NetBSD/sys/uvm/uvm_pdpolicy_clockpro.c

1641 lines
35 KiB
C

/* $NetBSD: uvm_pdpolicy_clockpro.c,v 1.27 2022/04/12 20:27:56 andvar Exp $ */
/*-
* Copyright (c)2005, 2006 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* CLOCK-Pro replacement policy:
* http://web.cse.ohio-state.edu/hpcs/WWW/HTML/publications/abs05-3.html
*
* approximation of the list of non-resident pages using hash:
* http://linux-mm.org/ClockProApproximation
*/
/* #define CLOCKPRO_DEBUG */
#if defined(PDSIM)
#include "pdsim.h"
#else /* defined(PDSIM) */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uvm_pdpolicy_clockpro.c,v 1.27 2022/04/12 20:27:56 andvar Exp $");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/hash.h>
#include <uvm/uvm.h>
#include <uvm/uvm_pdaemon.h> /* for uvmpd_trylockowner */
#include <uvm/uvm_pdpolicy.h>
#include <uvm/uvm_pdpolicy_impl.h>
#if ((__STDC_VERSION__ - 0) >= 199901L)
#define DPRINTF(...) /* nothing */
#define WARN(...) printf(__VA_ARGS__)
#else /* ((__STDC_VERSION__ - 0) >= 199901L) */
#define DPRINTF(a...) /* nothing */ /* GCC */
#define WARN(a...) printf(a)
#endif /* ((__STDC_VERSION__ - 0) >= 199901L) */
#define dump(a) /* nothing */
#undef USEONCE2
#define LISTQ
#undef ADAPTIVE
#endif /* defined(PDSIM) */
#if !defined(CLOCKPRO_COLDPCT)
#define CLOCKPRO_COLDPCT 10
#endif /* !defined(CLOCKPRO_COLDPCT) */
#define CLOCKPRO_COLDPCTMAX 90
#if !defined(CLOCKPRO_HASHFACTOR)
#define CLOCKPRO_HASHFACTOR 2
#endif /* !defined(CLOCKPRO_HASHFACTOR) */
#define CLOCKPRO_NEWQMIN ((1024 * 1024) >> PAGE_SHIFT) /* XXX */
int clockpro_hashfactor = CLOCKPRO_HASHFACTOR;
PDPOL_EVCNT_DEFINE(nresrecordobj)
PDPOL_EVCNT_DEFINE(nresrecordanon)
PDPOL_EVCNT_DEFINE(nreslookupobj)
PDPOL_EVCNT_DEFINE(nreslookupanon)
PDPOL_EVCNT_DEFINE(nresfoundobj)
PDPOL_EVCNT_DEFINE(nresfoundanon)
PDPOL_EVCNT_DEFINE(nresanonfree)
PDPOL_EVCNT_DEFINE(nresconflict)
PDPOL_EVCNT_DEFINE(nresoverwritten)
PDPOL_EVCNT_DEFINE(nreshandhot)
PDPOL_EVCNT_DEFINE(hhottakeover)
PDPOL_EVCNT_DEFINE(hhotref)
PDPOL_EVCNT_DEFINE(hhotunref)
PDPOL_EVCNT_DEFINE(hhotcold)
PDPOL_EVCNT_DEFINE(hhotcoldtest)
PDPOL_EVCNT_DEFINE(hcoldtakeover)
PDPOL_EVCNT_DEFINE(hcoldref)
PDPOL_EVCNT_DEFINE(hcoldunref)
PDPOL_EVCNT_DEFINE(hcoldreftest)
PDPOL_EVCNT_DEFINE(hcoldunreftest)
PDPOL_EVCNT_DEFINE(hcoldunreftestspeculative)
PDPOL_EVCNT_DEFINE(hcoldhot)
PDPOL_EVCNT_DEFINE(speculativeenqueue)
PDPOL_EVCNT_DEFINE(speculativehit1)
PDPOL_EVCNT_DEFINE(speculativehit2)
PDPOL_EVCNT_DEFINE(speculativemiss)
PDPOL_EVCNT_DEFINE(locksuccess)
PDPOL_EVCNT_DEFINE(lockfail)
#define PQ_REFERENCED 0x000000010
#define PQ_HOT 0x000000020
#define PQ_TEST 0x000000040
#define PQ_INITIALREF 0x000000080
#define PQ_QMASK 0x000000700
#define PQ_QFACTOR 0x000000100
#define PQ_SPECULATIVE 0x000000800
#define CLOCKPRO_NOQUEUE 0
#define CLOCKPRO_NEWQ 1 /* small queue to clear initial ref. */
#if defined(LISTQ)
#define CLOCKPRO_COLDQ 2
#define CLOCKPRO_HOTQ 3
#else /* defined(LISTQ) */
#define CLOCKPRO_COLDQ (2 + coldqidx) /* XXX */
#define CLOCKPRO_HOTQ (3 - coldqidx) /* XXX */
#endif /* defined(LISTQ) */
#define CLOCKPRO_LISTQ 4
#define CLOCKPRO_NQUEUE 4
static bool uvmpdpol_pagerealize_locked(struct vm_page *);
static inline void
clockpro_setq(struct vm_page *pg, int qidx)
{
KASSERT(qidx >= CLOCKPRO_NOQUEUE);
KASSERT(qidx <= CLOCKPRO_NQUEUE);
pg->pqflags = (pg->pqflags & ~PQ_QMASK) | (qidx * PQ_QFACTOR);
}
static inline int
clockpro_getq(struct vm_page *pg)
{
int qidx;
qidx = (pg->pqflags & PQ_QMASK) / PQ_QFACTOR;
KASSERT(qidx >= CLOCKPRO_NOQUEUE);
KASSERT(qidx <= CLOCKPRO_NQUEUE);
return qidx;
}
typedef struct {
struct pglist q_q;
int q_len;
} pageq_t;
struct clockpro_state {
kmutex_t lock;
int s_npages;
int s_coldtarget;
int s_ncold;
int s_newqlenmax;
pageq_t s_q[CLOCKPRO_NQUEUE];
struct uvm_pctparam s_coldtargetpct;
};
static pageq_t *
clockpro_queue(struct clockpro_state *s, int qidx)
{
KASSERT(CLOCKPRO_NOQUEUE < qidx);
KASSERT(qidx <= CLOCKPRO_NQUEUE);
return &s->s_q[qidx - 1];
}
#if !defined(LISTQ)
static int coldqidx;
static void
clockpro_switchqueue(void)
{
coldqidx = 1 - coldqidx;
}
#endif /* !defined(LISTQ) */
static struct clockpro_state clockpro __cacheline_aligned;
static struct clockpro_scanstate {
int ss_nscanned;
} scanstate;
/* ---------------------------------------- */
static void
pageq_init(pageq_t *q)
{
TAILQ_INIT(&q->q_q);
q->q_len = 0;
}
static int
pageq_len(const pageq_t *q)
{
return q->q_len;
}
static struct vm_page *
pageq_first(const pageq_t *q)
{
return TAILQ_FIRST(&q->q_q);
}
static void
pageq_insert_tail(pageq_t *q, struct vm_page *pg)
{
TAILQ_INSERT_TAIL(&q->q_q, pg, pdqueue);
q->q_len++;
}
