;
} else {
return NULL;
}
phdr = sctp_get_next_param(m, offset + sizeof(struct sctp_asconf_chunk),
&parm_buf, sizeof(struct sctp_paramhdr));
if (phdr == NULL) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_INPUT3) {
printf("sctp_process_control: failed to get asconf lookup addr\n");
}
#endif /* SCTP_DEBUG */
return NULL;
}
ptype = (int)((u_int)ntohs(phdr->param_type));
/* get the correlation address */
if (ptype == SCTP_IPV6_ADDRESS) {
/* ipv6 address param */
struct sctp_ipv6addr_param *p6, p6_buf;
if (ntohs(phdr->param_length) != sizeof(struct sctp_ipv6addr_param)) {
return NULL;
}
p6 = (struct sctp_ipv6addr_param *)sctp_get_next_param(m,
offset + sizeof(struct sctp_asconf_chunk),
&p6_buf.ph, sizeof(*p6));
if (p6 == NULL) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_INPUT3) {
printf("sctp_process_control: failed to get asconf v6 lookup addr\n");
}
#endif /* SCTP_DEBUG */
return (NULL);
}
sin6 = (struct sockaddr_in6 *)&remote_store;
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_port = sh->src_port;
memcpy(&sin6->sin6_addr, &p6->addr, sizeof(struct in6_addr));
} else if (ptype == SCTP_IPV4_ADDRESS) {
/* ipv4 address param */
struct sctp_ipv4addr_param *p4, p4_buf;
if (ntohs(phdr->param_length) != sizeof(struct sctp_ipv4addr_param)) {
return NULL;
}
p4 = (struct sctp_ipv4addr_param *)sctp_get_next_param(m,
offset + sizeof(struct sctp_asconf_chunk),
&p4_buf.ph, sizeof(*p4));
if (p4 == NULL) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_INPUT3) {
printf("sctp_process_control: failed to get asconf v4 lookup addr\n");
}
#endif /* SCTP_DEBUG */
return (NULL);
}
sin = (struct sockaddr_in *)&remote_store;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_port = sh->src_port;
memcpy(&sin->sin_addr, &p4->addr, sizeof(struct in_addr));
} else {
/* invalid address param type */
return NULL;
}
stcb = sctp_findassociation_ep_addr(inp_p,
(struct sockaddr *)&remote_store, netp,
(struct sockaddr *)&local_store, NULL);
return (stcb);
}
struct sctp_tcb *
sctp_findassociation_ep_addr(struct sctp_inpcb **inp_p, struct sockaddr *remote,
struct sctp_nets **netp, struct sockaddr *local, struct sctp_tcb *locked_tcb)
{
struct sctpasochead *head;
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
struct sctp_nets *net;
uint16_t rport;
inp = *inp_p;
if (remote->sa_family == AF_INET) {
rport = (((struct sockaddr_in *)remote)->sin_port);
} else if (remote->sa_family == AF_INET6) {
rport = (((struct sockaddr_in6 *)remote)->sin6_port);
} else {
return (NULL);
}
if (locked_tcb) {
/* UN-lock so we can do proper locking here
* this occurs when called from load_addresses_from_init.
*/
SCTP_TCB_UNLOCK(locked_tcb);
}
SCTP_INP_INFO_RLOCK();
if (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) {
/*
* Now either this guy is our listner or it's the connector.
* If it is the one that issued the connect, then it's only
* chance is to be the first TCB in the list. If it is the
* acceptor, then do the special_lookup to hash and find the
* real inp.
*/
if (inp->sctp_flags & SCTP_PCB_FLAGS_ACCEPTING) {
/* to is peer addr, from is my addr */
stcb = sctp_tcb_special_locate(inp_p, remote, local,
netp);
if ((stcb != NULL) && (locked_tcb == NULL)){
/* we have a locked tcb, lower refcount */
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
if (locked_tcb != NULL) {
SCTP_INP_RLOCK(locked_tcb->sctp_ep);
SCTP_TCB_LOCK(locked_tcb);
SCTP_INP_RUNLOCK(locked_tcb->sctp_ep);
if (stcb != NULL) {
SCTP_TCB_UNLOCK(stcb);
}
}
SCTP_INP_INFO_RUNLOCK();
return (stcb);
} else {
SCTP_INP_WLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
goto null_return;
}
SCTP_TCB_LOCK(stcb);
if (stcb->rport != rport) {
/* remote port does not match. */
SCTP_TCB_UNLOCK(stcb);
goto null_return;
}
/* now look at the list of remote addresses */
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
if (sctp_cmpaddr(remote, rtcache_getdst(&net->ro))) {
/* found it */
if (netp != NULL) {
*netp = net;
}
if (locked_tcb == NULL) {
SCTP_INP_DECR_REF(inp);
}
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_RUNLOCK();
return (stcb);
}
}
SCTP_TCB_UNLOCK(stcb);
}
} else {
SCTP_INP_WLOCK(inp);
head = &inp->sctp_tcbhash[SCTP_PCBHASH_ALLADDR(rport,
inp->sctp_hashmark)];
if (head == NULL) {
goto null_return;
}
LIST_FOREACH(stcb, head, sctp_tcbhash) {
if (stcb->rport != rport) {
/* remote port does not match */
continue;
}
/* now look at the list of remote addresses */
SCTP_TCB_LOCK(stcb);
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
if (sctp_cmpaddr(remote, rtcache_getdst(&net->ro))) {
/* found it */
if (netp != NULL) {
*netp = net;
}
if (locked_tcb == NULL) {
SCTP_INP_DECR_REF(inp);
}
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_RUNLOCK();
return (stcb);
}
}
SCTP_TCB_UNLOCK(stcb);
}
}
null_return:
/* clean up for returning null */
if (locked_tcb){
if (locked_tcb->sctp_ep != inp) {
SCTP_INP_RLOCK(locked_tcb->sctp_ep);
SCTP_TCB_LOCK(locked_tcb);
SCTP_INP_RUNLOCK(locked_tcb->sctp_ep);
} else {
SCTP_TCB_LOCK(locked_tcb);
}
}
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_RUNLOCK();
/* not found */
return (NULL);
}
/*
* Find an association for a specific endpoint using the association id
* given out in the COMM_UP notification
*/
struct sctp_tcb *
sctp_findassociation_ep_asocid(struct sctp_inpcb *inp, vaddr_t asoc_id)
{
/*
* Use my the assoc_id to find a endpoint
*/
struct sctpasochead *head;
struct sctp_tcb *stcb;
u_int32_t vtag;
if (asoc_id == 0 || inp == NULL) {
return (NULL);
}
SCTP_INP_INFO_RLOCK();
vtag = (u_int32_t)asoc_id;
head = &sctppcbinfo.sctp_asochash[SCTP_PCBHASH_ASOC(vtag,
sctppcbinfo.hashasocmark)];
if (head == NULL) {
/* invalid vtag */
SCTP_INP_INFO_RUNLOCK();
return (NULL);
}
LIST_FOREACH(stcb, head, sctp_asocs) {
SCTP_INP_RLOCK(stcb->sctp_ep);
SCTP_TCB_LOCK(stcb);
SCTP_INP_RUNLOCK(stcb->sctp_ep);
if (stcb->asoc.my_vtag == vtag) {
/* candidate */
if (inp != stcb->sctp_ep) {
/* some other guy has the
* same vtag active (vtag collision).
*/
sctp_pegs[SCTP_VTAG_BOGUS]++;
SCTP_TCB_UNLOCK(stcb);
continue;
}
sctp_pegs[SCTP_VTAG_EXPR]++;
SCTP_INP_INFO_RUNLOCK();
return (stcb);
}
SCTP_TCB_UNLOCK(stcb);
}
SCTP_INP_INFO_RUNLOCK();
return (NULL);
}
static struct sctp_inpcb *
sctp_endpoint_probe(struct sockaddr *nam, struct sctppcbhead *head,
uint16_t lport)
{
struct sctp_inpcb *inp;
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
struct sctp_laddr *laddr;
/* Endpoing probe expects
* that the INP_INFO is locked.
*/
if (nam->sa_family == AF_INET) {
sin = (struct sockaddr_in *)nam;
sin6 = NULL;
} else if (nam->sa_family == AF_INET6) {
sin6 = (struct sockaddr_in6 *)nam;
sin = NULL;
} else {
/* unsupported family */
return (NULL);
}
if (head == NULL)
return (NULL);
LIST_FOREACH(inp, head, sctp_hash) {
SCTP_INP_RLOCK(inp);
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) &&
(inp->sctp_lport == lport)) {
/* got it */
if ((nam->sa_family == AF_INET) &&
(inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) &&
(((struct in6pcb *)inp)->in6p_flags & IN6P_IPV6_V6ONLY)
) {
/* IPv4 on a IPv6 socket with ONLY IPv6 set */
SCTP_INP_RUNLOCK(inp);
continue;
}
/* A V6 address and the endpoint is NOT bound V6 */
if (nam->sa_family == AF_INET6 &&
(inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) {
SCTP_INP_RUNLOCK(inp);
continue;
}
SCTP_INP_RUNLOCK(inp);
return (inp);
}
SCTP_INP_RUNLOCK(inp);
}
if ((nam->sa_family == AF_INET) &&
(sin->sin_addr.s_addr == INADDR_ANY)) {
/* Can't hunt for one that has no address specified */
return (NULL);
} else if ((nam->sa_family == AF_INET6) &&
(IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))) {
/* Can't hunt for one that has no address specified */
return (NULL);
}
/*
* ok, not bound to all so see if we can find a EP bound to this
* address.
*/
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Ok, there is NO bound-all available for port:%x\n", ntohs(lport));
}
#endif
LIST_FOREACH(inp, head, sctp_hash) {
SCTP_INP_RLOCK(inp);
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL)) {
SCTP_INP_RUNLOCK(inp);
continue;
}
/*
* Ok this could be a likely candidate, look at all of
* its addresses
*/
if (inp->sctp_lport != lport) {
SCTP_INP_RUNLOCK(inp);
continue;
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Ok, found maching local port\n");
}
#endif
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa == NULL) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("An ounce of prevention is worth a pound of cure\n");
}
#endif
continue;
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Ok laddr->ifa:%p is possible, ",
laddr->ifa);
}
#endif
if (laddr->ifa->ifa_addr == NULL) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Huh IFA as an ifa_addr=NULL, ");
}
#endif
continue;
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Ok laddr->ifa:%p is possible, ",
laddr->ifa->ifa_addr);
sctp_print_address(laddr->ifa->ifa_addr);
printf("looking for ");
sctp_print_address(nam);
}
#endif
if (laddr->ifa->ifa_addr->sa_family == nam->sa_family) {
/* possible, see if it matches */
struct sockaddr_in *intf_addr;
intf_addr = (struct sockaddr_in *)
laddr->ifa->ifa_addr;
if (nam->sa_family == AF_INET) {
if (sin->sin_addr.s_addr ==
intf_addr->sin_addr.s_addr) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("YES, return ep:%p\n", inp);
}
#endif
SCTP_INP_RUNLOCK(inp);
return (inp);
}
} else if (nam->sa_family == AF_INET6) {
struct sockaddr_in6 *intf_addr6;
intf_addr6 = (struct sockaddr_in6 *)
laddr->ifa->ifa_addr;
if (SCTP6_ARE_ADDR_EQUAL(&sin6->sin6_addr,
&intf_addr6->sin6_addr)) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("YES, return ep:%p\n", inp);
}
#endif
SCTP_INP_RUNLOCK(inp);
return (inp);
}
}
}
SCTP_INP_RUNLOCK(inp);
}
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("NO, Falls out to NULL\n");
}
#endif
return (NULL);
}
struct sctp_inpcb *
sctp_pcb_findep(struct sockaddr *nam, int find_tcp_pool, int have_lock)
{
/*
* First we check the hash table to see if someone has this port
* bound with just the port.
*/
struct sctp_inpcb *inp;
struct sctppcbhead *head;
int lport;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Looking for endpoint %d :",
ntohs(((struct sockaddr_in *)nam)->sin_port));
sctp_print_address(nam);
}
#endif
if (nam->sa_family == AF_INET) {
lport = ((struct sockaddr_in *)nam)->sin_port;
} else if (nam->sa_family == AF_INET6) {
lport = ((struct sockaddr_in6 *)nam)->sin6_port;
} else {
/* unsupported family */
return (NULL);
}
/*
* I could cheat here and just cast to one of the types but we will
* do it right. It also provides the check against an Unsupported
* type too.
*/
/* Find the head of the ALLADDR chain */
if (have_lock == 0) {
SCTP_INP_INFO_RLOCK();
}
head = &sctppcbinfo.sctp_ephash[SCTP_PCBHASH_ALLADDR(lport,
sctppcbinfo.hashmark)];
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Main hash to lookup at head:%p\n", head);
}
#endif
inp = sctp_endpoint_probe(nam, head, lport);
/*
* If the TCP model exists it could be that the main listening
* endpoint is gone but there exists a connected socket for this
* guy yet. If so we can return the first one that we find. This
* may NOT be the correct one but the sctp_findassociation_ep_addr
* has further code to look at all TCP models.
*/
if (inp == NULL && find_tcp_pool) {
unsigned int i;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("EP was NULL and TCP model is supported\n");
}
#endif
for (i = 0; i < sctppcbinfo.hashtblsize; i++) {
/*
* This is real gross, but we do NOT have a remote
* port at this point depending on who is calling. We
* must therefore look for ANY one that matches our
* local port :/
*/
head = &sctppcbinfo.sctp_tcpephash[i];
if (LIST_FIRST(head)) {
inp = sctp_endpoint_probe(nam, head, lport);
if (inp) {
/* Found one */
break;
}
}
}
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("EP to return is %p\n", inp);
}
#endif
if (have_lock == 0) {
if (inp) {
SCTP_INP_WLOCK(inp);
SCTP_INP_INCR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
SCTP_INP_INFO_RUNLOCK();
} else {
if (inp) {
SCTP_INP_WLOCK(inp);
SCTP_INP_INCR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
}
return (inp);
}
/*
* Find an association for an endpoint with the pointer to whom you want
* to send to and the endpoint pointer. The address can be IPv4 or IPv6.
* We may need to change the *to to some other struct like a mbuf...
*/
struct sctp_tcb *
sctp_findassociation_addr_sa(struct sockaddr *to, struct sockaddr *from,
struct sctp_inpcb **inp_p, struct sctp_nets **netp, int find_tcp_pool)
{
struct sctp_inpcb *inp;
struct sctp_tcb *retval;
SCTP_INP_INFO_RLOCK();
if (find_tcp_pool) {
if (inp_p != NULL) {
retval = sctp_tcb_special_locate(inp_p, from, to, netp);
} else {
retval = sctp_tcb_special_locate(&inp, from, to, netp);
}
if (retval != NULL) {
SCTP_INP_INFO_RUNLOCK();
return (retval);
}
}
inp = sctp_pcb_findep(to, 0, 1);
if (inp_p != NULL) {
*inp_p = inp;
}
SCTP_INP_INFO_RUNLOCK();
if (inp == NULL) {
return (NULL);
}
/*
* ok, we have an endpoint, now lets find the assoc for it (if any)
* we now place the source address or from in the to of the find
* endpoint call. Since in reality this chain is used from the
* inbound packet side.
*/
if (inp_p != NULL) {
return (sctp_findassociation_ep_addr(inp_p, from, netp, to, NULL));
} else {
return (sctp_findassociation_ep_addr(&inp, from, netp, to, NULL));
}
}
/*
* This routine will grub through the mbuf that is a INIT or INIT-ACK and
* find all addresses that the sender has specified in any address list.
* Each address will be used to lookup the TCB and see if one exits.