#if defined(LISTQ)
static void
pageq_insert_head(pageq_t *q, struct vm_page *pg)
{
TAILQ_INSERT_HEAD(&q->q_q, pg, pdqueue);
q->q_len++;
}
#endif
static void
pageq_remove(pageq_t *q, struct vm_page *pg)
{
#if 1
KASSERT(clockpro_queue(&clockpro, clockpro_getq(pg)) == q);
#endif
KASSERT(q->q_len > 0);
TAILQ_REMOVE(&q->q_q, pg, pdqueue);
q->q_len--;
}
static struct vm_page *
pageq_remove_head(pageq_t *q)
{
struct vm_page *pg;
pg = TAILQ_FIRST(&q->q_q);
if (pg == NULL) {
KASSERT(q->q_len == 0);
return NULL;
}
pageq_remove(q, pg);
return pg;
}
/* ---------------------------------------- */
static void
clockpro_insert_tail(struct clockpro_state *s, int qidx, struct vm_page *pg)
{
pageq_t *q = clockpro_queue(s, qidx);
clockpro_setq(pg, qidx);
pageq_insert_tail(q, pg);
}
#if defined(LISTQ)
static void
clockpro_insert_head(struct clockpro_state *s, int qidx, struct vm_page *pg)
{
pageq_t *q = clockpro_queue(s, qidx);
clockpro_setq(pg, qidx);
pageq_insert_head(q, pg);
}
#endif
/* ---------------------------------------- */
typedef uint32_t nonres_cookie_t;
#define NONRES_COOKIE_INVAL 0
typedef uintptr_t objid_t;
/*
* XXX maybe these hash functions need reconsideration,
* given that hash distribution is critical here.
*/
static uint32_t
pageidentityhash1(objid_t obj, off_t idx)
{
uint32_t hash = HASH32_BUF_INIT;
#if 1
hash = hash32_buf(&idx, sizeof(idx), hash);
hash = hash32_buf(&obj, sizeof(obj), hash);
#else
hash = hash32_buf(&obj, sizeof(obj), hash);
hash = hash32_buf(&idx, sizeof(idx), hash);
#endif
return hash;
}
static uint32_t
pageidentityhash2(objid_t obj, off_t idx)
{
uint32_t hash = HASH32_BUF_INIT;
hash = hash32_buf(&obj, sizeof(obj), hash);
hash = hash32_buf(&idx, sizeof(idx), hash);
return hash;
}
static nonres_cookie_t
calccookie(objid_t obj, off_t idx)
{
uint32_t hash = pageidentityhash2(obj, idx);
nonres_cookie_t cookie = hash;
if (__predict_false(cookie == NONRES_COOKIE_INVAL)) {
cookie++; /* XXX */
}
return cookie;
}
#define BUCKETSIZE 14
struct bucket {
int cycle;
int cur;
nonres_cookie_t pages[BUCKETSIZE];
};
static int cycle_target;
static int cycle_target_frac;
static struct bucket static_bucket;
static struct bucket *buckets = &static_bucket;
static size_t hashsize = 1;
static int coldadj;
#define COLDTARGET_ADJ(d) coldadj += (d)
#if defined(PDSIM)
static void *
clockpro_hashalloc(int n)
{
size_t allocsz = sizeof(*buckets) * n;
return malloc(allocsz);
}
static void
clockpro_hashfree(void *p, int n)
{
free(p);
}
#else /* defined(PDSIM) */
static void *
clockpro_hashalloc(int n)
{
size_t allocsz = round_page(sizeof(*buckets) * n);
return (void *)uvm_km_alloc(kernel_map, allocsz, 0, UVM_KMF_WIRED);
}
static void
clockpro_hashfree(void *p, int n)
{
size_t allocsz = round_page(sizeof(*buckets) * n);
uvm_km_free(kernel_map, (vaddr_t)p, allocsz, UVM_KMF_WIRED);
}
#endif /* defined(PDSIM) */
static void
clockpro_hashinit(uint64_t n)
{
struct bucket *newbuckets;
struct bucket *oldbuckets;
size_t sz;
size_t oldsz;
int i;
sz = howmany(n, BUCKETSIZE);
sz *= clockpro_hashfactor;
newbuckets = clockpro_hashalloc(sz);
if (newbuckets == NULL) {
panic("%s: allocation failure", __func__);
}
for (i = 0; i < sz; i++) {
struct bucket *b = &newbuckets[i];
int j;
b->cycle = cycle_target;
b->cur = 0;
for (j = 0; j < BUCKETSIZE; j++) {
b->pages[j] = NONRES_COOKIE_INVAL;
}
}
/* XXX lock */
oldbuckets = buckets;
oldsz = hashsize;
buckets = newbuckets;
hashsize = sz;
/* XXX unlock */
if (oldbuckets != &static_bucket) {
clockpro_hashfree(oldbuckets, oldsz);
}
}
static struct bucket *
nonresident_getbucket(objid_t obj, off_t idx)
{
uint32_t hash;
hash = pageidentityhash1(obj, idx);
return &buckets[hash % hashsize];
}
static void
nonresident_rotate(struct bucket *b)
{
const int target = cycle_target;
const int cycle = b->cycle;
int cur;
int todo;
todo = target - cycle;
if (todo >= BUCKETSIZE * 2) {
todo = (todo % BUCKETSIZE) + BUCKETSIZE;
}
cur = b->cur;
while (todo > 0) {
if (b->pages[cur] != NONRES_COOKIE_INVAL) {
PDPOL_EVCNT_INCR(nreshandhot);
COLDTARGET_ADJ(-1);
}
b->pages[cur] = NONRES_COOKIE_INVAL;
cur++;
if (cur == BUCKETSIZE) {
cur = 0;
}
todo--;
}
b->cycle = target;
b->cur = cur;
}
static bool
nonresident_lookupremove(objid_t obj, off_t idx)
{
struct bucket *b = nonresident_getbucket(obj, idx);
nonres_cookie_t cookie = calccookie(obj, idx);
int i;
nonresident_rotate(b);
for (i = 0; i < BUCKETSIZE; i++) {
if (b->pages[i] == cookie) {
b->pages[i] = NONRES_COOKIE_INVAL;
return true;
}
}
return false;
}
static objid_t
pageobj(struct vm_page *pg)
{
const void *obj;
/*
* XXX object pointer is often freed and reused for unrelated object.
* for vnodes, it would be better to use something like
* a hash of fsid/fileid/generation.
*/
obj = pg->uobject;
if (obj == NULL) {
obj = pg->uanon;
KASSERT(obj != NULL);
}
return (objid_t)obj;
}
static off_t
pageidx(struct vm_page *pg)
{
KASSERT((pg->offset & PAGE_MASK) == 0);
return pg->offset >> PAGE_SHIFT;
}
static bool
nonresident_pagelookupremove(struct vm_page *pg)
{
bool found = nonresident_lookupremove(pageobj(pg), pageidx(pg));
if (pg->uobject) {
PDPOL_EVCNT_INCR(nreslookupobj);
} else {
PDPOL_EVCNT_INCR(nreslookupanon);
}
if (found) {
if (pg->uobject) {
PDPOL_EVCNT_INCR(nresfoundobj);
} else {
PDPOL_EVCNT_INCR(nresfoundanon);
}
}
return found;
}
static void
nonresident_pagerecord(struct vm_page *pg)
{
objid_t obj = pageobj(pg);
off_t idx = pageidx(pg);
struct bucket *b = nonresident_getbucket(obj, idx);
nonres_cookie_t cookie = calccookie(obj, idx);
#if defined(DEBUG)
int i;
for (i = 0; i < BUCKETSIZE; i++) {
if (b->pages[i] == cookie) {
PDPOL_EVCNT_INCR(nresconflict);
}
}
#endif /* defined(DEBUG) */
if (pg->uobject) {
PDPOL_EVCNT_INCR(nresrecordobj);
} else {
PDPOL_EVCNT_INCR(nresrecordanon);
}
nonresident_rotate(b);
if (b->pages[b->cur] != NONRES_COOKIE_INVAL) {
PDPOL_EVCNT_INCR(nresoverwritten);
COLDTARGET_ADJ(-1);
}
b->pages[b->cur] = cookie;
b->cur = (b->cur + 1) % BUCKETSIZE;
}
/* ---------------------------------------- */
#if defined(CLOCKPRO_DEBUG)
static void
check_sanity(void)
{
}
#else /* defined(CLOCKPRO_DEBUG) */
#define check_sanity() /* nothing */
#endif /* defined(CLOCKPRO_DEBUG) */
static void
clockpro_reinit(void)
{
KASSERT(mutex_owned(&clockpro.lock));
clockpro_hashinit(uvmexp.npages);
}
static void
clockpro_init(void)
{
struct clockpro_state *s = &clockpro;
int i;
mutex_init(&s->lock, MUTEX_DEFAULT, IPL_NONE);
for (i = 0; i < CLOCKPRO_NQUEUE; i++) {
pageq_init(&s->s_q[i]);
}
s->s_newqlenmax = 1;
s->s_coldtarget = 1;
uvm_pctparam_init(&s->s_coldtargetpct, CLOCKPRO_COLDPCT, NULL);
}
static void
clockpro_tune(void)
{
struct clockpro_state *s = &clockpro;
int coldtarget;
KASSERT(mutex_owned(&s->lock));
#if defined(ADAPTIVE)
int coldmax = s->s_npages * CLOCKPRO_COLDPCTMAX / 100;
int coldmin = 1;
coldtarget = s->s_coldtarget;
if (coldtarget + coldadj < coldmin) {
coldadj = coldmin - coldtarget;
} else if (coldtarget + coldadj > coldmax) {
coldadj = coldmax - coldtarget;
}
coldtarget += coldadj;
#else /* defined(ADAPTIVE) */
coldtarget = UVM_PCTPARAM_APPLY(&s->s_coldtargetpct, s->s_npages);
if (coldtarget < 1) {
coldtarget = 1;
}
#endif /* defined(ADAPTIVE) */
s->s_coldtarget = coldtarget;
s->s_newqlenmax = coldtarget / 4;
if (s->s_newqlenmax < CLOCKPRO_NEWQMIN) {
s->s_newqlenmax = CLOCKPRO_NEWQMIN;
}
}
static void
clockpro_movereferencebit(struct vm_page *pg, bool locked)
{
kmutex_t *lock;
bool referenced;
KASSERT(mutex_owned(&clockpro.lock));
KASSERT(!locked || uvm_page_owner_locked_p(pg, false));
if (!locked) {
/*
* acquire interlock to stabilize page identity.