*/
static struct sctp_tcb *
sctp_findassociation_special_addr(struct mbuf *m, int iphlen, int offset,
struct sctphdr *sh, struct sctp_inpcb **inp_p, struct sctp_nets **netp,
struct sockaddr *dest)
{
struct sockaddr_in sin4;
struct sockaddr_in6 sin6;
struct sctp_paramhdr *phdr, parm_buf;
struct sctp_tcb *retval;
u_int32_t ptype, plen;
memset(&sin4, 0, sizeof(sin4));
memset(&sin6, 0, sizeof(sin6));
sin4.sin_len = sizeof(sin4);
sin4.sin_family = AF_INET;
sin4.sin_port = sh->src_port;
sin6.sin6_len = sizeof(sin6);
sin6.sin6_family = AF_INET6;
sin6.sin6_port = sh->src_port;
retval = NULL;
offset += sizeof(struct sctp_init_chunk);
phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
while (phdr != NULL) {
/* now we must see if we want the parameter */
ptype = ntohs(phdr->param_type);
plen = ntohs(phdr->param_length);
if (plen == 0) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("sctp_findassociation_special_addr: Impossible length in parameter\n");
}
#endif /* SCTP_DEBUG */
break;
}
if (ptype == SCTP_IPV4_ADDRESS &&
plen == sizeof(struct sctp_ipv4addr_param)) {
/* Get the rest of the address */
struct sctp_ipv4addr_param ip4_parm, *p4;
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&ip4_parm, plen);
if (phdr == NULL) {
return (NULL);
}
p4 = (struct sctp_ipv4addr_param *)phdr;
memcpy(&sin4.sin_addr, &p4->addr, sizeof(p4->addr));
/* look it up */
retval = sctp_findassociation_ep_addr(inp_p,
(struct sockaddr *)&sin4, netp, dest, NULL);
if (retval != NULL) {
return (retval);
}
} else if (ptype == SCTP_IPV6_ADDRESS &&
plen == sizeof(struct sctp_ipv6addr_param)) {
/* Get the rest of the address */
struct sctp_ipv6addr_param ip6_parm, *p6;
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&ip6_parm, plen);
if (phdr == NULL) {
return (NULL);
}
p6 = (struct sctp_ipv6addr_param *)phdr;
memcpy(&sin6.sin6_addr, &p6->addr, sizeof(p6->addr));
/* look it up */
retval = sctp_findassociation_ep_addr(inp_p,
(struct sockaddr *)&sin6, netp, dest, NULL);
if (retval != NULL) {
return (retval);
}
}
offset += SCTP_SIZE32(plen);
phdr = sctp_get_next_param(m, offset, &parm_buf,
sizeof(parm_buf));
}
return (NULL);
}
static struct sctp_tcb *
sctp_findassoc_by_vtag(struct sockaddr *from, uint32_t vtag,
struct sctp_inpcb **inp_p, struct sctp_nets **netp, uint16_t rport,
uint16_t lport)
{
/*
* Use my vtag to hash. If we find it we then verify the source addr
* is in the assoc. If all goes well we save a bit on rec of a packet.
*/
struct sctpasochead *head;
struct sctp_nets *net;
struct sctp_tcb *stcb;
SCTP_INP_INFO_RLOCK();
head = &sctppcbinfo.sctp_asochash[SCTP_PCBHASH_ASOC(vtag,
sctppcbinfo.hashasocmark)];
if (head == NULL) {
/* invalid vtag */
SCTP_INP_INFO_RUNLOCK();
return (NULL);
}
LIST_FOREACH(stcb, head, sctp_asocs) {
SCTP_INP_RLOCK(stcb->sctp_ep);
SCTP_TCB_LOCK(stcb);
SCTP_INP_RUNLOCK(stcb->sctp_ep);
if (stcb->asoc.my_vtag == vtag) {
/* candidate */
if (stcb->rport != rport) {
/*
* we could remove this if vtags are unique
* across the system.
*/
SCTP_TCB_UNLOCK(stcb);
continue;
}
if (stcb->sctp_ep->sctp_lport != lport) {
/*
* we could remove this if vtags are unique
* across the system.
*/
SCTP_TCB_UNLOCK(stcb);
continue;
}
net = sctp_findnet(stcb, from);
if (net) {
/* yep its him. */
*netp = net;
sctp_pegs[SCTP_VTAG_EXPR]++;
*inp_p = stcb->sctp_ep;
SCTP_INP_INFO_RUNLOCK();
return (stcb);
} else {
/* not him, this should only
* happen in rare cases so
* I peg it.
*/
sctp_pegs[SCTP_VTAG_BOGUS]++;
}
}
SCTP_TCB_UNLOCK(stcb);
}
SCTP_INP_INFO_RUNLOCK();
return (NULL);
}
/*
* Find an association with the pointer to the inbound IP packet. This
* can be a IPv4 or IPv6 packet.
*/
struct sctp_tcb *
sctp_findassociation_addr(struct mbuf *m, int iphlen, int offset,
struct sctphdr *sh, struct sctp_chunkhdr *ch,
struct sctp_inpcb **inp_p, struct sctp_nets **netp)
{
int find_tcp_pool;
struct ip *iph;
struct sctp_tcb *retval;
struct sockaddr_storage to_store, from_store;
struct sockaddr *to = (struct sockaddr *)&to_store;
struct sockaddr *from = (struct sockaddr *)&from_store;
struct sctp_inpcb *inp;
iph = mtod(m, struct ip *);
if (iph->ip_v == IPVERSION) {
/* its IPv4 */
struct sockaddr_in *to4, *from4;
to4 = (struct sockaddr_in *)&to_store;
from4 = (struct sockaddr_in *)&from_store;
memset(to4, 0, sizeof(*to4));
memset(from4, 0, sizeof(*from4));
from4->sin_family = to4->sin_family = AF_INET;
from4->sin_len = to4->sin_len = sizeof(struct sockaddr_in);
from4->sin_addr.s_addr = iph->ip_src.s_addr;
to4->sin_addr.s_addr = iph->ip_dst.s_addr ;
from4->sin_port = sh->src_port;
to4->sin_port = sh->dest_port;
} else if (iph->ip_v == (IPV6_VERSION >> 4)) {
/* its IPv6 */
struct ip6_hdr *ip6;
struct sockaddr_in6 *to6, *from6;
ip6 = mtod(m, struct ip6_hdr *);
to6 = (struct sockaddr_in6 *)&to_store;
from6 = (struct sockaddr_in6 *)&from_store;
memset(to6, 0, sizeof(*to6));
memset(from6, 0, sizeof(*from6));
from6->sin6_family = to6->sin6_family = AF_INET6;
from6->sin6_len = to6->sin6_len = sizeof(struct sockaddr_in6);
from6->sin6_addr = ip6->ip6_src;
to6->sin6_addr = ip6->ip6_dst;
from6->sin6_port = sh->src_port;
to6->sin6_port = sh->dest_port;
/* Get the scopes in properly to the sin6 addr's */
#if defined(SCTP_BASE_FREEBSD) || defined(__APPLE__)
/* We probably don't need this operation (jinmei@kame) */
(void)in6_recoverscope(to6, &to6->sin6_addr, NULL);
(void)in6_embedscope(&to6->sin6_addr, to6, NULL, NULL);
(void)in6_recoverscope(from6, &from6->sin6_addr, NULL);
(void)in6_embedscope(&from6->sin6_addr, from6, NULL, NULL);
#endif
} else {
/* Currently not supported. */
return (NULL);
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Looking for port %d address :",
ntohs(((struct sockaddr_in *)to)->sin_port));
sctp_print_address(to);
printf("From for port %d address :",
ntohs(((struct sockaddr_in *)from)->sin_port));
sctp_print_address(from);
}
#endif
if (sh->v_tag) {
/* we only go down this path if vtag is non-zero */
retval = sctp_findassoc_by_vtag(from, ntohl(sh->v_tag),
inp_p, netp, sh->src_port, sh->dest_port);
if (retval) {
return (retval);
}
}
find_tcp_pool = 0;
if ((ch->chunk_type != SCTP_INITIATION) &&
(ch->chunk_type != SCTP_INITIATION_ACK) &&
(ch->chunk_type != SCTP_COOKIE_ACK) &&
(ch->chunk_type != SCTP_COOKIE_ECHO)) {
/* Other chunk types go to the tcp pool. */
find_tcp_pool = 1;
}
if (inp_p) {
retval = sctp_findassociation_addr_sa(to, from, inp_p, netp,
find_tcp_pool);
inp = *inp_p;
} else {
retval = sctp_findassociation_addr_sa(to, from, &inp, netp,
find_tcp_pool);
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("retval:%p inp:%p\n", retval, inp);
}
#endif
if (retval == NULL && inp) {
/* Found a EP but not this address */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Found endpoint %p but no asoc - ep state:%x\n",
inp, inp->sctp_flags);
}
#endif
if ((ch->chunk_type == SCTP_INITIATION) ||
(ch->chunk_type == SCTP_INITIATION_ACK)) {
/*
* special hook, we do NOT return linp or an
* association that is linked to an existing
* association that is under the TCP pool (i.e. no
* listener exists). The endpoint finding routine
* will always find a listner before examining the
* TCP pool.
*/
if (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Gak, its in the TCP pool... return NULL");
}
#endif
if (inp_p) {
*inp_p = NULL;
}
return (NULL);
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Now doing SPECIAL find\n");
}
#endif
retval = sctp_findassociation_special_addr(m, iphlen,
offset, sh, inp_p, netp, to);
}
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("retval is %p\n", retval);
}
#endif
return (retval);
}
extern int sctp_max_burst_default;
extern unsigned int sctp_delayed_sack_time_default;
extern unsigned int sctp_heartbeat_interval_default;
extern unsigned int sctp_pmtu_raise_time_default;
extern unsigned int sctp_shutdown_guard_time_default;
extern unsigned int sctp_secret_lifetime_default;
extern unsigned int sctp_rto_max_default;
extern unsigned int sctp_rto_min_default;
extern unsigned int sctp_rto_initial_default;
extern unsigned int sctp_init_rto_max_default;
extern unsigned int sctp_valid_cookie_life_default;
extern unsigned int sctp_init_rtx_max_default;
extern unsigned int sctp_assoc_rtx_max_default;
extern unsigned int sctp_path_rtx_max_default;
extern unsigned int sctp_nr_outgoing_streams_default;
/*
* allocate a sctp_inpcb and setup a temporary binding to a port/all
* addresses. This way if we don't get a bind we by default pick a ephemeral
* port with all addresses bound.
*/
int
sctp_inpcb_alloc(struct socket *so)
{
/*
* we get called when a new endpoint starts up. We need to allocate
* the sctp_inpcb structure from the zone and init it. Mark it as
* unbound and find a port that we can use as an ephemeral with
* INADDR_ANY. If the user binds later no problem we can then add
* in the specific addresses. And setup the default parameters for
* the EP.
*/
int i, error;
struct sctp_inpcb *inp;
#ifdef DEBUG
struct sctp_inpcb *n_inp;
#endif
#ifdef IPSEC
struct inpcbpolicy *pcb_sp = NULL;
#endif
struct sctp_pcb *m;
struct timeval time;
error = 0;
/* Hack alert:
*
* This code audits the entire INP list to see if
* any ep's that are in the GONE state are now
* all free. This should not happen really since when
* the last association if freed we should end up deleting
* the inpcb. This code including the locks should
* be taken out ... since the last set of fixes I
* have not seen the "Found a GONE on list" has not
* came out. But i am paranoid and we will leave this
* in at the cost of efficency on allocation of PCB's.
* Probably we should move this to the invariant
* compile options
*/
#ifdef DEBUG
SCTP_INP_INFO_RLOCK();
inp = LIST_FIRST(&sctppcbinfo.listhead);
while (inp) {
n_inp = LIST_NEXT(inp, sctp_list);
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) {
if (LIST_FIRST(&inp->sctp_asoc_list) == NULL) {
/* finish the job now */
printf("Found a GONE on list\n");
SCTP_INP_INFO_RUNLOCK();
sctp_inpcb_free(inp, 1);
SCTP_INP_INFO_RLOCK();
}
}
inp = n_inp;
}
SCTP_INP_INFO_RUNLOCK();
#endif /* DEBUG */
SCTP_INP_INFO_WLOCK();
inp = (struct sctp_inpcb *)SCTP_ZONE_GET(sctppcbinfo.ipi_zone_ep);
if (inp == NULL) {
printf("Out of SCTP-INPCB structures - no resources\n");
SCTP_INP_INFO_WUNLOCK();
return (ENOBUFS);
}
/* zap it */
memset(inp, 0, sizeof(*inp));
/* setup socket pointers */
inp->sctp_socket = so;
/* setup inpcb socket too */
inp->ip_inp.inp.inp_socket = so;
inp->sctp_frag_point = SCTP_DEFAULT_MAXSEGMENT;
#ifdef IPSEC
if (ipsec_enabled) {
error = ipsec_init_pcbpolicy(so, &pcb_sp);
if (error != 0) {
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_ep, inp);
SCTP_INP_INFO_WUNLOCK();
return error;
}
/* Arrange to share the policy */
inp->ip_inp.inp.inp_sp = pcb_sp;
pcb_sp->sp_inph = (struct inpcb_hdr *)inp;
}
#endif /* IPSEC */
sctppcbinfo.ipi_count_ep++;
inp->inp_ip_ttl = ip_defttl;
inp->inp_ip_tos = 0;
so->so_pcb = (void *)inp;
if ((so->so_type == SOCK_DGRAM) ||
(so->so_type == SOCK_SEQPACKET)) {
/* UDP style socket */
inp->sctp_flags = (SCTP_PCB_FLAGS_UDPTYPE |
SCTP_PCB_FLAGS_UNBOUND);
inp->sctp_flags |= (SCTP_PCB_FLAGS_RECVDATAIOEVNT);
/* Be sure it is NON-BLOCKING IO for UDP */
/*so->so_state |= SS_NBIO;*/
} else if (so->so_type == SOCK_STREAM) {
/* TCP style socket */
inp->sctp_flags = (SCTP_PCB_FLAGS_TCPTYPE |
SCTP_PCB_FLAGS_UNBOUND);
inp->sctp_flags |= (SCTP_PCB_FLAGS_RECVDATAIOEVNT);
/* Be sure we have blocking IO bu default */
so->so_state &= ~SS_NBIO;
} else {
/*
* unsupported socket type (RAW, etc)- in case we missed
* it in protosw
*/
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_ep, inp);
SCTP_INP_INFO_WUNLOCK();
return (EOPNOTSUPP);
}
inp->sctp_tcbhash = SCTP_ZONE_GET(sctppcbinfo.ipi_zone_hash);
if (inp->sctp_tcbhash == NULL) {
printf("Out of SCTP-INPCB->hashinit - no resources\n");
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_ep, inp);
SCTP_INP_INFO_WUNLOCK();
return (ENOBUFS);
} else {
for (i = 0; i < sctp_pcbtblsize; i++)
LIST_INIT(&inp->sctp_tcbhash[i]);
for (i = 1; i < sctp_pcbtblsize; i <<= 1)
continue;
inp->sctp_hashmark = i - 1;
}
/* LOCK init's */
SCTP_INP_LOCK_INIT(inp);
SCTP_ASOC_CREATE_LOCK_INIT(inp);
/* lock the new ep */
SCTP_INP_WLOCK(inp);
/* add it to the info area */
LIST_INSERT_HEAD(&sctppcbinfo.listhead, inp, sctp_list);
SCTP_INP_INFO_WUNLOCK();
LIST_INIT(&inp->sctp_addr_list);
LIST_INIT(&inp->sctp_asoc_list);
TAILQ_INIT(&inp->sctp_queue_list);
/* Init the timer structure for signature change */
callout_init(&inp->sctp_ep.signature_change.timer, 0);
inp->sctp_ep.signature_change.type = SCTP_TIMER_TYPE_NEWCOOKIE;
/* now init the actual endpoint default data */
m = &inp->sctp_ep;
/* setup the base timeout information */
m->sctp_timeoutticks[SCTP_TIMER_SEND] = SEC_TO_TICKS(SCTP_SEND_SEC); /* needed ? */
m->sctp_timeoutticks[SCTP_TIMER_INIT] = SEC_TO_TICKS(SCTP_INIT_SEC); /* needed ? */
m->sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(sctp_delayed_sack_time_default);
m->sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = sctp_heartbeat_interval_default; /* this is in MSEC */
m->sctp_timeoutticks[SCTP_TIMER_PMTU] = SEC_TO_TICKS(sctp_pmtu_raise_time_default);
m->sctp_timeoutticks[SCTP_TIMER_MAXSHUTDOWN] = SEC_TO_TICKS(sctp_shutdown_guard_time_default);
m->sctp_timeoutticks[SCTP_TIMER_SIGNATURE] = SEC_TO_TICKS(sctp_secret_lifetime_default);
/* all max/min max are in ms */
m->sctp_maxrto = sctp_rto_max_default;
m->sctp_minrto = sctp_rto_min_default;
m->initial_rto = sctp_rto_initial_default;
m->initial_init_rto_max = sctp_init_rto_max_default;
m->max_open_streams_intome = MAX_SCTP_STREAMS;
m->max_init_times = sctp_init_rtx_max_default;
m->max_send_times = sctp_assoc_rtx_max_default;
m->def_net_failure = sctp_path_rtx_max_default;
m->sctp_sws_sender = SCTP_SWS_SENDER_DEF;
m->sctp_sws_receiver = SCTP_SWS_RECEIVER_DEF;
m->max_burst = sctp_max_burst_default;
/* number of streams to pre-open on a association */
m->pre_open_stream_count = sctp_nr_outgoing_streams_default;
/* Add adaption cookie */
m->adaption_layer_indicator = 0x504C5253;
/* seed random number generator */
m->random_counter = 1;
m->store_at = SCTP_SIGNATURE_SIZE;
#if NRND > 0
rnd_extract_data(m->random_numbers, sizeof(m->random_numbers),
RND_EXTRACT_ANY);
#else
{
u_int32_t *ranm, *ranp;
ranp = (u_int32_t *)&m->random_numbers;
ranm = ranp + (SCTP_SIGNATURE_ALOC_SIZE/sizeof(u_int32_t));
if ((u_long)ranp % 4) {
/* not a even boundary? */
ranp = (u_int32_t *)SCTP_SIZE32((u_long)ranp);
}
while (ranp < ranm) {
*ranp = random();
ranp++;
}
}
#endif
sctp_fill_random_store(m);
/* Minimum cookie size */
m->size_of_a_cookie = (sizeof(struct sctp_init_msg) * 2) +
sizeof(struct sctp_state_cookie);
m->size_of_a_cookie += SCTP_SIGNATURE_SIZE;
/* Setup the initial secret */
SCTP_GETTIME_TIMEVAL(&time);
m->time_of_secret_change = time.tv_sec;
for (i = 0; i < SCTP_NUMBER_OF_SECRETS; i++) {
m->secret_key[0][i] = sctp_select_initial_TSN(m);
}
sctp_timer_start(SCTP_TIMER_TYPE_NEWCOOKIE, inp, NULL, NULL);
/* How long is a cookie good for ? */
m->def_cookie_life = sctp_valid_cookie_life_default;
SCTP_INP_WUNLOCK(inp);
return (error);
}
void
sctp_move_pcb_and_assoc(struct sctp_inpcb *old_inp, struct sctp_inpcb *new_inp,
struct sctp_tcb *stcb)
{
uint16_t lport, rport;
struct sctppcbhead *head;
struct sctp_laddr *laddr, *oladdr;
SCTP_TCB_UNLOCK(stcb);
SCTP_INP_INFO_WLOCK();
SCTP_INP_WLOCK(old_inp);
SCTP_INP_WLOCK(new_inp);
SCTP_TCB_LOCK(stcb);
new_inp->sctp_ep.time_of_secret_change =
old_inp->sctp_ep.time_of_secret_change;
memcpy(new_inp->sctp_ep.secret_key, old_inp->sctp_ep.secret_key,
sizeof(old_inp->sctp_ep.secret_key));
new_inp->sctp_ep.current_secret_number =
old_inp->sctp_ep.current_secret_number;
new_inp->sctp_ep.last_secret_number =
old_inp->sctp_ep.last_secret_number;
new_inp->sctp_ep.size_of_a_cookie = old_inp->sctp_ep.size_of_a_cookie;
/* Copy the port across */
lport = new_inp->sctp_lport = old_inp->sctp_lport;
rport = stcb->rport;
/* Pull the tcb from the old association */
LIST_REMOVE(stcb, sctp_tcbhash);
LIST_REMOVE(stcb, sctp_tcblist);
/* Now insert the new_inp into the TCP connected hash */
head = &sctppcbinfo.sctp_tcpephash[SCTP_PCBHASH_ALLADDR((lport + rport),
sctppcbinfo.hashtcpmark)];
LIST_INSERT_HEAD(head, new_inp, sctp_hash);
/* Now move the tcb into the endpoint list */
LIST_INSERT_HEAD(&new_inp->sctp_asoc_list, stcb, sctp_tcblist);
/*
* Question, do we even need to worry about the ep-hash since
* we only have one connection? Probably not :> so lets
* get rid of it and not suck up any kernel memory in that.