* if we have caught the page in a state of flux
* and it should be dequeued, abort. it will be
* dequeued later.
*/
mutex_enter(&pg->interlock);
if ((pg->uobject == NULL && pg->uanon == NULL) ||
pg->wire_count > 0) {
mutex_exit(&pg->interlock);
PDPOL_EVCNT_INCR(lockfail);
return;
}
mutex_exit(&clockpro.lock); /* XXX */
lock = uvmpd_trylockowner(pg);
/* pg->interlock now dropped */
mutex_enter(&clockpro.lock); /* XXX */
if (lock == NULL) {
/*
* XXXuvmplock
*/
PDPOL_EVCNT_INCR(lockfail);
return;
}
PDPOL_EVCNT_INCR(locksuccess);
}
referenced = pmap_clear_reference(pg);
if (!locked) {
mutex_exit(lock);
}
if (referenced) {
pg->pqflags |= PQ_REFERENCED;
}
}
static void
clockpro_clearreferencebit(struct vm_page *pg, bool locked)
{
KASSERT(mutex_owned(&clockpro.lock));
clockpro_movereferencebit(pg, locked);
pg->pqflags &= ~PQ_REFERENCED;
}
static void
clockpro___newqrotate(int len)
{
struct clockpro_state * const s = &clockpro;
pageq_t * const newq = clockpro_queue(s, CLOCKPRO_NEWQ);
struct vm_page *pg;
KASSERT(mutex_owned(&s->lock));
while (pageq_len(newq) > len) {
pg = pageq_remove_head(newq);
KASSERT(pg != NULL);
KASSERT(clockpro_getq(pg) == CLOCKPRO_NEWQ);
if ((pg->pqflags & PQ_INITIALREF) != 0) {
clockpro_clearreferencebit(pg, false);
pg->pqflags &= ~PQ_INITIALREF;
}
/* place at the list head */
clockpro_insert_tail(s, CLOCKPRO_COLDQ, pg);
}
}
static void
clockpro_newqrotate(void)
{
struct clockpro_state * const s = &clockpro;
KASSERT(mutex_owned(&s->lock));
check_sanity();
clockpro___newqrotate(s->s_newqlenmax);
check_sanity();
}
static void
clockpro_newqflush(int n)
{
KASSERT(mutex_owned(&clockpro.lock));
check_sanity();
clockpro___newqrotate(n);
check_sanity();
}
static void
clockpro_newqflushone(void)
{
struct clockpro_state * const s = &clockpro;
KASSERT(mutex_owned(&s->lock));
clockpro_newqflush(
MAX(pageq_len(clockpro_queue(s, CLOCKPRO_NEWQ)) - 1, 0));
}
/*
* our "tail" is called "list-head" in the paper.
*/
static void
clockpro___enqueuetail(struct vm_page *pg)
{
struct clockpro_state * const s = &clockpro;
KASSERT(mutex_owned(&s->lock));
KASSERT(clockpro_getq(pg) == CLOCKPRO_NOQUEUE);
check_sanity();
#if !defined(USEONCE2)
clockpro_insert_tail(s, CLOCKPRO_NEWQ, pg);
clockpro_newqrotate();
#else /* !defined(USEONCE2) */
#if defined(LISTQ)
KASSERT((pg->pqflags & PQ_REFERENCED) == 0);
#endif /* defined(LISTQ) */
clockpro_insert_tail(s, CLOCKPRO_COLDQ, pg);
#endif /* !defined(USEONCE2) */
check_sanity();
}
static void
clockpro_pageenqueue(struct vm_page *pg)
{
struct clockpro_state * const s = &clockpro;
bool hot;
bool speculative = (pg->pqflags & PQ_SPECULATIVE) != 0; /* XXX */
KASSERT((~pg->pqflags & (PQ_INITIALREF|PQ_SPECULATIVE)) != 0);
KASSERT(mutex_owned(&s->lock));
check_sanity();
KASSERT(clockpro_getq(pg) == CLOCKPRO_NOQUEUE);
s->s_npages++;
pg->pqflags &= ~(PQ_HOT|PQ_TEST);
if (speculative) {
hot = false;
PDPOL_EVCNT_INCR(speculativeenqueue);
} else {
hot = nonresident_pagelookupremove(pg);
if (hot) {
COLDTARGET_ADJ(1);
}
}
/*
* consider mmap'ed file:
*
* - read-ahead enqueues a page.
*
* - on the following read-ahead hit, the fault handler activates it.
*
* - finally, the userland code which caused the above fault
* actually accesses the page. it makes its reference bit set.
*
* we want to count the above as a single access, rather than
* three accesses with short reuse distances.