*/
SCTP_INP_INFO_WUNLOCK();
stcb->sctp_socket = new_inp->sctp_socket;
stcb->sctp_ep = new_inp;
if (new_inp->sctp_tcbhash != NULL) {
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_hash,
new_inp->sctp_tcbhash);
new_inp->sctp_tcbhash = NULL;
}
if ((new_inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) {
/* Subset bound, so copy in the laddr list from the old_inp */
LIST_FOREACH(oladdr, &old_inp->sctp_addr_list, sctp_nxt_addr) {
laddr = (struct sctp_laddr *)SCTP_ZONE_GET(
sctppcbinfo.ipi_zone_laddr);
if (laddr == NULL) {
/*
* Gak, what can we do? This assoc is really
* HOSED. We probably should send an abort
* here.
*/
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Association hosed in TCP model, out of laddr memory\n");
}
#endif /* SCTP_DEBUG */
continue;
}
sctppcbinfo.ipi_count_laddr++;
sctppcbinfo.ipi_gencnt_laddr++;
memset(laddr, 0, sizeof(*laddr));
laddr->ifa = oladdr->ifa;
LIST_INSERT_HEAD(&new_inp->sctp_addr_list, laddr,
sctp_nxt_addr);
new_inp->laddr_count++;
}
}
SCTP_INP_WUNLOCK(new_inp);
SCTP_INP_WUNLOCK(old_inp);
}
static int
sctp_isport_inuse(struct sctp_inpcb *inp, uint16_t lport)
{
struct sctppcbhead *head;
struct sctp_inpcb *t_inp;
head = &sctppcbinfo.sctp_ephash[SCTP_PCBHASH_ALLADDR(lport,
sctppcbinfo.hashmark)];
LIST_FOREACH(t_inp, head, sctp_hash) {
if (t_inp->sctp_lport != lport) {
continue;
}
/* This one is in use. */
/* check the v6/v4 binding issue */
if ((t_inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) &&
(((struct in6pcb *)t_inp)->in6p_flags & IN6P_IPV6_V6ONLY)) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
/* collision in V6 space */
return (1);
} else {
/* inp is BOUND_V4 no conflict */
continue;
}
} else if (t_inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
/* t_inp is bound v4 and v6, conflict always */
return (1);
} else {
/* t_inp is bound only V4 */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) &&
(((struct in6pcb *)inp)->in6p_flags & IN6P_IPV6_V6ONLY)
) {
/* no conflict */
continue;
}
/* else fall through to conflict */
}
return (1);
}
return (0);
}
int
sctp_inpcb_bind(struct socket *so, struct sockaddr *addr, struct lwp *l)
{
/* bind a ep to a socket address */
struct sctppcbhead *head;
struct sctp_inpcb *inp, *inp_tmp;
int bindall;
uint16_t lport;
int error;
lport = 0;
error = 0;
bindall = 1;
inp = (struct sctp_inpcb *)so->so_pcb;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
if (addr) {
printf("Bind called port:%d\n",
ntohs(((struct sockaddr_in *)addr)->sin_port));
printf("Addr :");
sctp_print_address(addr);
}
}
#endif /* SCTP_DEBUG */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == 0) {
/* already did a bind, subsequent binds NOT allowed ! */
return (EINVAL);
}
if (addr != NULL) {
if (addr->sa_family == AF_INET) {
struct sockaddr_in *sin;
/* IPV6_V6ONLY socket? */
if (((struct in6pcb *)inp)->in6p_flags & IN6P_IPV6_V6ONLY) {
return (EINVAL);
}
if (addr->sa_len != sizeof(*sin))
return (EINVAL);
sin = (struct sockaddr_in *)addr;
lport = sin->sin_port;
if (sin->sin_addr.s_addr != INADDR_ANY) {
bindall = 0;
}
#ifdef IPSEC
inp->ip_inp.inp.inp_af = AF_INET;
#endif
} else if (addr->sa_family == AF_INET6) {
/* Only for pure IPv6 Address. (No IPv4 Mapped!) */
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)addr;
if (addr->sa_len != sizeof(*sin6))
return (EINVAL);
lport = sin6->sin6_port;
if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
bindall = 0;
/* KAME hack: embed scopeid */
error = sa6_embedscope(sin6, ip6_use_defzone);
if (error != 0)
return (error);
}
#ifndef SCOPEDROUTING
/* this must be cleared for ifa_ifwithaddr() */
sin6->sin6_scope_id = 0;
#endif /* SCOPEDROUTING */
#ifdef IPSEC
inp->ip_inp.inp.inp_af = AF_INET6;
#endif
} else {
return (EAFNOSUPPORT);
}
#ifdef IPSEC
if (ipsec_enabled) {
inp->ip_inp.inp.inp_socket = so;
error = ipsec_init_pcbpolicy(so, &inp->ip_inp.inp.inp_sp);
if (error != 0)
return (error);
inp->ip_inp.inp.inp_sp->sp_inph = (struct inpcb_hdr *)inp;
}
#endif
}
SCTP_INP_INFO_WLOCK();
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("sctp_inpcb_bind: after SCTP_INP_INFO_WLOCK\n");
}
#endif /* SCTP_DEBUG */
SCTP_INP_WLOCK(inp);
/* increase our count due to the unlock we do */
SCTP_INP_INCR_REF(inp);
if (lport) {
enum kauth_network_req req;
/*
* Did the caller specify a port? if so we must see if a
* ep already has this one bound.
*/
if (ntohs(lport) < IPPORT_RESERVED)
req = KAUTH_REQ_NETWORK_BIND_PRIVPORT;
else
req = KAUTH_REQ_NETWORK_BIND_PORT;
error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_BIND,
req, so, addr, NULL);
if (error) {
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (EACCES);
}
SCTP_INP_WUNLOCK(inp);
inp_tmp = sctp_pcb_findep(addr, 0, 1);
if (inp_tmp != NULL) {
/* lock guy returned and lower count
* note that we are not bound so inp_tmp
* should NEVER be inp. And it is this
* inp (inp_tmp) that gets the reference
* bump, so we must lower it.
*/
SCTP_INP_WLOCK(inp_tmp);
SCTP_INP_DECR_REF(inp_tmp);
SCTP_INP_WUNLOCK(inp_tmp);
/* unlock info */
SCTP_INP_INFO_WUNLOCK();
return (EADDRNOTAVAIL);
}
SCTP_INP_WLOCK(inp);
if (bindall) {
/* verify that no lport is not used by a singleton */
if (sctp_isport_inuse(inp, lport)) {
/* Sorry someone already has this one bound */
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (EADDRNOTAVAIL);
}
}
} else {
/*
* get any port but lets make sure no one has any address
* with this port bound
*/
/*
* setup the inp to the top (I could use the union but this
* is just as easy
*/
uint32_t port_guess;
uint16_t port_attempt;
int not_done=1;
while (not_done) {
port_guess = sctp_select_initial_TSN(&inp->sctp_ep);
port_attempt = (port_guess & 0x0000ffff);
if (port_attempt == 0) {
goto next_half;
}
if (port_attempt < IPPORT_RESERVED) {
port_attempt += IPPORT_RESERVED;
}
if (sctp_isport_inuse(inp, htons(port_attempt)) == 0) {
/* got a port we can use */
not_done = 0;
continue;
}
/* try upper half */
next_half:
port_attempt = ((port_guess >> 16) & 0x0000ffff);
if (port_attempt == 0) {
goto last_try;
}
if (port_attempt < IPPORT_RESERVED) {
port_attempt += IPPORT_RESERVED;
}
if (sctp_isport_inuse(inp, htons(port_attempt)) == 0) {
/* got a port we can use */
not_done = 0;
continue;
}
/* try two half's added together */
last_try:
port_attempt = (((port_guess >> 16) & 0x0000ffff) + (port_guess & 0x0000ffff));
if (port_attempt == 0) {
/* get a new random number */
continue;
}
if (port_attempt < IPPORT_RESERVED) {
port_attempt += IPPORT_RESERVED;
}
if (sctp_isport_inuse(inp, htons(port_attempt)) == 0) {
/* got a port we can use */
not_done = 0;
continue;
}
}
/* we don't get out of the loop until we have a port */
lport = htons(port_attempt);
}
SCTP_INP_DECR_REF(inp);
if (inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE|SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
/* this really should not happen. The guy
* did a non-blocking bind and then did a close
* at the same time.
*/
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (EINVAL);
}
/* ok we look clear to give out this port, so lets setup the binding */
if (bindall) {
/* binding to all addresses, so just set in the proper flags */
inp->sctp_flags |= (SCTP_PCB_FLAGS_BOUNDALL |
SCTP_PCB_FLAGS_DO_ASCONF);
/* set the automatic addr changes from kernel flag */
if (sctp_auto_asconf == 0) {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_AUTO_ASCONF;
} else {
inp->sctp_flags |= SCTP_PCB_FLAGS_AUTO_ASCONF;
}
} else {
/*
* bind specific, make sure flags is off and add a new address
* structure to the sctp_addr_list inside the ep structure.
*
* We will need to allocate one and insert it at the head.
* The socketopt call can just insert new addresses in there
* as well. It will also have to do the embed scope kame hack
* too (before adding).
*/
struct ifaddr *ifa;
struct sockaddr_storage store_sa;
memset(&store_sa, 0, sizeof(store_sa));
if (addr->sa_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)&store_sa;
memcpy(sin, addr, sizeof(struct sockaddr_in));
sin->sin_port = 0;
} else if (addr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)&store_sa;
memcpy(sin6, addr, sizeof(struct sockaddr_in6));
sin6->sin6_port = 0;
}
/*
* first find the interface with the bound address
* need to zero out the port to find the address! yuck!
* can't do this earlier since need port for sctp_pcb_findep()
*/
ifa = sctp_find_ifa_by_addr((struct sockaddr *)&store_sa);
if (ifa == NULL) {
/* Can't find an interface with that address */
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (EADDRNOTAVAIL);
}
if (addr->sa_family == AF_INET6) {
struct in6_ifaddr *ifa6;
ifa6 = (struct in6_ifaddr *)ifa;
/*
* allow binding of deprecated addresses as per
* RFC 2462 and ipng discussion
*/
if (ifa6->ia6_flags & (IN6_IFF_DETACHED |
IN6_IFF_ANYCAST |
IN6_IFF_NOTREADY)) {
/* Can't bind a non-existent addr. */
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (EINVAL);
}
}
/* we're not bound all */
inp->sctp_flags &= ~SCTP_PCB_FLAGS_BOUNDALL;
#if 0 /* use sysctl now */
/* don't allow automatic addr changes from kernel */
inp->sctp_flags &= ~SCTP_PCB_FLAGS_AUTO_ASCONF;
#endif
/* set the automatic addr changes from kernel flag */
if (sctp_auto_asconf == 0) {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_AUTO_ASCONF;
} else {
inp->sctp_flags |= SCTP_PCB_FLAGS_AUTO_ASCONF;
}
/* allow bindx() to send ASCONF's for binding changes */
inp->sctp_flags |= SCTP_PCB_FLAGS_DO_ASCONF;
/* add this address to the endpoint list */
error = sctp_insert_laddr(&inp->sctp_addr_list, ifa);
if (error != 0) {
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (error);
}
inp->laddr_count++;
}
/* find the bucket */
head = &sctppcbinfo.sctp_ephash[SCTP_PCBHASH_ALLADDR(lport,
sctppcbinfo.hashmark)];
/* put it in the bucket */
LIST_INSERT_HEAD(head, inp, sctp_hash);
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Main hash to bind at head:%p, bound port:%d\n", head, ntohs(lport));
}
#endif
/* set in the port */
inp->sctp_lport = lport;
/* turn off just the unbound flag */
inp->sctp_flags &= ~SCTP_PCB_FLAGS_UNBOUND;
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (0);
}
static void
sctp_iterator_inp_being_freed(struct sctp_inpcb *inp, struct sctp_inpcb *inp_next)
{
struct sctp_iterator *it;
/* We enter with the only the ITERATOR_LOCK in place and
* A write lock on the inp_info stuff.
*/
/* Go through all iterators, we must do this since
* it is possible that some iterator does NOT have
* the lock, but is waiting for it. And the one that
* had the lock has either moved in the last iteration
* or we just cleared it above. We need to find all
* of those guys. The list of iterators should never
* be very big though.
*/
LIST_FOREACH(it, &sctppcbinfo.iteratorhead, sctp_nxt_itr) {
if (it == inp->inp_starting_point_for_iterator)
/* skip this guy, he's special */
continue;
if (it->inp == inp) {
/* This is tricky and we DON'T lock the iterator.
* Reason is he's running but waiting for me since
* inp->inp_starting_point_for_iterator has the lock
* on me (the guy above we skipped). This tells us
* its is not running but waiting for inp->inp_starting_point_for_iterator
* to be released by the guy that does have our INP in a lock.
*/
if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) {
it->inp = NULL;
it->stcb = NULL;
} else {
/* set him up to do the next guy not me */
it->inp = inp_next;
it->stcb = NULL;
}
}
}
it = inp->inp_starting_point_for_iterator;
if (it) {
if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) {
it->inp = NULL;
} else {
it->inp = inp_next;
}
it->stcb = NULL;
}
}
/* release sctp_inpcb unbind the port */
void
sctp_inpcb_free(struct sctp_inpcb *inp, int immediate)
{
/*
* Here we free a endpoint. We must find it (if it is in the Hash
* table) and remove it from there. Then we must also find it in
* the overall list and remove it from there. After all removals are
* complete then any timer has to be stopped. Then start the actual
* freeing.
* a) Any local lists.
* b) Any associations.
* c) The hash of all associations.
* d) finally the ep itself.
*/
struct sctp_inpcb *inp_save;
struct sctp_tcb *asoc, *nasoc;
struct sctp_laddr *laddr, *nladdr;
struct inpcb *ip_pcb;
struct socket *so;
struct sctp_socket_q_list *sq;
int s, cnt;
struct rtentry *rt;
s = splsoftnet();
SCTP_ASOC_CREATE_LOCK(inp);
SCTP_INP_WLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) {
/* been here before */
splx(s);
printf("Endpoint was all gone (dup free)?\n");
SCTP_INP_WUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
return;
}
sctp_timer_stop(SCTP_TIMER_TYPE_NEWCOOKIE, inp, NULL, NULL);
if (inp->control) {
sctp_m_freem(inp->control);
inp->control = NULL;
}
if (inp->pkt) {
sctp_m_freem(inp->pkt);
inp->pkt = NULL;
}
so = inp->sctp_socket;
ip_pcb = &inp->ip_inp.inp; /* we could just cast the main
* pointer here but I will
* be nice :> (i.e. ip_pcb = ep;)
*/
if (immediate == 0) {
int cnt_in_sd;
cnt_in_sd = 0;
for ((asoc = LIST_FIRST(&inp->sctp_asoc_list)); asoc != NULL;
asoc = nasoc) {
nasoc = LIST_NEXT(asoc, sctp_tcblist);
if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_COOKIE_WAIT) ||
(SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_COOKIE_ECHOED)) {
/* Just abandon things in the front states */
SCTP_TCB_LOCK(asoc);
SCTP_INP_WUNLOCK(inp);
sctp_free_assoc(inp, asoc);
SCTP_INP_WLOCK(inp);
continue;
} else {
asoc->asoc.state |= SCTP_STATE_CLOSED_SOCKET;
}
if ((asoc->asoc.size_on_delivery_queue > 0) ||
(asoc->asoc.size_on_reasm_queue > 0) ||
(asoc->asoc.size_on_all_streams > 0) ||
(so && (so->so_rcv.sb_cc > 0))
) {
/* Left with Data unread */
struct mbuf *op_err;
MGET(op_err, M_DONTWAIT, MT_DATA);
if (op_err) {
/* Fill in the user initiated abort */
struct sctp_paramhdr *ph;
op_err->m_len =
sizeof(struct sctp_paramhdr);
ph = mtod(op_err,
struct sctp_paramhdr *);
ph->param_type = htons(
SCTP_CAUSE_USER_INITIATED_ABT);
ph->param_length = htons(op_err->m_len);
}
SCTP_TCB_LOCK(asoc);
sctp_send_abort_tcb(asoc, op_err);
SCTP_INP_WUNLOCK(inp);
sctp_free_assoc(inp, asoc);
SCTP_INP_WLOCK(inp);
continue;
} else if (TAILQ_EMPTY(&asoc->asoc.send_queue) &&
TAILQ_EMPTY(&asoc->asoc.sent_queue)) {
if ((SCTP_GET_STATE(&asoc->asoc) != SCTP_STATE_SHUTDOWN_SENT) &&
(SCTP_GET_STATE(&asoc->asoc) != SCTP_STATE_SHUTDOWN_ACK_SENT)) {
/* there is nothing queued to send, so I send shutdown */
SCTP_TCB_LOCK(asoc);
sctp_send_shutdown(asoc, asoc->asoc.primary_destination);
asoc->asoc.state = SCTP_STATE_SHUTDOWN_SENT;
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, asoc->sctp_ep, asoc,
asoc->asoc.primary_destination);
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, asoc->sctp_ep, asoc,
asoc->asoc.primary_destination);
sctp_chunk_output(inp, asoc, 1);
SCTP_TCB_UNLOCK(asoc);
}
} else {
/* mark into shutdown pending */
asoc->asoc.state |= SCTP_STATE_SHUTDOWN_PENDING;
}
cnt_in_sd++;
}
/* now is there some left in our SHUTDOWN state? */
if (cnt_in_sd) {
inp->sctp_flags |= SCTP_PCB_FLAGS_SOCKET_GONE;
splx(s);
SCTP_INP_WUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
return;
}
}
#if defined(__FreeBSD__) && __FreeBSD_version >= 503000
if (inp->refcount) {
sctp_timer_start(SCTP_TIMER_TYPE_INPKILL, inp, NULL, NULL);
SCTP_INP_WUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
return;
}
#endif
inp->sctp_flags |= SCTP_PCB_FLAGS_SOCKET_ALLGONE;
/* XXX */
rt = rtcache_validate(&ip_pcb->inp_route);
rtcache_unref(rt, &ip_pcb->inp_route);
callout_stop(&inp->sctp_ep.signature_change.timer);
callout_destroy(&inp->sctp_ep.signature_change.timer);
if (so) {
/* First take care of socket level things */
#ifdef IPSEC
if (ipsec_enabled)
ipsec4_delete_pcbpolicy(ip_pcb);
#endif /*IPSEC*/
so->so_pcb = 0;
}
if (ip_pcb->inp_options) {
(void)m_free(ip_pcb->inp_options);
ip_pcb->inp_options = 0;
}
rtcache_free(&ip_pcb->inp_route);
if (ip_pcb->inp_moptions) {
ip_freemoptions(ip_pcb->inp_moptions);
ip_pcb->inp_moptions = 0;
}
inp->inp_vflag = 0;
/* Now the sctp_pcb things */
/*
* free each asoc if it is not already closed/free. we can't use
* the macro here since le_next will get freed as part of the
* sctp_free_assoc() call.
*/
cnt = 0;
for ((asoc = LIST_FIRST(&inp->sctp_asoc_list)); asoc != NULL;
asoc = nasoc) {
nasoc = LIST_NEXT(asoc, sctp_tcblist);
SCTP_TCB_LOCK(asoc);
if (SCTP_GET_STATE(&asoc->asoc) != SCTP_STATE_COOKIE_WAIT) {
struct mbuf *op_err;
MGET(op_err, M_DONTWAIT, MT_DATA);
if (op_err) {
/* Fill in the user initiated abort */
struct sctp_paramhdr *ph;
op_err->m_len = sizeof(struct sctp_paramhdr);
ph = mtod(op_err, struct sctp_paramhdr *);
ph->param_type = htons(
SCTP_CAUSE_USER_INITIATED_ABT);
ph->param_length = htons(op_err->m_len);
}
sctp_send_abort_tcb(asoc, op_err);
}
cnt++;
/*
* sctp_free_assoc() will call sctp_inpcb_free(),
* if SCTP_PCB_FLAGS_SOCKET_GONE set.
* So, we clear it before sctp_free_assoc() making sure
* no double sctp_inpcb_free().
*/
inp->sctp_flags &= ~SCTP_PCB_FLAGS_SOCKET_GONE;
SCTP_INP_WUNLOCK(inp);
sctp_free_assoc(inp, asoc);
SCTP_INP_WLOCK(inp);
}
while ((sq = TAILQ_FIRST(&inp->sctp_queue_list)) != NULL) {
TAILQ_REMOVE(&inp->sctp_queue_list, sq, next_sq);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_sockq, sq);
sctppcbinfo.ipi_count_sockq--;
sctppcbinfo.ipi_gencnt_sockq++;
}
inp->sctp_socket = 0;
/* Now first we remove ourselves from the overall list of all EP's */
/* Unlock inp first, need correct order */
SCTP_INP_WUNLOCK(inp);
/* now iterator lock */
SCTP_ITERATOR_LOCK();
/* now info lock */
SCTP_INP_INFO_WLOCK();
/* now reget the inp lock */
SCTP_INP_WLOCK(inp);
inp_save = LIST_NEXT(inp, sctp_list);
LIST_REMOVE(inp, sctp_list);
/*
* Now the question comes as to if this EP was ever bound at all.
* If it was, then we must pull it out of the EP hash list.
*/
if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) !=
SCTP_PCB_FLAGS_UNBOUND) {
/*
* ok, this guy has been bound. It's port is somewhere
* in the sctppcbinfo hash table. Remove it!
*/
LIST_REMOVE(inp, sctp_hash);
}
/* fix any iterators only after out of the list */
sctp_iterator_inp_being_freed(inp, inp_save);
SCTP_ITERATOR_UNLOCK();
/*
* if we have an address list the following will free the list of
* ifaddr's that are set into this ep. Again macro limitations here,
* since the LIST_FOREACH could be a bad idea.
*/
for ((laddr = LIST_FIRST(&inp->sctp_addr_list)); laddr != NULL;
laddr = nladdr) {
nladdr = LIST_NEXT(laddr, sctp_nxt_addr);
LIST_REMOVE(laddr, sctp_nxt_addr);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_laddr, laddr);
sctppcbinfo.ipi_gencnt_laddr++;
sctppcbinfo.ipi_count_laddr--;
}
/* Now lets see about freeing the EP hash table. */
if (inp->sctp_tcbhash != NULL) {
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_hash, inp->sctp_tcbhash);
inp->sctp_tcbhash = NULL;
}
SCTP_INP_WUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
SCTP_INP_LOCK_DESTROY(inp);
SCTP_ASOC_CREATE_LOCK_DESTROY(inp);
/* Now we must put the ep memory back into the zone pool */
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_ep, inp);
sctppcbinfo.ipi_count_ep--;
SCTP_INP_INFO_WUNLOCK();
splx(s);
sofree(so);
mutex_enter(softnet_lock);
}
struct sctp_nets *
sctp_findnet(struct sctp_tcb *stcb, struct sockaddr *addr)
{
struct sctp_nets *net;
/* use the peer's/remote port for lookup if unspecified */
#if 0 /* why do we need to check the port for a nets list on an assoc? */
if (stcb->rport != sin->sin_port) {
/* we cheat and just a sin for this test */
return (NULL);
}
#endif
/* locate the address */
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
if (sctp_cmpaddr(addr, rtcache_getdst(&net->ro)))
return (net);
}
return (NULL);
}
/*
* add's a remote endpoint address, done with the INIT/INIT-ACK
* as well as when a ASCONF arrives that adds it. It will also
* initialize all the cwnd stats of stuff.
*/
int
sctp_is_address_on_local_host(struct sockaddr *addr)
{
struct ifnet *ifn;
struct ifaddr *ifa;
int s;
s = pserialize_read_enter();
IFNET_READER_FOREACH(ifn) {
IFADDR_READER_FOREACH(ifa, ifn) {
if (addr->sa_family == ifa->ifa_addr->sa_family) {
/* same family */
if (addr->sa_family == AF_INET) {
struct sockaddr_in *sin, *sin_c;
sin = (struct sockaddr_in *)addr;
sin_c = (struct sockaddr_in *)
ifa->ifa_addr;
if (sin->sin_addr.s_addr ==
sin_c->sin_addr.s_addr) {
/* we are on the same machine */
pserialize_read_exit(s);
return (1);
}
} else if (addr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6, *sin_c6;
sin6 = (struct sockaddr_in6 *)addr;
sin_c6 = (struct sockaddr_in6 *)
ifa->ifa_addr;
if (SCTP6_ARE_ADDR_EQUAL(&sin6->sin6_addr,
&sin_c6->sin6_addr)) {
/* we are on the same machine */
pserialize_read_exit(s);
return (1);
}
}
}
}
}
pserialize_read_exit(s);
return (0);
}
int
sctp_add_remote_addr(struct sctp_tcb *stcb, struct sockaddr *newaddr,
int set_scope, int from)
{
/*
* The following is redundant to the same lines in the
* sctp_aloc_assoc() but is needed since other's call the add
* address function
*/
struct sctp_nets *net, *netfirst;
struct rtentry *rt, *netfirst_rt;
int addr_inscope;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Adding an address (from:%d) to the peer: ", from);
sctp_print_address(newaddr);
}
#endif
netfirst = sctp_findnet(stcb, newaddr);
if (netfirst) {
/*
* Lie and return ok, we don't want to make the association
* go away for this behavior. It will happen in the TCP model
* in a connected socket. It does not reach the hash table
* until after the association is built so it can't be found.
* Mark as reachable, since the initial creation will have
* been cleared and the NOT_IN_ASSOC flag will have been
* added... and we don't want to end up removing it back out.
*/
if (netfirst->dest_state & SCTP_ADDR_UNCONFIRMED) {
netfirst->dest_state = (SCTP_ADDR_REACHABLE|
SCTP_ADDR_UNCONFIRMED);
} else {
netfirst->dest_state = SCTP_ADDR_REACHABLE;
}
return (0);
}
addr_inscope = 1;
if (newaddr->sa_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)newaddr;
if (sin->sin_addr.s_addr == 0) {
/* Invalid address */
return (-1);
}
/* zero out the bzero area */
memset(&sin->sin_zero, 0, sizeof(sin->sin_zero));
/* assure len is set */
sin->sin_len = sizeof(struct sockaddr_in);
if (set_scope) {
#ifdef SCTP_DONT_DO_PRIVADDR_SCOPE
stcb->ipv4_local_scope = 1;
#else
if (IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) {
stcb->asoc.ipv4_local_scope = 1;
}
#endif /* SCTP_DONT_DO_PRIVADDR_SCOPE */
if (sctp_is_address_on_local_host(newaddr)) {
stcb->asoc.loopback_scope = 1;
stcb->asoc.ipv4_local_scope = 1;
stcb->asoc.local_scope = 1;
stcb->asoc.site_scope = 1;
}
} else {
if (from == 8) {
/* From connectx */
if (sctp_is_address_on_local_host(newaddr)) {
stcb->asoc.loopback_scope = 1;
stcb->asoc.ipv4_local_scope = 1;
stcb->asoc.local_scope = 1;
stcb->asoc.site_scope = 1;
}
}
/* Validate the address is in scope */
if ((IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) &&
(stcb->asoc.ipv4_local_scope == 0)) {
addr_inscope = 0;
}
}
} else if (newaddr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)newaddr;
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
/* Invalid address */
return (-1);
}
/* assure len is set */
sin6->sin6_len = sizeof(struct sockaddr_in6);
if (set_scope) {
if (sctp_is_address_on_local_host(newaddr)) {
stcb->asoc.loopback_scope = 1;
stcb->asoc.local_scope = 1;
stcb->asoc.ipv4_local_scope = 1;
stcb->asoc.site_scope = 1;
} else if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
/*
* If the new destination is a LINK_LOCAL
* we must have common site scope. Don't set
* the local scope since we may not share all
* links, only loopback can do this.
* Links on the local network would also
* be on our private network for v4 too.
*/
stcb->asoc.ipv4_local_scope = 1;
stcb->asoc.site_scope = 1;
} else if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) {
/*
* If the new destination is SITE_LOCAL
* then we must have site scope in common.
*/
stcb->asoc.site_scope = 1;
}
} else {
if (from == 8) {
/* From connectx */
if (sctp_is_address_on_local_host(newaddr)) {
stcb->asoc.loopback_scope = 1;
stcb->asoc.ipv4_local_scope = 1;
stcb->asoc.local_scope = 1;
stcb->asoc.site_scope = 1;
}
}
/* Validate the address is in scope */
if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr) &&
(stcb->asoc.loopback_scope == 0)) {
addr_inscope = 0;
} else if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr) &&
(stcb->asoc.local_scope == 0)) {
addr_inscope = 0;
} else if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr) &&
(stcb->asoc.site_scope == 0)) {
addr_inscope = 0;
}
}
} else {
/* not supported family type */
return (-1);
}
net = (struct sctp_nets *)SCTP_ZONE_GET(sctppcbinfo.ipi_zone_net);
if (net == NULL) {
return (-1);
}
sctppcbinfo.ipi_count_raddr++;
sctppcbinfo.ipi_gencnt_raddr++;
memset(net, 0, sizeof(*net));
if (newaddr->sa_family == AF_INET) {
((struct sockaddr_in *)newaddr)->sin_port = stcb->rport;
} else if (newaddr->sa_family == AF_INET6) {
((struct sockaddr_in6 *)newaddr)->sin6_port = stcb->rport;
}
net->addr_is_local = sctp_is_address_on_local_host(newaddr);
net->failure_threshold = stcb->asoc.def_net_failure;
if (addr_inscope == 0) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Adding an address which is OUT OF SCOPE\n");
}
#endif /* SCTP_DEBUG */
net->dest_state = (SCTP_ADDR_REACHABLE |
SCTP_ADDR_OUT_OF_SCOPE);
} else {
if (from == 8)
/* 8 is passed by connect_x */
net->dest_state = SCTP_ADDR_REACHABLE;
else
net->dest_state = SCTP_ADDR_REACHABLE |
SCTP_ADDR_UNCONFIRMED;
}
net->RTO = stcb->asoc.initial_rto;
stcb->asoc.numnets++;
net->ref_count = 1;
/* Init the timer structure */
callout_init(&net->rxt_timer.timer, 0);
callout_init(&net->pmtu_timer.timer, 0);
/* Now generate a route for this guy */
/* KAME hack: embed scope zone ID */
if (newaddr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)newaddr;
if (sa6_embedscope(sin6, ip6_use_defzone) != 0)
return (-1);
}
rt = rtcache_lookup(&net->ro, newaddr);
if (rt) {
net->mtu = rt->rt_ifp->if_mtu;
if (from == 1) {
stcb->asoc.smallest_mtu = net->mtu;
}
/* start things off to match mtu of interface please. */
rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu;
} else {
net->mtu = stcb->asoc.smallest_mtu;
}
#ifdef SCTP_DEBUG
printf("After lookup\n");
#endif
if (stcb->asoc.smallest_mtu > net->mtu) {
stcb->asoc.smallest_mtu = net->mtu;
}
/* We take the max of the burst limit times a MTU or the INITIAL_CWND.
* We then limit this to 4 MTU's of sending.