*/
#if defined(USEONCE2)
pg->pqflags &= ~PQ_INITIALREF;
if (hot) {
pg->pqflags |= PQ_TEST;
}
s->s_ncold++;
clockpro_clearreferencebit(pg, false);
clockpro___enqueuetail(pg);
#else /* defined(USEONCE2) */
if (speculative) {
s->s_ncold++;
} else if (hot) {
pg->pqflags |= PQ_HOT;
} else {
pg->pqflags |= PQ_TEST;
s->s_ncold++;
}
clockpro___enqueuetail(pg);
#endif /* defined(USEONCE2) */
KASSERT(s->s_ncold <= s->s_npages);
}
static pageq_t *
clockpro_pagequeue(struct vm_page *pg)
{
struct clockpro_state * const s = &clockpro;
int qidx;
KASSERT(mutex_owned(&s->lock));
qidx = clockpro_getq(pg);
KASSERT(qidx != CLOCKPRO_NOQUEUE);
return clockpro_queue(s, qidx);
}
static void
clockpro_pagedequeue(struct vm_page *pg)
{
struct clockpro_state * const s = &clockpro;
pageq_t *q;
KASSERT(mutex_owned(&s->lock));
KASSERT(s->s_npages > 0);
check_sanity();
q = clockpro_pagequeue(pg);
pageq_remove(q, pg);
check_sanity();
clockpro_setq(pg, CLOCKPRO_NOQUEUE);
if ((pg->pqflags & PQ_HOT) == 0) {
KASSERT(s->s_ncold > 0);
s->s_ncold--;
}
KASSERT(s->s_npages > 0);
s->s_npages--;
check_sanity();
}
static void
clockpro_pagerequeue(struct vm_page *pg)
{
struct clockpro_state * const s = &clockpro;
int qidx;
KASSERT(mutex_owned(&s->lock));
qidx = clockpro_getq(pg);
KASSERT(qidx == CLOCKPRO_HOTQ || qidx == CLOCKPRO_COLDQ);
pageq_remove(clockpro_queue(s, qidx), pg);
check_sanity();
clockpro_setq(pg, CLOCKPRO_NOQUEUE);
clockpro___enqueuetail(pg);
}
static void
handhot_endtest(struct vm_page *pg)
{
KASSERT(mutex_owned(&clockpro.lock));
KASSERT((pg->pqflags & PQ_HOT) == 0);
if ((pg->pqflags & PQ_TEST) != 0) {
PDPOL_EVCNT_INCR(hhotcoldtest);
COLDTARGET_ADJ(-1);
pg->pqflags &= ~PQ_TEST;
} else {
PDPOL_EVCNT_INCR(hhotcold);
}
}
static void
handhot_advance(void)
{
struct clockpro_state * const s = &clockpro;
struct vm_page *pg;
pageq_t *hotq;
int hotqlen;
KASSERT(mutex_owned(&s->lock));
clockpro_tune();
dump("hot called");
if (s->s_ncold >= s->s_coldtarget) {
return;
}
hotq = clockpro_queue(s, CLOCKPRO_HOTQ);
again:
pg = pageq_first(hotq);
if (pg == NULL) {
DPRINTF("%s: HHOT TAKEOVER\n", __func__);
dump("hhottakeover");
PDPOL_EVCNT_INCR(hhottakeover);
#if defined(LISTQ)
while (/* CONSTCOND */ 1) {
pageq_t *coldq = clockpro_queue(s, CLOCKPRO_COLDQ);
pg = pageq_first(coldq);
if (pg == NULL) {
clockpro_newqflushone();
pg = pageq_first(coldq);
if (pg == NULL) {
WARN("hhot: no page?\n");
return;
}
}
KASSERT(clockpro_pagequeue(pg) == coldq);
pageq_remove(coldq, pg);
check_sanity();
if ((pg->pqflags & PQ_HOT) == 0) {
handhot_endtest(pg);
clockpro_insert_tail(s, CLOCKPRO_LISTQ, pg);
} else {
clockpro_insert_head(s, CLOCKPRO_HOTQ, pg);
break;
}
}
#else /* defined(LISTQ) */
clockpro_newqflush(0); /* XXX XXX */
clockpro_switchqueue();
hotq = clockpro_queue(s, CLOCKPRO_HOTQ);
goto again;
#endif /* defined(LISTQ) */
}
KASSERT(clockpro_pagequeue(pg) == hotq);
/*
* terminate test period of nonresident pages by cycling them.
*/
cycle_target_frac += BUCKETSIZE;
hotqlen = pageq_len(hotq);
while (cycle_target_frac >= hotqlen) {
cycle_target++;
cycle_target_frac -= hotqlen;
}
if ((pg->pqflags & PQ_HOT) == 0) {
#if defined(LISTQ)
panic("cold page in hotq: %p", pg);
#else /* defined(LISTQ) */
handhot_endtest(pg);
goto next;
#endif /* defined(LISTQ) */
}
KASSERT((pg->pqflags & PQ_TEST) == 0);
KASSERT((pg->pqflags & PQ_INITIALREF) == 0);
KASSERT((pg->pqflags & PQ_SPECULATIVE) == 0);
/*
* once we met our target,
* stop at a hot page so that no cold pages in test period
* have larger recency than any hot pages.
*/
if (s->s_ncold >= s->s_coldtarget) {
dump("hot done");
return;
}
clockpro_movereferencebit(pg, false);
if ((pg->pqflags & PQ_REFERENCED) == 0) {
PDPOL_EVCNT_INCR(hhotunref);
uvmexp.pddeact++;
pg->pqflags &= ~PQ_HOT;
clockpro.s_ncold++;
KASSERT(s->s_ncold <= s->s_npages);
} else {
PDPOL_EVCNT_INCR(hhotref);
}
pg->pqflags &= ~PQ_REFERENCED;
#if !defined(LISTQ)
next:
#endif /* !defined(LISTQ) */
clockpro_pagerequeue(pg);
dump("hot");
goto again;
}
static struct vm_page *
handcold_advance(void)
{
struct clockpro_state * const s = &clockpro;
struct vm_page *pg;
KASSERT(mutex_owned(&s->lock));
for (;;) {
#if defined(LISTQ)
pageq_t *listq = clockpro_queue(s, CLOCKPRO_LISTQ);
#endif /* defined(LISTQ) */
pageq_t *coldq;
clockpro_newqrotate();
handhot_advance();
#if defined(LISTQ)
pg = pageq_first(listq);
if (pg != NULL) {
KASSERT(clockpro_getq(pg) == CLOCKPRO_LISTQ);
KASSERT((pg->pqflags & PQ_TEST) == 0);
KASSERT((pg->pqflags & PQ_HOT) == 0);
KASSERT((pg->pqflags & PQ_INITIALREF) == 0);
pageq_remove(listq, pg);
check_sanity();
clockpro_insert_head(s, CLOCKPRO_COLDQ, pg); /* XXX */
goto gotcold;
}
#endif /* defined(LISTQ) */
check_sanity();
coldq = clockpro_queue(s, CLOCKPRO_COLDQ);
pg = pageq_first(coldq);
if (pg == NULL) {
clockpro_newqflushone();
pg = pageq_first(coldq);
}
if (pg == NULL) {
DPRINTF("%s: HCOLD TAKEOVER\n", __func__);
dump("hcoldtakeover");
PDPOL_EVCNT_INCR(hcoldtakeover);
KASSERT(
pageq_len(clockpro_queue(s, CLOCKPRO_NEWQ)) == 0);
#if defined(LISTQ)
KASSERT(
pageq_len(clockpro_queue(s, CLOCKPRO_HOTQ)) == 0);
#else /* defined(LISTQ) */
clockpro_switchqueue();
coldq = clockpro_queue(s, CLOCKPRO_COLDQ);
pg = pageq_first(coldq);
#endif /* defined(LISTQ) */
}
if (pg == NULL) {
WARN("hcold: no page?\n");
return NULL;
}
KASSERT((pg->pqflags & PQ_INITIALREF) == 0);
if ((pg->pqflags & PQ_HOT) != 0) {
PDPOL_EVCNT_INCR(hcoldhot);
pageq_remove(coldq, pg);
clockpro_insert_tail(s, CLOCKPRO_HOTQ, pg);
check_sanity();
KASSERT((pg->pqflags & PQ_TEST) == 0);
uvmexp.pdscans++;
continue;
}
#if defined(LISTQ)
gotcold:
#endif /* defined(LISTQ) */
KASSERT((pg->pqflags & PQ_HOT) == 0);
uvmexp.pdscans++;
clockpro_movereferencebit(pg, false);
if ((pg->pqflags & PQ_SPECULATIVE) != 0) {
KASSERT((pg->pqflags & PQ_TEST) == 0);
if ((pg->pqflags & PQ_REFERENCED) != 0) {
PDPOL_EVCNT_INCR(speculativehit2);
pg->pqflags &= ~(PQ_SPECULATIVE|PQ_REFERENCED);
clockpro_pagedequeue(pg);
clockpro_pageenqueue(pg);
continue;
}
PDPOL_EVCNT_INCR(speculativemiss);
}
switch (pg->pqflags & (PQ_REFERENCED|PQ_TEST)) {
case PQ_TEST:
PDPOL_EVCNT_INCR(hcoldunreftest);
nonresident_pagerecord(pg);
goto gotit;
case 0:
PDPOL_EVCNT_INCR(hcoldunref);
gotit:
KASSERT(s->s_ncold > 0);
clockpro_pagerequeue(pg); /* XXX */
dump("cold done");
/* XXX "pg" is still in queue */
handhot_advance();
goto done;
case PQ_REFERENCED|PQ_TEST:
PDPOL_EVCNT_INCR(hcoldreftest);
s->s_ncold--;
COLDTARGET_ADJ(1);
pg->pqflags |= PQ_HOT;
pg->pqflags &= ~PQ_TEST;
break;
case PQ_REFERENCED:
PDPOL_EVCNT_INCR(hcoldref);
pg->pqflags |= PQ_TEST;
break;
}
pg->pqflags &= ~PQ_REFERENCED;
uvmexp.pdreact++;
/* move to the list head */
clockpro_pagerequeue(pg);
dump("cold");
}
done:;
return pg;
}
static void
uvmpdpol_pageactivate_locked(struct vm_page *pg)
{
if (!uvmpdpol_pageisqueued_p(pg)) {
KASSERT((pg->pqflags & PQ_SPECULATIVE) == 0);
pg->pqflags |= PQ_INITIALREF;
clockpro_pageenqueue(pg);
} else if ((pg->pqflags & PQ_SPECULATIVE)) {
PDPOL_EVCNT_INCR(speculativehit1);
pg->pqflags &= ~PQ_SPECULATIVE;
pg->pqflags |= PQ_INITIALREF;
clockpro_pagedequeue(pg);
clockpro_pageenqueue(pg);
}
pg->pqflags |= PQ_REFERENCED;
}
void
uvmpdpol_pageactivate(struct vm_page *pg)
{
uvmpdpol_set_intent(pg, PQ_INTENT_A);
}
static void
uvmpdpol_pagedeactivate_locked(struct vm_page *pg)
{
clockpro_clearreferencebit(pg, true);
}
void
uvmpdpol_pagedeactivate(struct vm_page *pg)
{
uvmpdpol_set_intent(pg, PQ_INTENT_I);
}
static void
uvmpdpol_pagedequeue_locked(struct vm_page *pg)
{
if (!uvmpdpol_pageisqueued_p(pg)) {
return;
}
clockpro_pagedequeue(pg);
pg->pqflags &= ~(PQ_INITIALREF|PQ_SPECULATIVE);
}
void
uvmpdpol_pagedequeue(struct vm_page *pg)
{
uvmpdpol_set_intent(pg, PQ_INTENT_D);
}
static void
uvmpdpol_pageenqueue_locked(struct vm_page *pg)
{
#if 1
if (uvmpdpol_pageisqueued_p(pg)) {
return;
}
clockpro_clearreferencebit(pg, true);
pg->pqflags |= PQ_SPECULATIVE;
clockpro_pageenqueue(pg);
#else
uvmpdpol_pageactivate_locked(pg);
#endif
}
void
uvmpdpol_pageenqueue(struct vm_page *pg)
{
uvmpdpol_set_intent(pg, PQ_INTENT_D);
}
static bool
uvmpdpol_pagerealize_locked(struct vm_page *pg)
{
uint32_t pqflags;
KASSERT(mutex_owned(&clockpro.lock));
KASSERT(mutex_owned(&pg->interlock));
/* XXX this needs to be called from elsewhere, like uvmpdpol_clock. */
pqflags = pg->pqflags;
pq->pqflags &= ~(PQ_INTENT_SET | PQ_INTENT_QUEUED);
switch (pqflags & (PQ_INTENT_MASK | PQ_INTENT_SET)) {
case PQ_INTENT_A | PQ_INTENT_SET:
uvmpdpol_pageactivate_locked(pg);
return true;
case PQ_INTENT_E | PQ_INTENT_SET:
uvmpdpol_pageenqueue_locked(pg);
return true;
case PQ_INTENT_I | PQ_INTENT_SET:
uvmpdpol_pagedeactivate_locked(pg);
return true;
case PQ_INTENT_D | PQ_INTENT_SET:
uvmpdpol_pagedequeue_locked(pg);
return true;
default:
return false;
}
}
void
uvmpdpol_pagerealize(struct vm_page *pg)
{
struct clockpro_state * const s = &clockpro;
mutex_enter(&s->lock);
uvmpdpol_pagerealize_locked(pg);
mutex_exit(&s->lock);
}
void
uvmpdpol_anfree(struct vm_anon *an)
{
struct clockpro_state * const s = &clockpro;
KASSERT(an->an_page == NULL);
mutex_enter(&s->lock);
if (nonresident_lookupremove((objid_t)an, 0)) {
PDPOL_EVCNT_INCR(nresanonfree);
}
mutex_exit(&s->lock);
}
void
uvmpdpol_init(void)
{
clockpro_init();
}
void
uvmpdpol_reinit(void)
{
struct clockpro_state * const s = &clockpro;
mutex_enter(&s->lock);
clockpro_reinit();
mutex_exit(&s->lock);
}
void
uvmpdpol_estimatepageable(int *active, int *inactive)
{
struct clockpro_state * const s = &clockpro;
/*
* Don't take any locks here. This can be called from DDB, and in
* any case the numbers are stale the instant the lock is dropped,
* so it just doesn't matter.