*/
net->cwnd = min((net->mtu * 4), max((stcb->asoc.max_burst * net->mtu), SCTP_INITIAL_CWND));
/* we always get at LEAST 2 MTU's */
if (net->cwnd < (2 * net->mtu)) {
net->cwnd = 2 * net->mtu;
}
net->ssthresh = stcb->asoc.peers_rwnd;
net->src_addr_selected = 0;
netfirst = TAILQ_FIRST(&stcb->asoc.nets);
if (rt == NULL) {
/* Since we have no route put it at the back */
TAILQ_INSERT_TAIL(&stcb->asoc.nets, net, sctp_next);
} else if (netfirst == NULL) {
/* We are the first one in the pool. */
TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next);
} else if ((netfirst_rt = rtcache_validate(&netfirst->ro)) == NULL) {
/*
* First one has NO route. Place this one ahead of the
* first one.
*/
TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next);
} else if (rt->rt_ifp != netfirst_rt->rt_ifp) {
rtcache_unref(netfirst_rt, &netfirst->ro);
/*
* This one has a different interface than the one at the
* top of the list. Place it ahead.
*/
TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next);
} else {
/*
* Ok we have the same interface as the first one. Move
* forward until we find either
* a) one with a NULL route... insert ahead of that
* b) one with a different ifp.. insert after that.
* c) end of the list.. insert at the tail.
*/
struct sctp_nets *netlook;
struct rtentry *netlook_rt;
do {
netlook = TAILQ_NEXT(netfirst, sctp_next);
if (netlook == NULL) {
/* End of the list */
TAILQ_INSERT_TAIL(&stcb->asoc.nets, net,
sctp_next);
break;
} else if ((netlook_rt = rtcache_validate(&netlook->ro)) == NULL) {
/* next one has NO route */
TAILQ_INSERT_BEFORE(netfirst, net, sctp_next);
break;
} else if (netlook_rt->rt_ifp != rt->rt_ifp) {
rtcache_unref(netlook_rt, &netlook->ro);
TAILQ_INSERT_AFTER(&stcb->asoc.nets, netlook,
net, sctp_next);
break;
}
rtcache_unref(netlook_rt, &netlook->ro);
/* Shift forward */
netfirst = netlook;
} while (netlook != NULL);
rtcache_unref(netfirst_rt, &netfirst->ro);
}
/* got to have a primary set */
if (stcb->asoc.primary_destination == 0) {
stcb->asoc.primary_destination = net;
} else if (!rtcache_validate(&stcb->asoc.primary_destination->ro)) {
/* No route to current primary adopt new primary */
stcb->asoc.primary_destination = net;
}
sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, stcb->sctp_ep, stcb,
net);
return (0);
}
/*
* allocate an association and add it to the endpoint. The caller must
* be careful to add all additional addresses once they are know right
* away or else the assoc will be may experience a blackout scenario.
*/
struct sctp_tcb *
sctp_aloc_assoc(struct sctp_inpcb *inp, struct sockaddr *firstaddr,
int for_a_init, int *error, uint32_t override_tag)
{
struct sctp_tcb *stcb;
struct sctp_association *asoc;
struct sctpasochead *head;
uint16_t rport;
int err;
/*
* Assumption made here:
* Caller has done a sctp_findassociation_ep_addr(ep, addr's);
* to make sure the address does not exist already.
*/
if (sctppcbinfo.ipi_count_asoc >= SCTP_MAX_NUM_OF_ASOC) {
/* Hit max assoc, sorry no more */
*error = ENOBUFS;
return (NULL);
}
SCTP_INP_RLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) {
/*
* If its in the TCP pool, its NOT allowed to create an
* association. The parent listener needs to call
* sctp_aloc_assoc.. or the one-2-many socket. If a
* peeled off, or connected one does this.. its an error.
*/
SCTP_INP_RUNLOCK(inp);
*error = EINVAL;
return (NULL);
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB3) {
printf("Allocate an association for peer:");
if (firstaddr)
sctp_print_address(firstaddr);
else
printf("None\n");
printf("Port:%d\n",
ntohs(((struct sockaddr_in *)firstaddr)->sin_port));
}
#endif /* SCTP_DEBUG */
if (firstaddr->sa_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)firstaddr;
if ((sin->sin_port == 0) || (sin->sin_addr.s_addr == 0)) {
/* Invalid address */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB3) {
printf("peer address invalid\n");
}
#endif
SCTP_INP_RUNLOCK(inp);
*error = EINVAL;
return (NULL);
}
rport = sin->sin_port;
} else if (firstaddr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)firstaddr;
if ((sin6->sin6_port == 0) ||
(IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))) {
/* Invalid address */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB3) {
printf("peer address invalid\n");
}
#endif
SCTP_INP_RUNLOCK(inp);
*error = EINVAL;
return (NULL);
}
rport = sin6->sin6_port;
} else {
/* not supported family type */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB3) {
printf("BAD family %d\n", firstaddr->sa_family);
}
#endif
SCTP_INP_RUNLOCK(inp);
*error = EINVAL;
return (NULL);
}
SCTP_INP_RUNLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) {
/*
* If you have not performed a bind, then we need to do
* the ephemerial bind for you.
*/
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB3) {
printf("Doing implicit BIND\n");
}
#endif
if ((err = sctp_inpcb_bind(inp->sctp_socket,
(struct sockaddr *)NULL, (struct lwp *)NULL))){
/* bind error, probably perm */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB3) {
printf("BIND FAILS ret:%d\n", err);
}
#endif
*error = err;
return (NULL);
}
}
stcb = (struct sctp_tcb *)SCTP_ZONE_GET(sctppcbinfo.ipi_zone_asoc);
if (stcb == NULL) {
/* out of memory? */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB3) {
printf("aloc_assoc: no assoc mem left, stcb=NULL\n");
}
#endif
*error = ENOMEM;
return (NULL);
}
sctppcbinfo.ipi_count_asoc++;
sctppcbinfo.ipi_gencnt_asoc++;
memset(stcb, 0, sizeof(*stcb));
asoc = &stcb->asoc;
SCTP_TCB_LOCK_INIT(stcb);
/* setup back pointers */
#ifdef SCTP_DEBUG
printf("Before back pointers\n");
#endif
stcb->sctp_ep = inp;
stcb->sctp_socket = inp->sctp_socket;
if ((err = sctp_init_asoc(inp, asoc, for_a_init, override_tag))) {
/* failed */
SCTP_TCB_LOCK_DESTROY (stcb);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_asoc, stcb);
sctppcbinfo.ipi_count_asoc--;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB3) {
printf("aloc_assoc: couldn't init asoc, out of mem?!\n");
}
#endif
*error = err;
return (NULL);
}
/* and the port */
stcb->rport = rport;
SCTP_INP_INFO_WLOCK();
SCTP_INP_WLOCK(inp);
if (inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE|SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
/* inpcb freed while alloc going on */
SCTP_TCB_LOCK_DESTROY (stcb);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_asoc, stcb);
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
sctppcbinfo.ipi_count_asoc--;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB3) {
printf("aloc_assoc: couldn't init asoc, out of mem?!\n");
}
#endif
*error = EINVAL;
return (NULL);
}
SCTP_TCB_LOCK(stcb);
/* now that my_vtag is set, add it to the hash */
head = &sctppcbinfo.sctp_asochash[SCTP_PCBHASH_ASOC(stcb->asoc.my_vtag,
sctppcbinfo.hashasocmark)];
/* put it in the bucket in the vtag hash of assoc's for the system */
LIST_INSERT_HEAD(head, stcb, sctp_asocs);
SCTP_INP_INFO_WUNLOCK();
if ((err = sctp_add_remote_addr(stcb, firstaddr, 1, 1))) {
/* failure.. memory error? */
if (asoc->strmout)
free(asoc->strmout, M_PCB);
if (asoc->mapping_array)
free(asoc->mapping_array, M_PCB);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_asoc, stcb);
sctppcbinfo.ipi_count_asoc--;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB3) {
printf("aloc_assoc: couldn't add remote addr!\n");
}
#endif
SCTP_TCB_LOCK_DESTROY (stcb);
*error = ENOBUFS;
return (NULL);
}
/* Init all the timers */
callout_init(&asoc->hb_timer.timer, 0);
callout_init(&asoc->dack_timer.timer, 0);
callout_init(&asoc->asconf_timer.timer, 0);
callout_init(&asoc->shut_guard_timer.timer, 0);
callout_init(&asoc->autoclose_timer.timer, 0);
callout_init(&asoc->delayed_event_timer.timer, 0);
LIST_INSERT_HEAD(&inp->sctp_asoc_list, stcb, sctp_tcblist);
/* now file the port under the hash as well */
#ifdef SCTP_DEBUG
printf("Before hashing %ld size %d\n",
inp->sctp_hashmark, sctp_pcbtblsize);
#endif
if (inp->sctp_tcbhash != NULL) {
head = &inp->sctp_tcbhash[SCTP_PCBHASH_ALLADDR(stcb->rport,
inp->sctp_hashmark)];
LIST_INSERT_HEAD(head, stcb, sctp_tcbhash);
}
#ifdef SCTP_DEBUG
printf("After hashing\n");
#endif
SCTP_INP_WUNLOCK(inp);
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Association %p now allocated\n", stcb);
}
#endif
return (stcb);
}
void
sctp_free_remote_addr(struct sctp_nets *net)
{
if (net == NULL)
return;
net->ref_count--;
if (net->ref_count <= 0) {
/* stop timer if running */
callout_stop(&net->rxt_timer.timer);
callout_stop(&net->pmtu_timer.timer);
callout_destroy(&net->rxt_timer.timer);
callout_destroy(&net->pmtu_timer.timer);
net->dest_state = SCTP_ADDR_NOT_REACHABLE;
rtcache_free(&net->ro);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_net, net);
sctppcbinfo.ipi_count_raddr--;
}
}
/*
* remove a remote endpoint address from an association, it
* will fail if the address does not exist.
*/
int
sctp_del_remote_addr(struct sctp_tcb *stcb, struct sockaddr *remaddr)
{
/*
* Here we need to remove a remote address. This is quite simple, we
* first find it in the list of address for the association
* (tasoc->asoc.nets) and then if it is there, we do a LIST_REMOVE on
* that item.
* Note we do not allow it to be removed if there are no other
* addresses.
*/
struct sctp_association *asoc;
struct sctp_nets *net, *net_tmp;
asoc = &stcb->asoc;
if (asoc->numnets < 2) {
/* Must have at LEAST two remote addresses */
return (-1);
}
/* locate the address */
for (net = TAILQ_FIRST(&asoc->nets); net != NULL; net = net_tmp) {
net_tmp = TAILQ_NEXT(net, sctp_next);
if (rtcache_getdst(&net->ro)->sa_family != remaddr->sa_family) {
continue;
}
if (sctp_cmpaddr(rtcache_getdst(&net->ro), remaddr)) {
/* we found the guy */
asoc->numnets--;
TAILQ_REMOVE(&asoc->nets, net, sctp_next);
sctp_free_remote_addr(net);
if (net == asoc->primary_destination) {
/* Reset primary */
struct sctp_nets *lnet;
lnet = TAILQ_FIRST(&asoc->nets);
/* Try to find a confirmed primary */
asoc->primary_destination =
sctp_find_alternate_net(stcb, lnet);
}
if (net == asoc->last_data_chunk_from) {
/* Reset primary */
asoc->last_data_chunk_from =
TAILQ_FIRST(&asoc->nets);
}
if (net == asoc->last_control_chunk_from) {
/* Reset primary */
asoc->last_control_chunk_from =
TAILQ_FIRST(&asoc->nets);
}
if (net == asoc->asconf_last_sent_to) {
/* Reset primary */
asoc->asconf_last_sent_to =
TAILQ_FIRST(&asoc->nets);
}
return (0);
}
}
/* not found. */
return (-2);
}
static void
sctp_add_vtag_to_timewait(struct sctp_inpcb *inp, u_int32_t tag)
{
struct sctpvtaghead *chain;
struct sctp_tagblock *twait_block;
struct timeval now;
int set, i;
SCTP_GETTIME_TIMEVAL(&now);
chain = &sctppcbinfo.vtag_timewait[(tag % SCTP_STACK_VTAG_HASH_SIZE)];
set = 0;
if (!LIST_EMPTY(chain)) {
/* Block(s) present, lets find space, and expire on the fly */
LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) {
for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) {
if ((twait_block->vtag_block[i].v_tag == 0) &&
!set) {
twait_block->vtag_block[0].tv_sec_at_expire =
now.tv_sec + SCTP_TIME_WAIT;
twait_block->vtag_block[0].v_tag = tag;
set = 1;
} else if ((twait_block->vtag_block[i].v_tag) &&
((long)twait_block->vtag_block[i].tv_sec_at_expire >
now.tv_sec)) {
/* Audit expires this guy */
twait_block->vtag_block[i].tv_sec_at_expire = 0;
twait_block->vtag_block[i].v_tag = 0;
if (set == 0) {
/* Reuse it for my new tag */
twait_block->vtag_block[0].tv_sec_at_expire = now.tv_sec + SCTP_TIME_WAIT;
twait_block->vtag_block[0].v_tag = tag;
set = 1;
}
}
}
if (set) {
/*
* We only do up to the block where we can
* place our tag for audits
*/
break;
}
}
}
/* Need to add a new block to chain */
if (!set) {
twait_block = malloc(sizeof(struct sctp_tagblock), M_PCB, M_NOWAIT);
if (twait_block == NULL) {
return;
}
memset(twait_block, 0, sizeof(struct sctp_timewait));
LIST_INSERT_HEAD(chain, twait_block, sctp_nxt_tagblock);
twait_block->vtag_block[0].tv_sec_at_expire = now.tv_sec +
SCTP_TIME_WAIT;
twait_block->vtag_block[0].v_tag = tag;
}
}
static void
sctp_iterator_asoc_being_freed(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
{
struct sctp_iterator *it;
/* Unlock the tcb lock we do this so
* we avoid a dead lock scenario where
* the iterator is waiting on the TCB lock
* and the TCB lock is waiting on the iterator
* lock.
*/
SCTP_ITERATOR_LOCK();
SCTP_INP_INFO_WLOCK();
SCTP_INP_WLOCK(inp);
SCTP_TCB_LOCK(stcb);
it = stcb->asoc.stcb_starting_point_for_iterator;
if (it == NULL) {
return;
}
if (it->inp != stcb->sctp_ep) {
/* hm, focused on the wrong one? */
return;
}
if (it->stcb != stcb) {
return;
}
it->stcb = LIST_NEXT(stcb, sctp_tcblist);
if (it->stcb == NULL) {
/* done with all asoc's in this assoc */
if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) {
it->inp = NULL;
} else {
it->inp = LIST_NEXT(inp, sctp_list);
}
}
}
/*
* Free the association after un-hashing the remote port.
*/
void
sctp_free_assoc(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
{
struct sctp_association *asoc;
struct sctp_nets *net, *prev;
struct sctp_laddr *laddr;
struct sctp_tmit_chunk *chk;
struct sctp_asconf_addr *aparam;
struct sctp_socket_q_list *sq;
int s;
/* first, lets purge the entry from the hash table. */
s = splsoftnet();
if (stcb->asoc.state == 0) {
printf("Freeing already free association:%p - huh??\n",
stcb);
splx(s);
return;
}
asoc = &stcb->asoc;
asoc->state = 0;
/* now clean up any other timers */
callout_stop(&asoc->hb_timer.timer);
callout_destroy(&asoc->hb_timer.timer);
callout_stop(&asoc->dack_timer.timer);
callout_destroy(&asoc->dack_timer.timer);
callout_stop(&asoc->asconf_timer.timer);
callout_destroy(&asoc->asconf_timer.timer);
callout_stop(&asoc->shut_guard_timer.timer);
callout_destroy(&asoc->shut_guard_timer.timer);
callout_stop(&asoc->autoclose_timer.timer);
callout_destroy(&asoc->autoclose_timer.timer);
callout_stop(&asoc->delayed_event_timer.timer);
callout_destroy(&asoc->delayed_event_timer.timer);
TAILQ_FOREACH(net, &asoc->nets, sctp_next) {
callout_stop(&net->rxt_timer.timer);
callout_stop(&net->pmtu_timer.timer);
callout_destroy(&net->rxt_timer.timer);
callout_destroy(&net->pmtu_timer.timer);
}
/* Iterator asoc being freed we send an
* unlocked TCB. It returns with INP_INFO
* and INP write locked and the TCB locked
* too and of course the iterator lock
* in place as well..
*/
SCTP_TCB_UNLOCK(stcb);
sctp_iterator_asoc_being_freed(inp, stcb);
/* Null all of my entry's on the socket q */
TAILQ_FOREACH(sq, &inp->sctp_queue_list, next_sq) {
if (sq->tcb == stcb) {
sq->tcb = NULL;
}
}
if (inp->sctp_tcb_at_block == (void *)stcb) {
inp->error_on_block = ECONNRESET;
}
if (inp->sctp_tcbhash) {
LIST_REMOVE(stcb, sctp_tcbhash);
}
/* Now lets remove it from the list of ALL associations in the EP */
LIST_REMOVE(stcb, sctp_tcblist);
SCTP_INP_WUNLOCK(inp);
SCTP_ITERATOR_UNLOCK();
/* pull from vtag hash */
LIST_REMOVE(stcb, sctp_asocs);
/*
* Now before we can free the assoc, we must remove all of the
* networks and any other allocated space.. i.e. add removes here
* before the SCTP_ZONE_FREE() of the tasoc entry.