*/
if (active) {
*active = s->s_npages - s->s_ncold;
}
if (inactive) {
*inactive = s->s_ncold;
}
}
bool
uvmpdpol_pageisqueued_p(struct vm_page *pg)
{
/* Unlocked check OK due to page lifecycle. */
return clockpro_getq(pg) != CLOCKPRO_NOQUEUE;
}
bool
uvmpdpol_pageactivate_p(struct vm_page *pg)
{
/* For now, no heuristic, always receive activations. */
return true;
}
void
uvmpdpol_scaninit(void)
{
struct clockpro_state * const s = &clockpro;
struct clockpro_scanstate * const ss = &scanstate;
mutex_enter(&s->lock);
ss->ss_nscanned = 0;
mutex_exit(&s->lock);
}
void
uvmpdpol_scanfini(void)
{
}
struct vm_page *
uvmpdpol_selectvictim(kmutex_t **plock)
{
struct clockpro_state * const s = &clockpro;
struct clockpro_scanstate * const ss = &scanstate;
struct vm_page *pg;
kmutex_t *lock = NULL;
do {
mutex_enter(&s->lock);
if (ss->ss_nscanned > s->s_npages) {
DPRINTF("scan too much\n");
mutex_exit(&s->lock);
return NULL;
}
pg = handcold_advance();
if (pg == NULL) {
mutex_exit(&s->lock);
break;
}
ss->ss_nscanned++;
/*
* acquire interlock to stabilize page identity.
* if we have caught the page in a state of flux
* and it should be dequeued, do it now and then
* move on to the next.
*/
mutex_enter(&pg->interlock);
if ((pg->uobject == NULL && pg->uanon == NULL) ||
pg->wire_count > 0) {
mutex_exit(&pg->interlock);
clockpro_pagedequeue(pg);
pg->pqflags &= ~(PQ_INITIALREF|PQ_SPECULATIVE);
continue;
}
mutex_exit(&s->lock);
lock = uvmpd_trylockowner(pg);
/* pg->interlock now dropped */
} while (lock == NULL);
*plock = lock;
return pg;
}
static void
clockpro_dropswap(pageq_t *q, int *todo)
{
struct vm_page *pg;
kmutex_t *lock;
KASSERT(mutex_owned(&clockpro.lock));
TAILQ_FOREACH_REVERSE(pg, &q->q_q, pglist, pdqueue) {
if (*todo <= 0) {
break;
}
if ((pg->pqflags & PQ_HOT) == 0) {
continue;
}
mutex_enter(&pg->interlock);
if ((pg->flags & PG_SWAPBACKED) == 0) {
mutex_exit(&pg->interlock);
continue;
}
/*
* try to lock the object that owns the page.
*/
mutex_exit(&clockpro.lock);
lock = uvmpd_trylockowner(pg);
/* pg->interlock now released */
mutex_enter(&clockpro.lock);
if (lock == NULL) {
/* didn't get it - try the next page. */
/* XXXAD lost position in queue */
continue;
}
/*
* if there's a shortage of swap slots, try to free it.