*/
sctp_add_vtag_to_timewait(inp, asoc->my_vtag);
SCTP_INP_INFO_WUNLOCK();
prev = NULL;
while (!TAILQ_EMPTY(&asoc->nets)) {
net = TAILQ_FIRST(&asoc->nets);
/* pull from list */
if ((sctppcbinfo.ipi_count_raddr == 0) || (prev == net)) {
break;
}
prev = net;
TAILQ_REMOVE(&asoc->nets, net, sctp_next);
rtcache_free(&net->ro);
/* free it */
net->ref_count = 0;
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_net, net);
sctppcbinfo.ipi_count_raddr--;
}
/*
* The chunk lists and such SHOULD be empty but we check them
* just in case.
*/
/* anything on the wheel needs to be removed */
while (!TAILQ_EMPTY(&asoc->out_wheel)) {
struct sctp_stream_out *outs;
outs = TAILQ_FIRST(&asoc->out_wheel);
TAILQ_REMOVE(&asoc->out_wheel, outs, next_spoke);
/* now clean up any chunks here */
chk = TAILQ_FIRST(&outs->outqueue);
while (chk) {
TAILQ_REMOVE(&outs->outqueue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
chk->whoTo = NULL;
chk->asoc = NULL;
/* Free the chunk */
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
sctppcbinfo.ipi_count_chunk--;
sctppcbinfo.ipi_gencnt_chunk++;
if ((int)sctppcbinfo.ipi_count_chunk < 0) {
panic("Chunk count is negative");
}
chk = TAILQ_FIRST(&outs->outqueue);
}
outs = TAILQ_FIRST(&asoc->out_wheel);
}
if (asoc->pending_reply) {
free(asoc->pending_reply, M_PCB);
asoc->pending_reply = NULL;
}
chk = TAILQ_FIRST(&asoc->pending_reply_queue);
while (chk) {
TAILQ_REMOVE(&asoc->pending_reply_queue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
chk->whoTo = NULL;
chk->asoc = NULL;
/* Free the chunk */
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
sctppcbinfo.ipi_count_chunk--;
sctppcbinfo.ipi_gencnt_chunk++;
if ((int)sctppcbinfo.ipi_count_chunk < 0) {
panic("Chunk count is negative");
}
chk = TAILQ_FIRST(&asoc->pending_reply_queue);
}
/* pending send queue SHOULD be empty */
if (!TAILQ_EMPTY(&asoc->send_queue)) {
chk = TAILQ_FIRST(&asoc->send_queue);
while (chk) {
TAILQ_REMOVE(&asoc->send_queue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
sctppcbinfo.ipi_count_chunk--;
if ((int)sctppcbinfo.ipi_count_chunk < 0) {
panic("Chunk count is negative");
}
sctppcbinfo.ipi_gencnt_chunk++;
chk = TAILQ_FIRST(&asoc->send_queue);
}
}
/* sent queue SHOULD be empty */
if (!TAILQ_EMPTY(&asoc->sent_queue)) {
chk = TAILQ_FIRST(&asoc->sent_queue);
while (chk) {
TAILQ_REMOVE(&asoc->sent_queue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
sctppcbinfo.ipi_count_chunk--;
if ((int)sctppcbinfo.ipi_count_chunk < 0) {
panic("Chunk count is negative");
}
sctppcbinfo.ipi_gencnt_chunk++;
chk = TAILQ_FIRST(&asoc->sent_queue);
}
}
/* control queue MAY not be empty */
if (!TAILQ_EMPTY(&asoc->control_send_queue)) {
chk = TAILQ_FIRST(&asoc->control_send_queue);
while (chk) {
TAILQ_REMOVE(&asoc->control_send_queue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
sctppcbinfo.ipi_count_chunk--;
if ((int)sctppcbinfo.ipi_count_chunk < 0) {
panic("Chunk count is negative");
}
sctppcbinfo.ipi_gencnt_chunk++;
chk = TAILQ_FIRST(&asoc->control_send_queue);
}
}
if (!TAILQ_EMPTY(&asoc->reasmqueue)) {
chk = TAILQ_FIRST(&asoc->reasmqueue);
while (chk) {
TAILQ_REMOVE(&asoc->reasmqueue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
sctppcbinfo.ipi_count_chunk--;
if ((int)sctppcbinfo.ipi_count_chunk < 0) {
panic("Chunk count is negative");
}
sctppcbinfo.ipi_gencnt_chunk++;
chk = TAILQ_FIRST(&asoc->reasmqueue);
}
}
if (!TAILQ_EMPTY(&asoc->delivery_queue)) {
chk = TAILQ_FIRST(&asoc->delivery_queue);
while (chk) {
TAILQ_REMOVE(&asoc->delivery_queue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
sctppcbinfo.ipi_count_chunk--;
if ((int)sctppcbinfo.ipi_count_chunk < 0) {
panic("Chunk count is negative");
}
sctppcbinfo.ipi_gencnt_chunk++;
chk = TAILQ_FIRST(&asoc->delivery_queue);
}
}
if (asoc->mapping_array) {
free(asoc->mapping_array, M_PCB);
asoc->mapping_array = NULL;
}
/* the stream outs */
if (asoc->strmout) {
free(asoc->strmout, M_PCB);
asoc->strmout = NULL;
}
asoc->streamoutcnt = 0;
if (asoc->strmin) {
int i;
for (i = 0; i < asoc->streamincnt; i++) {
if (!TAILQ_EMPTY(&asoc->strmin[i].inqueue)) {
/* We have somethings on the streamin queue */
chk = TAILQ_FIRST(&asoc->strmin[i].inqueue);
while (chk) {
TAILQ_REMOVE(&asoc->strmin[i].inqueue,
chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk,
chk);
sctppcbinfo.ipi_count_chunk--;
if ((int)sctppcbinfo.ipi_count_chunk < 0) {
panic("Chunk count is negative");
}
sctppcbinfo.ipi_gencnt_chunk++;
chk = TAILQ_FIRST(&asoc->strmin[i].inqueue);
}
}
}
free(asoc->strmin, M_PCB);
asoc->strmin = NULL;
}
asoc->streamincnt = 0;
/* local addresses, if any */
while (!LIST_EMPTY(&asoc->sctp_local_addr_list)) {
laddr = LIST_FIRST(&asoc->sctp_local_addr_list);
LIST_REMOVE(laddr, sctp_nxt_addr);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_laddr, laddr);
sctppcbinfo.ipi_count_laddr--;
}
/* pending asconf (address) parameters */
while (!TAILQ_EMPTY(&asoc->asconf_queue)) {
aparam = TAILQ_FIRST(&asoc->asconf_queue);
TAILQ_REMOVE(&asoc->asconf_queue, aparam, next);
free(aparam, M_PCB);
}
if (asoc->last_asconf_ack_sent != NULL) {
sctp_m_freem(asoc->last_asconf_ack_sent);
asoc->last_asconf_ack_sent = NULL;
}
/* Insert new items here :> */
/* Get rid of LOCK */
SCTP_TCB_LOCK_DESTROY(stcb);
/* now clean up the tasoc itself */
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_asoc, stcb);
sctppcbinfo.ipi_count_asoc--;
if ((inp->sctp_socket->so_snd.sb_cc) ||
(inp->sctp_socket->so_snd.sb_mbcnt)) {
/* This will happen when a abort is done */
inp->sctp_socket->so_snd.sb_cc = 0;
inp->sctp_socket->so_snd.sb_mbcnt = 0;
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) {
if ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
/*
* For the base fd, that is NOT in TCP pool we
* turn off the connected flag. This allows
* non-listening endpoints to connect/shutdown/
* connect.
*/
inp->sctp_flags &= ~SCTP_PCB_FLAGS_CONNECTED;
soisdisconnected(inp->sctp_socket);
}
/*
* For those that are in the TCP pool we just leave
* so it cannot be used. When they close the fd we
* will free it all.
*/
}
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) {
sctp_inpcb_free(inp, 0);
}
splx(s);
}
/*
* determine if a destination is "reachable" based upon the addresses
* bound to the current endpoint (e.g. only v4 or v6 currently bound)
*/
/*
* FIX: if we allow assoc-level bindx(), then this needs to be fixed
* to use assoc level v4/v6 flags, as the assoc *may* not have the
* same address types bound as its endpoint
*/
int
sctp_destination_is_reachable(struct sctp_tcb *stcb, const struct sockaddr *destaddr)
{
struct sctp_inpcb *inp;
int answer;
/* No locks here, the TCB, in all cases is already
* locked and an assoc is up. There is either a
* INP lock by the caller applied (in asconf case when
* deleting an address) or NOT in the HB case, however
* if HB then the INP increment is up and the INP
* will not be removed (on top of the fact that
* we have a TCB lock). So we only want to
* read the sctp_flags, which is either bound-all
* or not.. no protection needed since once an
* assoc is up you can't be changing your binding.
*/
inp = stcb->sctp_ep;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
/* if bound all, destination is not restricted */
/* RRS: Question during lock work: Is this
* correct? If you are bound-all you still
* might need to obey the V4--V6 flags???
* IMO this bound-all stuff needs to be removed!
*/
return (1);
}
/* NOTE: all "scope" checks are done when local addresses are added */
if (destaddr->sa_family == AF_INET6) {
answer = inp->inp_vflag & INP_IPV6;
} else if (destaddr->sa_family == AF_INET) {
answer = inp->inp_vflag & INP_IPV4;
} else {
/* invalid family, so it's unreachable */
answer = 0;
}
return (answer);
}
/*
* update the inp_vflags on an endpoint
*/
static void
sctp_update_ep_vflag(struct sctp_inpcb *inp) {
struct sctp_laddr *laddr;
/* first clear the flag */
inp->inp_vflag = 0;
/* set the flag based on addresses on the ep list */
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa == NULL) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("An ounce of prevention is worth a pound of cure\n");
}
#endif /* SCTP_DEBUG */
continue;
}
if (laddr->ifa->ifa_addr) {
continue;
}
if (laddr->ifa->ifa_addr->sa_family == AF_INET6) {
inp->inp_vflag |= INP_IPV6;
} else if (laddr->ifa->ifa_addr->sa_family == AF_INET) {
inp->inp_vflag |= INP_IPV4;
}
}
}
/*
* Add the address to the endpoint local address list
* There is nothing to be done if we are bound to all addresses
*/
int
sctp_add_local_addr_ep(struct sctp_inpcb *inp, struct ifaddr *ifa)
{
struct sctp_laddr *laddr;
int fnd, error;
fnd = 0;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
/* You are already bound to all. You have it already */
return (0);
}
if (ifa->ifa_addr->sa_family == AF_INET6) {
struct in6_ifaddr *ifa6;
ifa6 = (struct in6_ifaddr *)ifa;
if (ifa6->ia6_flags & (IN6_IFF_DETACHED |
IN6_IFF_DEPRECATED | IN6_IFF_ANYCAST | IN6_IFF_NOTREADY))
/* Can't bind a non-existent addr. */
return (-1);
}
/* first, is it already present? */
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa == ifa) {
fnd = 1;
break;
}
}
if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) && (fnd == 0)) {
/* Not bound to all */
error = sctp_insert_laddr(&inp->sctp_addr_list, ifa);
if (error != 0)
return (error);
inp->laddr_count++;
/* update inp_vflag flags */
if (ifa->ifa_addr->sa_family == AF_INET6) {
inp->inp_vflag |= INP_IPV6;
} else if (ifa->ifa_addr->sa_family == AF_INET) {
inp->inp_vflag |= INP_IPV4;
}
}
return (0);
}
/*
* select a new (hopefully reachable) destination net
* (should only be used when we deleted an ep addr that is the
* only usable source address to reach the destination net)
*/
static void
sctp_select_primary_destination(struct sctp_tcb *stcb)
{
struct sctp_nets *net;
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
/* for now, we'll just pick the first reachable one we find */
if (net->dest_state & SCTP_ADDR_UNCONFIRMED)
continue;
if (sctp_destination_is_reachable(stcb,
rtcache_getdst(&net->ro))) {
/* found a reachable destination */
stcb->asoc.primary_destination = net;
}
}
/* I can't there from here! ...we're gonna die shortly... */
}
/*
* Delete the address from the endpoint local address list
* There is nothing to be done if we are bound to all addresses
*/
int
sctp_del_local_addr_ep(struct sctp_inpcb *inp, struct ifaddr *ifa)
{
struct sctp_laddr *laddr;
int fnd;
fnd = 0;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
/* You are already bound to all. You have it already */
return (EINVAL);
}
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa == ifa) {
fnd = 1;
break;
}
}
if (fnd && (inp->laddr_count < 2)) {
/* can't delete unless there are at LEAST 2 addresses */
return (-1);
}
if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) && (fnd)) {
/*
* clean up any use of this address
* go through our associations and clear any
* last_used_address that match this one
* for each assoc, see if a new primary_destination is needed
*/
struct sctp_tcb *stcb;
/* clean up "next_addr_touse" */
if (inp->next_addr_touse == laddr)
/* delete this address */
inp->next_addr_touse = NULL;
/* clean up "last_used_address" */
LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
if (stcb->asoc.last_used_address == laddr)
/* delete this address */
stcb->asoc.last_used_address = NULL;
} /* for each tcb */
/* remove it from the ep list */
sctp_remove_laddr(laddr);
inp->laddr_count--;
/* update inp_vflag flags */
sctp_update_ep_vflag(inp);
/* select a new primary destination if needed */
LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
/* presume caller (sctp_asconf.c) already owns INP lock */
SCTP_TCB_LOCK(stcb);
if (sctp_destination_is_reachable(stcb,
rtcache_getdst(&stcb->asoc.primary_destination->ro)) == 0) {
sctp_select_primary_destination(stcb);
}
SCTP_TCB_UNLOCK(stcb);
} /* for each tcb */
}
return (0);
}
/*
* Add the addr to the TCB local address list
* For the BOUNDALL or dynamic case, this is a "pending" address list
* (eg. addresses waiting for an ASCONF-ACK response)
* For the subset binding, static case, this is a "valid" address list
*/
int
sctp_add_local_addr_assoc(struct sctp_tcb *stcb, struct ifaddr *ifa)
{
struct sctp_laddr *laddr;
int error;
/* Assumes TCP is locked.. and possiblye
* the INP. May need to confirm/fix that if
* we need it and is not the case.
*/
if (ifa->ifa_addr->sa_family == AF_INET6) {
struct in6_ifaddr *ifa6;
ifa6 = (struct in6_ifaddr *)ifa;
if (ifa6->ia6_flags & (IN6_IFF_DETACHED |
/* IN6_IFF_DEPRECATED | */
IN6_IFF_ANYCAST |
IN6_IFF_NOTREADY))
/* Can't bind a non-existent addr. */
return (-1);
}
/* does the address already exist? */
LIST_FOREACH(laddr, &stcb->asoc.sctp_local_addr_list, sctp_nxt_addr) {
if (laddr->ifa == ifa) {
return (-1);
}
}
/* add to the list */
error = sctp_insert_laddr(&stcb->asoc.sctp_local_addr_list, ifa);
if (error != 0)
return (error);
return (0);
}
/*
* insert an laddr entry with the given ifa for the desired list
*/
int
sctp_insert_laddr(struct sctpladdr *list, struct ifaddr *ifa) {
struct sctp_laddr *laddr;
int s;
s = splsoftnet();
laddr = (struct sctp_laddr *)SCTP_ZONE_GET(sctppcbinfo.ipi_zone_laddr);
if (laddr == NULL) {
/* out of memory? */
splx(s);
return (EINVAL);
}
sctppcbinfo.ipi_count_laddr++;
sctppcbinfo.ipi_gencnt_laddr++;
memset(laddr, 0, sizeof(*laddr));
laddr->ifa = ifa;
/* insert it */
LIST_INSERT_HEAD(list, laddr, sctp_nxt_addr);
splx(s);
return (0);
}
/*
* Remove an laddr entry from the local address list (on an assoc)
*/
void
sctp_remove_laddr(struct sctp_laddr *laddr)
{
int s;
s = splsoftnet();
/* remove from the list */
LIST_REMOVE(laddr, sctp_nxt_addr);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_laddr, laddr);
sctppcbinfo.ipi_count_laddr--;
sctppcbinfo.ipi_gencnt_laddr++;
splx(s);
}
/*
* Remove an address from the TCB local address list
*/
int
sctp_del_local_addr_assoc(struct sctp_tcb *stcb, struct ifaddr *ifa)
{
struct sctp_inpcb *inp;
struct sctp_laddr *laddr;
/* This is called by asconf work. It is assumed that
* a) The TCB is locked
* and
* b) The INP is locked.
* This is true in as much as I can trace through
* the entry asconf code where I did these locks.
* Again, the ASCONF code is a bit different in
* that it does lock the INP during its work often
* times. This must be since we don't want other
* proc's looking up things while what they are
* looking up is changing :-D
*/
inp = stcb->sctp_ep;
/* if subset bound and don't allow ASCONF's, can't delete last */
if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) &&
((inp->sctp_flags & SCTP_PCB_FLAGS_DO_ASCONF) == 0)) {
if (stcb->asoc.numnets < 2) {
/* can't delete last address */
return (-1);
}
}
LIST_FOREACH(laddr, &stcb->asoc.sctp_local_addr_list, sctp_nxt_addr) {
/* remove the address if it exists */
if (laddr->ifa == NULL)
continue;
if (laddr->ifa == ifa) {
sctp_remove_laddr(laddr);
return (0);
}
}
/* address not found! */
return (-1);
}
/*
* Remove an address from the TCB local address list
* lookup using a sockaddr addr
*/
int
sctp_del_local_addr_assoc_sa(struct sctp_tcb *stcb, struct sockaddr *sa)
{
struct sctp_inpcb *inp;
struct sctp_laddr *laddr;
struct sockaddr *l_sa;
/*
* This function I find does not seem to have a caller.
* As such we NEED TO DELETE this code. If we do
* find a caller, the caller MUST have locked the TCB
* at the least and probably the INP as well.
*/
inp = stcb->sctp_ep;
/* if subset bound and don't allow ASCONF's, can't delete last */
if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) &&
((inp->sctp_flags & SCTP_PCB_FLAGS_DO_ASCONF) == 0)) {
if (stcb->asoc.numnets < 2) {
/* can't delete last address */
return (-1);
}
}
LIST_FOREACH(laddr, &stcb->asoc.sctp_local_addr_list, sctp_nxt_addr) {
/* make sure the address exists */
if (laddr->ifa == NULL)
continue;
if (laddr->ifa->ifa_addr == NULL)
continue;
l_sa = laddr->ifa->ifa_addr;
if (l_sa->sa_family == AF_INET6) {
/* IPv6 address */
struct sockaddr_in6 *sin1, *sin2;
sin1 = (struct sockaddr_in6 *)l_sa;
sin2 = (struct sockaddr_in6 *)sa;
if (memcmp(&sin1->sin6_addr, &sin2->sin6_addr,
sizeof(struct in6_addr)) == 0) {
/* matched */
sctp_remove_laddr(laddr);
return (0);
}
} else if (l_sa->sa_family == AF_INET) {
/* IPv4 address */
struct sockaddr_in *sin1, *sin2;
sin1 = (struct sockaddr_in *)l_sa;
sin2 = (struct sockaddr_in *)sa;
if (sin1->sin_addr.s_addr == sin2->sin_addr.s_addr) {
/* matched */
sctp_remove_laddr(laddr);
return (0);
}
} else {
/* invalid family */
return (-1);
}
} /* end foreach */
/* address not found! */
return (-1);
}
static char sctp_pcb_initialized = 0;
#if defined(__FreeBSD__) || defined(__APPLE__)
/* sysctl */
static int sctp_max_number_of_assoc = SCTP_MAX_NUM_OF_ASOC;
static int sctp_scale_up_for_address = SCTP_SCALE_FOR_ADDR;
#endif /* FreeBSD || APPLE */
#ifndef SCTP_TCBHASHSIZE
#define SCTP_TCBHASHSIZE 1024
#endif
#ifndef SCTP_CHUNKQUEUE_SCALE
#define SCTP_CHUNKQUEUE_SCALE 10
#endif
void
sctp_pcb_init(void)
{
/*
* SCTP initialization for the PCB structures
* should be called by the sctp_init() funciton.
*/
int i;
int hashtblsize = SCTP_TCBHASHSIZE;
#if defined(__FreeBSD__) || defined(__APPLE__)
int sctp_chunkscale = SCTP_CHUNKQUEUE_SCALE;
#endif
if (sctp_pcb_initialized != 0) {
/* error I was called twice */
return;
}
sctp_pcb_initialized = 1;
/* Init all peg counts */
for (i = 0; i < SCTP_NUMBER_OF_PEGS; i++) {
sctp_pegs[i] = 0;
}
/* init the empty list of (All) Endpoints */
LIST_INIT(&sctppcbinfo.listhead);
/* init the iterator head */
LIST_INIT(&sctppcbinfo.iteratorhead);
/* init the hash table of endpoints */
#if defined(__FreeBSD__)
#if defined(__FreeBSD_cc_version) && __FreeBSD_cc_version >= 440000
TUNABLE_INT_FETCH("net.inet.sctp.tcbhashsize", &hashtblsize);
TUNABLE_INT_FETCH("net.inet.sctp.pcbhashsize", &sctp_pcbtblsize);
TUNABLE_INT_FETCH("net.inet.sctp.chunkscale", &sctp_chunkscale);
#else
TUNABLE_INT_FETCH("net.inet.sctp.tcbhashsize", SCTP_TCBHASHSIZE,
hashtblsize);
TUNABLE_INT_FETCH("net.inet.sctp.pcbhashsize", SCTP_PCBHASHSIZE,
sctp_pcbtblsize);
TUNABLE_INT_FETCH("net.inet.sctp.chunkscale", SCTP_CHUNKQUEUE_SCALE,
sctp_chunkscale);
#endif
#endif
sctppcbinfo.sctp_asochash = hashinit((hashtblsize * 31), HASH_LIST,
M_WAITOK, &sctppcbinfo.hashasocmark);
sctppcbinfo.sctp_ephash = hashinit(hashtblsize, HASH_LIST,
M_WAITOK, &sctppcbinfo.hashmark);
sctppcbinfo.sctp_tcpephash = hashinit(hashtblsize, HASH_LIST,
M_WAITOK, &sctppcbinfo.hashtcpmark);
sctppcbinfo.hashtblsize = hashtblsize;
/* init the zones */
/*
* FIX ME: Should check for NULL returns, but if it does fail we
* are doomed to panic anyways... add later maybe.
*/
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_ep, "sctp_ep",
sizeof(struct sctp_inpcb), maxsockets);
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_asoc, "sctp_asoc",
sizeof(struct sctp_tcb), sctp_max_number_of_assoc);
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_laddr, "sctp_laddr",
sizeof(struct sctp_laddr),
(sctp_max_number_of_assoc * sctp_scale_up_for_address));
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_net, "sctp_raddr",
sizeof(struct sctp_nets),
(sctp_max_number_of_assoc * sctp_scale_up_for_address));
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_chunk, "sctp_chunk",
sizeof(struct sctp_tmit_chunk),
(sctp_max_number_of_assoc * sctp_scale_up_for_address *
sctp_chunkscale));
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_sockq, "sctp_sockq",
sizeof(struct sctp_socket_q_list),
(sctp_max_number_of_assoc * sctp_scale_up_for_address *
sctp_chunkscale));
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_hash, "sctp_hash",
sizeof(void *) * sctp_pcbtblsize, maxsockets);
/* Master Lock INIT for info structure */
SCTP_INP_INFO_LOCK_INIT();
SCTP_ITERATOR_LOCK_INIT();
/* not sure if we need all the counts */
sctppcbinfo.ipi_count_ep = 0;
sctppcbinfo.ipi_gencnt_ep = 0;
/* assoc/tcb zone info */
sctppcbinfo.ipi_count_asoc = 0;
sctppcbinfo.ipi_gencnt_asoc = 0;
/* local addrlist zone info */
sctppcbinfo.ipi_count_laddr = 0;
sctppcbinfo.ipi_gencnt_laddr = 0;
/* remote addrlist zone info */
sctppcbinfo.ipi_count_raddr = 0;
sctppcbinfo.ipi_gencnt_raddr = 0;
/* chunk info */
sctppcbinfo.ipi_count_chunk = 0;
sctppcbinfo.ipi_gencnt_chunk = 0;
/* socket queue zone info */
sctppcbinfo.ipi_count_sockq = 0;
sctppcbinfo.ipi_gencnt_sockq = 0;
/* mbuf tracker */
sctppcbinfo.mbuf_track = 0;
/* port stuff */
sctppcbinfo.lastlow = anonportmin;
/* Init the TIMEWAIT list */
for (i = 0; i < SCTP_STACK_VTAG_HASH_SIZE; i++) {
LIST_INIT(&sctppcbinfo.vtag_timewait[i]);
}
#if defined(_SCTP_NEEDS_CALLOUT_) && !defined(__APPLE__)
TAILQ_INIT(&sctppcbinfo.callqueue);
#endif
}
int
sctp_load_addresses_from_init(struct sctp_tcb *stcb, struct mbuf *m,
int iphlen, int offset, int limit, struct sctphdr *sh,
struct sockaddr *altsa)
{
/*
* grub through the INIT pulling addresses and
* loading them to the nets structure in the asoc.
* The from address in the mbuf should also be loaded
* (if it is not already). This routine can be called
* with either INIT or INIT-ACK's as long as the
* m points to the IP packet and the offset points
* to the beginning of the parameters.
*/
struct sctp_inpcb *inp, *l_inp;
struct sctp_nets *net, *net_tmp;
struct ip *iph;
struct sctp_paramhdr *phdr, parm_buf;
struct sctp_tcb *stcb_tmp;
u_int16_t ptype, plen;
struct sockaddr *sa;
struct sockaddr_storage dest_store;
struct sockaddr *local_sa = (struct sockaddr *)&dest_store;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
/* First get the destination address setup too. */
memset(&sin, 0, sizeof(sin));
memset(&sin6, 0, sizeof(sin6));
sin.sin_family = AF_INET;
sin.sin_len = sizeof(sin);
sin.sin_port = stcb->rport;
sin6.sin6_family = AF_INET6;
sin6.sin6_len = sizeof(struct sockaddr_in6);
sin6.sin6_port = stcb->rport;
if (altsa == NULL) {
iph = mtod(m, struct ip *);
if (iph->ip_v == IPVERSION) {
/* its IPv4 */
struct sockaddr_in *sin_2;
sin_2 = (struct sockaddr_in *)(local_sa);
memset(sin_2, 0, sizeof(sin));
sin_2->sin_family = AF_INET;
sin_2->sin_len = sizeof(sin);
sin_2->sin_port = sh->dest_port;
sin_2->sin_addr.s_addr = iph->ip_dst.s_addr ;
sin.sin_addr = iph->ip_src;
sa = (struct sockaddr *)&sin;
} else if (iph->ip_v == (IPV6_VERSION >> 4)) {
/* its IPv6 */
struct ip6_hdr *ip6;
struct sockaddr_in6 *sin6_2;
ip6 = mtod(m, struct ip6_hdr *);
sin6_2 = (struct sockaddr_in6 *)(local_sa);
memset(sin6_2, 0, sizeof(sin6));
sin6_2->sin6_family = AF_INET6;
sin6_2->sin6_len = sizeof(struct sockaddr_in6);
sin6_2->sin6_port = sh->dest_port;
sin6.sin6_addr = ip6->ip6_src;
sa = (struct sockaddr *)&sin6;
} else {
sa = NULL;
}
} else {
/*
* For cookies we use the src address NOT from the packet
* but from the original INIT
*/
sa = altsa;
}
/* Turn off ECN until we get through all params */
stcb->asoc.ecn_allowed = 0;
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
/* mark all addresses that we have currently on the list */
net->dest_state |= SCTP_ADDR_NOT_IN_ASSOC;
}
/* does the source address already exist? if so skip it */
l_inp = inp = stcb->sctp_ep;
stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net_tmp, local_sa, stcb);
if ((stcb_tmp == NULL && inp == stcb->sctp_ep) || inp == NULL) {
/* we must add the source address */
/* no scope set here since we have a tcb already. */
if ((sa->sa_family == AF_INET) &&
(stcb->asoc.ipv4_addr_legal)) {
if (sctp_add_remote_addr(stcb, sa, 0, 2)) {
return (-1);
}
} else if ((sa->sa_family == AF_INET6) &&
(stcb->asoc.ipv6_addr_legal)) {
if (sctp_add_remote_addr(stcb, sa, 0, 3)) {
return (-1);
}
}
} else {
if (net_tmp != NULL && stcb_tmp == stcb) {
net_tmp->dest_state &= ~SCTP_ADDR_NOT_IN_ASSOC;
} else if (stcb_tmp != stcb) {
/* It belongs to another association? */
return (-1);
}
}
/* since a unlock occured we must check the
* TCB's state and the pcb's gone flags.
*/
if (l_inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE|SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
/* the user freed the ep */
return (-1);
}
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
return (-1);
}
/* now we must go through each of the params. */
phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
while (phdr) {
ptype = ntohs(phdr->param_type);
plen = ntohs(phdr->param_length);
/*printf("ptype => %d, plen => %d\n", ptype, plen);*/
if (offset + plen > limit) {
break;
}
if (plen == 0) {
break;
}
if ((ptype == SCTP_IPV4_ADDRESS) &&
(stcb->asoc.ipv4_addr_legal)) {
struct sctp_ipv4addr_param *p4, p4_buf;
/* ok get the v4 address and check/add */
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&p4_buf, sizeof(p4_buf));
if (plen != sizeof(struct sctp_ipv4addr_param) ||
phdr == NULL) {
return (-1);
}
p4 = (struct sctp_ipv4addr_param *)phdr;
sin.sin_addr.s_addr = p4->addr;
sa = (struct sockaddr *)&sin;
inp = stcb->sctp_ep;
stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net,
local_sa, stcb);
if ((stcb_tmp== NULL && inp == stcb->sctp_ep) ||
inp == NULL) {
/* we must add the source address */
/* no scope set since we have a tcb already */
/* we must validate the state again here */
if (l_inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE|SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
/* the user freed the ep */
return (-1);
}
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
return (-1);
}
if (sctp_add_remote_addr(stcb, sa, 0, 4)) {
return (-1);
}
} else if (stcb_tmp == stcb) {
if (l_inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE|SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
/* the user freed the ep */
return (-1);
}
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
return (-1);
}
if (net != NULL) {
/* clear flag */
net->dest_state &=
~SCTP_ADDR_NOT_IN_ASSOC;
}
} else {
/* strange, address is in another assoc?
* straighten out locks.
*/
SCTP_TCB_UNLOCK(stcb_tmp);
SCTP_INP_RLOCK(inp);
if (l_inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE|SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
/* the user freed the ep */
SCTP_INP_RUNLOCK(l_inp);
return (-1);
}
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
SCTP_INP_RUNLOCK(l_inp);
return (-1);
}
SCTP_TCB_LOCK(stcb);
SCTP_INP_RUNLOCK(stcb->sctp_ep);
return (-1);
}
} else if ((ptype == SCTP_IPV6_ADDRESS) &&
(stcb->asoc.ipv6_addr_legal)) {
/* ok get the v6 address and check/add */
struct sctp_ipv6addr_param *p6, p6_buf;
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&p6_buf, sizeof(p6_buf));
if (plen != sizeof(struct sctp_ipv6addr_param) ||
phdr == NULL) {
return (-1);
}
p6 = (struct sctp_ipv6addr_param *)phdr;
memcpy((void *)&sin6.sin6_addr, p6->addr,
sizeof(p6->addr));
sa = (struct sockaddr *)&sin6;
inp = stcb->sctp_ep;
stcb_tmp= sctp_findassociation_ep_addr(&inp, sa, &net,
local_sa, stcb);
if (stcb_tmp == NULL && (inp == stcb->sctp_ep ||
inp == NULL)) {
/* we must validate the state again here */
if (l_inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE|SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
/* the user freed the ep */
return (-1);
}
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
return (-1);
}
/* we must add the address, no scope set */
if (sctp_add_remote_addr(stcb, sa, 0, 5)) {
return (-1);
}
} else if (stcb_tmp == stcb) {
/* we must validate the state again here */
if (l_inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE|SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
/* the user freed the ep */
return (-1);
}
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
return (-1);
}
if (net != NULL) {
/* clear flag */
net->dest_state &=
~SCTP_ADDR_NOT_IN_ASSOC;
}
} else {
/* strange, address is in another assoc?
* straighten out locks.
*/
SCTP_TCB_UNLOCK(stcb_tmp);
SCTP_INP_RLOCK(l_inp);
/* we must validate the state again here */
if (l_inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE|SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
/* the user freed the ep */
SCTP_INP_RUNLOCK(l_inp);
return (-1);
}
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
SCTP_INP_RUNLOCK(l_inp);
return (-1);
}
SCTP_TCB_LOCK(stcb);
SCTP_INP_RUNLOCK(l_inp);
return (-1);
}
} else if (ptype == SCTP_ECN_CAPABLE) {
stcb->asoc.ecn_allowed = 1;
} else if (ptype == SCTP_ULP_ADAPTION) {
if (stcb->asoc.state != SCTP_STATE_OPEN) {
struct sctp_adaption_layer_indication ai, *aip;
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&ai, sizeof(ai));
aip = (struct sctp_adaption_layer_indication *)phdr;
sctp_ulp_notify(SCTP_NOTIFY_ADAPTION_INDICATION,
stcb, ntohl(aip->indication), NULL);
}
} else if (ptype == SCTP_SET_PRIM_ADDR) {
struct sctp_asconf_addr_param lstore, *fee;
struct sctp_asconf_addrv4_param *fii;
int lptype;
struct sockaddr *lsa = NULL;
stcb->asoc.peer_supports_asconf = 1;
stcb->asoc.peer_supports_asconf_setprim = 1;
if (plen > sizeof(lstore)) {
return (-1);
}
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&lstore, plen);
if (phdr == NULL) {
return (-1);
}
fee = (struct sctp_asconf_addr_param *)phdr;
lptype = ntohs(fee->addrp.ph.param_type);
if (lptype == SCTP_IPV4_ADDRESS) {
if (plen !=
sizeof(struct sctp_asconf_addrv4_param)) {
printf("Sizeof setprim in init/init ack not %d but %d - ignored\n",
(int)sizeof(struct sctp_asconf_addrv4_param),
plen);
} else {
fii = (struct sctp_asconf_addrv4_param *)fee;
sin.sin_addr.s_addr = fii->addrp.addr;
lsa = (struct sockaddr *)&sin;
}
} else if (lptype == SCTP_IPV6_ADDRESS) {
if (plen !=
sizeof(struct sctp_asconf_addr_param)) {
printf("Sizeof setprim (v6) in init/init ack not %d but %d - ignored\n",
(int)sizeof(struct sctp_asconf_addr_param),
plen);
} else {
memcpy(sin6.sin6_addr.s6_addr,
fee->addrp.addr,
sizeof(fee->addrp.addr));
lsa = (struct sockaddr *)&sin6;
}
}
if (lsa) {
sctp_set_primary_addr(stcb, sa, NULL);
}
} else if (ptype == SCTP_PRSCTP_SUPPORTED) {
/* Peer supports pr-sctp */
stcb->asoc.peer_supports_prsctp = 1;
} else if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
/* A supported extension chunk */
struct sctp_supported_chunk_types_param *pr_supported;
uint8_t local_store[128];
int num_ent, i;
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&local_store, plen);
if (phdr == NULL) {
return (-1);
}
stcb->asoc.peer_supports_asconf = 0;
stcb->asoc.peer_supports_asconf_setprim = 0;
stcb->asoc.peer_supports_prsctp = 0;
stcb->asoc.peer_supports_pktdrop = 0;
stcb->asoc.peer_supports_strreset = 0;
pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
num_ent = plen - sizeof(struct sctp_paramhdr);
for (i=0; i<num_ent; i++) {
switch (pr_supported->chunk_types[i]) {
case SCTP_ASCONF:
stcb->asoc.peer_supports_asconf = 1;
stcb->asoc.peer_supports_asconf_setprim = 1;
break;
case SCTP_ASCONF_ACK:
stcb->asoc.peer_supports_asconf = 1;
stcb->asoc.peer_supports_asconf_setprim = 1;
break;
case SCTP_FORWARD_CUM_TSN:
stcb->asoc.peer_supports_prsctp = 1;
break;
case SCTP_PACKET_DROPPED:
stcb->asoc.peer_supports_pktdrop = 1;
break;
case SCTP_STREAM_RESET:
stcb->asoc.peer_supports_strreset = 1;
break;
default:
/* one I have not learned yet */
break;
}
}
} else if (ptype == SCTP_ECN_NONCE_SUPPORTED) {
/* Peer supports ECN-nonce */
stcb->asoc.peer_supports_ecn_nonce = 1;
stcb->asoc.ecn_nonce_allowed = 1;
} else if ((ptype == SCTP_HEARTBEAT_INFO) ||
(ptype == SCTP_STATE_COOKIE) ||
(ptype == SCTP_UNRECOG_PARAM) ||
(ptype == SCTP_COOKIE_PRESERVE) ||
(ptype == SCTP_SUPPORTED_ADDRTYPE) ||
(ptype == SCTP_ADD_IP_ADDRESS) ||
(ptype == SCTP_DEL_IP_ADDRESS) ||
(ptype == SCTP_ERROR_CAUSE_IND) ||
(ptype == SCTP_SUCCESS_REPORT)) {
/* don't care */;
} else {
if ((ptype & 0x8000) == 0x0000) {
/* must stop processing the rest of
* the param's. Any report bits were
* handled with the call to sctp_arethere_unrecognized_parameters()
* when the INIT or INIT-ACK was first seen.
*/
break;
}
}
offset += SCTP_SIZE32(plen);
if (offset >= limit) {
break;
}
phdr = sctp_get_next_param(m, offset, &parm_buf,
sizeof(parm_buf));
}
/* Now check to see if we need to purge any addresses */
for (net = TAILQ_FIRST(&stcb->asoc.nets); net != NULL; net = net_tmp) {
net_tmp = TAILQ_NEXT(net, sctp_next);
if ((net->dest_state & SCTP_ADDR_NOT_IN_ASSOC) ==
SCTP_ADDR_NOT_IN_ASSOC) {
/* This address has been removed from the asoc */
/* remove and free it */
stcb->asoc.numnets--;
TAILQ_REMOVE(&stcb->asoc.nets, net, sctp_next);
sctp_free_remote_addr(net);
if (net == stcb->asoc.primary_destination) {
stcb->asoc.primary_destination = NULL;
sctp_select_primary_destination(stcb);
}
}
}
return (0);
}
int
sctp_set_primary_addr(struct sctp_tcb *stcb, struct sockaddr *sa,
struct sctp_nets *net)
{
/* make sure the requested primary address exists in the assoc */
if (net == NULL && sa)
net = sctp_findnet(stcb, sa);
if (net == NULL) {
/* didn't find the requested primary address! */
return (-1);
} else {
/* set the primary address */
if (net->dest_state & SCTP_ADDR_UNCONFIRMED) {
/* Must be confirmed */
return (-1);
}
stcb->asoc.primary_destination = net;
net->dest_state &= ~SCTP_ADDR_WAS_PRIMARY;
return (0);
}
}
int
sctp_is_vtag_good(struct sctp_inpcb *inp, u_int32_t tag, struct timeval *now)
{
/*
* This function serves two purposes. It will see if a TAG can be
* re-used and return 1 for yes it is ok and 0 for don't use that
* tag.
* A secondary function it will do is purge out old tags that can
* be removed.
*/
struct sctpasochead *head;
struct sctpvtaghead *chain;
struct sctp_tagblock *twait_block;
struct sctp_tcb *stcb;
int i;
SCTP_INP_INFO_WLOCK();
chain = &sctppcbinfo.vtag_timewait[(tag % SCTP_STACK_VTAG_HASH_SIZE)];
/* First is the vtag in use ? */
head = &sctppcbinfo.sctp_asochash[SCTP_PCBHASH_ASOC(tag,
sctppcbinfo.hashasocmark)];
if (head == NULL) {
SCTP_INP_INFO_WUNLOCK();
return (0);
}
LIST_FOREACH(stcb, head, sctp_asocs) {
if (stcb->asoc.my_vtag == tag) {
/* We should remove this if and
* return 0 always if we want vtags
* unique across all endpoints. For
* now within a endpoint is ok.
*/
if (inp == stcb->sctp_ep) {
/* bad tag, in use */
SCTP_INP_INFO_WUNLOCK();
return (0);
}
}
}
if (!LIST_EMPTY(chain)) {
/*
* Block(s) are present, lets see if we have this tag in
* the list
*/
LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) {
for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) {
if (twait_block->vtag_block[i].v_tag == 0) {
/* not used */
continue;
} else if ((long)twait_block->vtag_block[i].tv_sec_at_expire >
now->tv_sec) {
/* Audit expires this guy */
twait_block->vtag_block[i].tv_sec_at_expire = 0;
twait_block->vtag_block[i].v_tag = 0;
} else if (twait_block->vtag_block[i].v_tag ==
tag) {
/* Bad tag, sorry :< */
SCTP_INP_INFO_WUNLOCK();
return (0);
}
}
}
}
/* Not found, ok to use the tag */
SCTP_INP_INFO_WUNLOCK();
return (1);
}
/*
* Delete the address from the endpoint local address list
* Lookup using a sockaddr address (ie. not an ifaddr)
*/
int
sctp_del_local_addr_ep_sa(struct sctp_inpcb *inp, struct sockaddr *sa)
{
struct sctp_laddr *laddr;
struct sockaddr *l_sa;
int found = 0;
/* Here is another function I cannot find a
* caller for. As such we SHOULD delete it
* if we have no users. If we find a user that
* user MUST have the INP locked.
*
*/
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
/* You are already bound to all. You have it already */
return (EINVAL);
}
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
/* make sure the address exists */
if (laddr->ifa == NULL)
continue;
if (laddr->ifa->ifa_addr == NULL)
continue;
l_sa = laddr->ifa->ifa_addr;
if (l_sa->sa_family == AF_INET6) {
/* IPv6 address */
struct sockaddr_in6 *sin1, *sin2;
sin1 = (struct sockaddr_in6 *)l_sa;
sin2 = (struct sockaddr_in6 *)sa;
if (memcmp(&sin1->sin6_addr, &sin2->sin6_addr,
sizeof(struct in6_addr)) == 0) {
/* matched */
found = 1;
break;
}
} else if (l_sa->sa_family == AF_INET) {
/* IPv4 address */
struct sockaddr_in *sin1, *sin2;
sin1 = (struct sockaddr_in *)l_sa;
sin2 = (struct sockaddr_in *)sa;
if (sin1->sin_addr.s_addr == sin2->sin_addr.s_addr) {
/* matched */
found = 1;
break;
}
} else {
/* invalid family */
return (-1);
}
}
if (found && inp->laddr_count < 2) {
/* can't delete unless there are at LEAST 2 addresses */
return (-1);
}
if (found && (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) {
/*
* remove it from the ep list, this should NOT be
* done until its really gone from the interface list and
* we won't be receiving more of these. Probably right
* away. If we do allow a removal of an address from
* an association (sub-set bind) than this should NOT
* be called until the all ASCONF come back from this
* association.
*/
sctp_remove_laddr(laddr);
return (0);
} else {
return (-1);
}
}
static void
sctp_drain_mbufs(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
{
/*
* We must hunt this association for MBUF's past the cumack
* (i.e. out of order data that we can renege on).
*/
struct sctp_association *asoc;
struct sctp_tmit_chunk *chk, *nchk;
u_int32_t cumulative_tsn_p1, tsn;
int cnt, strmat, gap;
/* We look for anything larger than the cum-ack + 1 */
asoc = &stcb->asoc;
cumulative_tsn_p1 = asoc->cumulative_tsn + 1;
cnt = 0;
/* First look in the re-assembly queue */
chk = TAILQ_FIRST(&asoc->reasmqueue);
while (chk) {
/* Get the next one */
nchk = TAILQ_NEXT(chk, sctp_next);
if (compare_with_wrap(chk->rec.data.TSN_seq,
cumulative_tsn_p1, MAX_TSN)) {
/* Yep it is above cum-ack */
cnt++;
tsn = chk->rec.data.TSN_seq;
if (tsn >= asoc->mapping_array_base_tsn) {
gap = tsn - asoc->mapping_array_base_tsn;
} else {
gap = (MAX_TSN - asoc->mapping_array_base_tsn) +
tsn + 1;
}
asoc->size_on_reasm_queue -= chk->send_size;
asoc->cnt_on_reasm_queue--;
SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap);
TAILQ_REMOVE(&asoc->reasmqueue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
sctppcbinfo.ipi_count_chunk--;
if ((int)sctppcbinfo.ipi_count_chunk < 0) {
panic("Chunk count is negative");
}
sctppcbinfo.ipi_gencnt_chunk++;
}
chk = nchk;
}
/* Ok that was fun, now we will drain all the inbound streams? */
for (strmat = 0; strmat < asoc->streamincnt; strmat++) {
chk = TAILQ_FIRST(&asoc->strmin[strmat].inqueue);
while (chk) {
nchk = TAILQ_NEXT(chk, sctp_next);
if (compare_with_wrap(chk->rec.data.TSN_seq,
cumulative_tsn_p1, MAX_TSN)) {
/* Yep it is above cum-ack */
cnt++;
tsn = chk->rec.data.TSN_seq;
if (tsn >= asoc->mapping_array_base_tsn) {
gap = tsn -
asoc->mapping_array_base_tsn;
} else {
gap = (MAX_TSN -
asoc->mapping_array_base_tsn) +
tsn + 1;
}
asoc->size_on_all_streams -= chk->send_size;
asoc->cnt_on_all_streams--;
SCTP_UNSET_TSN_PRESENT(asoc->mapping_array,
gap);
TAILQ_REMOVE(&asoc->strmin[strmat].inqueue,
chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
sctppcbinfo.ipi_count_chunk--;
if ((int)sctppcbinfo.ipi_count_chunk < 0) {
panic("Chunk count is negative");
}
sctppcbinfo.ipi_gencnt_chunk++;
}
chk = nchk;
}
}
/*
* Question, should we go through the delivery queue?
* The only reason things are on here is the app not reading OR a
* p-d-api up. An attacker COULD send enough in to initiate the
* PD-API and then send a bunch of stuff to other streams... these
* would wind up on the delivery queue.. and then we would not get
* to them. But in order to do this I then have to back-track and
* un-deliver sequence numbers in streams.. el-yucko. I think for
* now we will NOT look at the delivery queue and leave it to be
* something to consider later. An alternative would be to abort
* the P-D-API with a notification and then deliver the data....
* Or another method might be to keep track of how many times the
* situation occurs and if we see a possible attack underway just
* abort the association.
*/
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
if (cnt) {
printf("Freed %d chunks from reneg harvest\n", cnt);
}
}
#endif /* SCTP_DEBUG */
/*
* Another issue, in un-setting the TSN's in the mapping array we
* DID NOT adjust the higest_tsn marker. This will cause one of
* two things to occur. It may cause us to do extra work in checking
* for our mapping array movement. More importantly it may cause us
* to SACK every datagram. This may not be a bad thing though since
* we will recover once we get our cum-ack above and all this stuff
* we dumped recovered.
*/
}
void
sctp_drain(void)
{
/*
* We must walk the PCB lists for ALL associations here. The system
* is LOW on MBUF's and needs help. This is where reneging will
* occur. We really hope this does NOT happen!
*/
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
SCTP_INP_INFO_RLOCK();
LIST_FOREACH(inp, &sctppcbinfo.listhead, sctp_list) {
/* For each endpoint */
SCTP_INP_RLOCK(inp);
LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
/* For each association */
SCTP_TCB_LOCK(stcb);
sctp_drain_mbufs(inp, stcb);
SCTP_TCB_UNLOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
}
SCTP_INP_INFO_RUNLOCK();
}
int
sctp_add_to_socket_q(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
{
struct sctp_socket_q_list *sq;
/* write lock on INP assumed */
if ((inp == NULL) || (stcb == NULL)) {
/* I am paranoid */
return (0);
}
sq = (struct sctp_socket_q_list *)SCTP_ZONE_GET(
sctppcbinfo.ipi_zone_sockq);
if (sq == NULL) {
/* out of sq structs */
return (0);
}
sctppcbinfo.ipi_count_sockq++;
sctppcbinfo.ipi_gencnt_sockq++;
if (stcb)
stcb->asoc.cnt_msg_on_sb++;
sq->tcb = stcb;
TAILQ_INSERT_TAIL(&inp->sctp_queue_list, sq, next_sq);
return (1);
}
struct sctp_tcb *
sctp_remove_from_socket_q(struct sctp_inpcb *inp)
{
struct sctp_tcb *stcb = NULL;
struct sctp_socket_q_list *sq;
/* W-Lock on INP assumed held */
sq = TAILQ_FIRST(&inp->sctp_queue_list);
if (sq == NULL)
return (NULL);
stcb = sq->tcb;
TAILQ_REMOVE(&inp->sctp_queue_list, sq, next_sq);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_sockq, sq);
sctppcbinfo.ipi_count_sockq--;
sctppcbinfo.ipi_gencnt_sockq++;
if (stcb) {
stcb->asoc.cnt_msg_on_sb--;
}
return (stcb);
}
int
sctp_initiate_iterator(asoc_func af, uint32_t pcb_state, uint32_t asoc_state,
void *argp, uint32_t argi, end_func ef,
struct sctp_inpcb *s_inp)
{
struct sctp_iterator *it=NULL;
int s;
if (af == NULL) {
return (-1);
}
it = malloc(sizeof(struct sctp_iterator), M_PCB, M_WAITOK);
if (it == NULL) {
return (ENOMEM);
}
memset(it, 0, sizeof(*it));
it->function_toapply = af;
it->function_atend = ef;
it->pointer = argp;
it->val = argi;
it->pcb_flags = pcb_state;
it->asoc_state = asoc_state;
if (s_inp) {
it->inp = s_inp;
it->iterator_flags = SCTP_ITERATOR_DO_SINGLE_INP;
} else {
SCTP_INP_INFO_RLOCK();
it->inp = LIST_FIRST(&sctppcbinfo.listhead);
SCTP_INP_INFO_RUNLOCK();
it->iterator_flags = SCTP_ITERATOR_DO_ALL_INP;
}
/* Init the timer */
callout_init(&it->tmr.timer, 0);
/* add to the list of all iterators */
SCTP_INP_INFO_WLOCK();
LIST_INSERT_HEAD(&sctppcbinfo.iteratorhead, it, sctp_nxt_itr);
SCTP_INP_INFO_WUNLOCK();
s = splsoftnet();
sctp_iterator_timer(it);
splx(s);
return (0);
}