*/
if ((pg->flags & PG_SWAPBACKED) != 0 &&
(pg->flags & PG_BUSY) == 0) {
if (uvmpd_dropswap(pg)) {
(*todo)--;
}
}
mutex_exit(lock);
}
}
void
uvmpdpol_balancequeue(int swap_shortage)
{
struct clockpro_state * const s = &clockpro;
int todo = swap_shortage;
if (todo == 0) {
return;
}
/*
* reclaim swap slots from hot pages
*/
DPRINTF("%s: swap_shortage=%d\n", __func__, swap_shortage);
mutex_enter(&s->lock);
clockpro_dropswap(clockpro_queue(s, CLOCKPRO_NEWQ), &todo);
clockpro_dropswap(clockpro_queue(s, CLOCKPRO_COLDQ), &todo);
clockpro_dropswap(clockpro_queue(s, CLOCKPRO_HOTQ), &todo);
mutex_exit(&s->lock);
DPRINTF("%s: done=%d\n", __func__, swap_shortage - todo);
}
bool
uvmpdpol_needsscan_p(void)
{
struct clockpro_state * const s = &clockpro;
/* This must be an unlocked check: can be called from interrupt. */
return s->s_ncold < s->s_coldtarget;
}
void
uvmpdpol_tune(void)
{
struct clockpro_state * const s = &clockpro;
mutex_enter(&s->lock);
clockpro_tune();
mutex_exit(&s->lock);
}
void
uvmpdpol_idle(void)
{
}
#if !defined(PDSIM)
#include <sys/sysctl.h> /* XXX SYSCTL_DESCR */
void
uvmpdpol_sysctlsetup(void)
{
#if !defined(ADAPTIVE)
struct clockpro_state * const s = &clockpro;
uvm_pctparam_createsysctlnode(&s->s_coldtargetpct, "coldtargetpct",
SYSCTL_DESCR("Percentage cold target queue of the entire queue"));
#endif /* !defined(ADAPTIVE) */
}
#endif /* !defined(PDSIM) */
#if defined(DDB)
#if 0 /* XXXuvmplock */
#define _pmap_is_referenced(pg) pmap_is_referenced(pg)
#else
#define _pmap_is_referenced(pg) false
#endif
void clockpro_dump(void);
void
clockpro_dump(void)
{
struct clockpro_state * const s = &clockpro;
struct vm_page *pg;
int ncold, nhot, ntest, nspeculative, ninitialref, nref;
int newqlen, coldqlen, hotqlen, listqlen;
newqlen = coldqlen = hotqlen = listqlen = 0;
printf("npages=%d, ncold=%d, coldtarget=%d, newqlenmax=%d\n",
s->s_npages, s->s_ncold, s->s_coldtarget, s->s_newqlenmax);
#define INITCOUNT() \
ncold = nhot = ntest = nspeculative = ninitialref = nref = 0
#define COUNT(pg) \
if ((pg->pqflags & PQ_HOT) != 0) { \
nhot++; \
} else { \
ncold++; \
if ((pg->pqflags & PQ_TEST) != 0) { \
ntest++; \
} \
if ((pg->pqflags & PQ_SPECULATIVE) != 0) { \
nspeculative++; \
} \
if ((pg->pqflags & PQ_INITIALREF) != 0) { \
ninitialref++; \
} else if ((pg->pqflags & PQ_REFERENCED) != 0 || \
_pmap_is_referenced(pg)) { \
nref++; \
} \
}
#define PRINTCOUNT(name) \
printf("%s hot=%d, cold=%d, test=%d, speculative=%d, initialref=%d, " \
"nref=%d\n", \
(name), nhot, ncold, ntest, nspeculative, ninitialref, nref)
INITCOUNT();
TAILQ_FOREACH(pg, &clockpro_queue(s, CLOCKPRO_NEWQ)->q_q, pdqueue) {
if (clockpro_getq(pg) != CLOCKPRO_NEWQ) {
printf("newq corrupt %p\n", pg);
}
COUNT(pg)
newqlen++;
}
PRINTCOUNT("newq");
INITCOUNT();
TAILQ_FOREACH(pg, &clockpro_queue(s, CLOCKPRO_COLDQ)->q_q, pdqueue) {
if (clockpro_getq(pg) != CLOCKPRO_COLDQ) {
printf("coldq corrupt %p\n", pg);
}
COUNT(pg)
coldqlen++;
}
PRINTCOUNT("coldq");
INITCOUNT();
TAILQ_FOREACH(pg, &clockpro_queue(s, CLOCKPRO_HOTQ)->q_q, pdqueue) {
if (clockpro_getq(pg) != CLOCKPRO_HOTQ) {
printf("hotq corrupt %p\n", pg);
}
#if defined(LISTQ)
if ((pg->pqflags & PQ_HOT) == 0) {
printf("cold page in hotq: %p\n", pg);
}
#endif /* defined(LISTQ) */
COUNT(pg)
hotqlen++;
}
PRINTCOUNT("hotq");
INITCOUNT();
TAILQ_FOREACH(pg, &clockpro_queue(s, CLOCKPRO_LISTQ)->q_q, pdqueue) {
#if !defined(LISTQ)
printf("listq %p\n", pg);
#endif /* !defined(LISTQ) */
if (clockpro_getq(pg) != CLOCKPRO_LISTQ) {
printf("listq corrupt %p\n", pg);
}
COUNT(pg)
listqlen++;
}
PRINTCOUNT("listq");
printf("newqlen=%d/%d, coldqlen=%d/%d, hotqlen=%d/%d, listqlen=%d/%d\n",
newqlen, pageq_len(clockpro_queue(s, CLOCKPRO_NEWQ)),
coldqlen, pageq_len(clockpro_queue(s, CLOCKPRO_COLDQ)),
hotqlen, pageq_len(clockpro_queue(s, CLOCKPRO_HOTQ)),
listqlen, pageq_len(clockpro_queue(s, CLOCKPRO_LISTQ)));
}
#endif /* defined(DDB) */
#if defined(PDSIM)
#if defined(DEBUG)
static void
pdsim_dumpq(int qidx)
{
struct clockpro_state * const s = &clockpro;
pageq_t *q = clockpro_queue(s, qidx);
struct vm_page *pg;
TAILQ_FOREACH(pg, &q->q_q, pdqueue) {
DPRINTF(" %" PRIu64 "%s%s%s%s%s%s",
pg->offset >> PAGE_SHIFT,
(pg->pqflags & PQ_HOT) ? "H" : "",
(pg->pqflags & PQ_TEST) ? "T" : "",
(pg->pqflags & PQ_REFERENCED) ? "R" : "",
_pmap_is_referenced(pg) ? "r" : "",
(pg->pqflags & PQ_INITIALREF) ? "I" : "",
(pg->pqflags & PQ_SPECULATIVE) ? "S" : ""
);
}
}
#endif /* defined(DEBUG) */
void
pdsim_dump(const char *id)
{
#if defined(DEBUG)
struct clockpro_state * const s = &clockpro;
DPRINTF(" %s L(", id);
pdsim_dumpq(CLOCKPRO_LISTQ);
DPRINTF(" ) H(");
pdsim_dumpq(CLOCKPRO_HOTQ);
DPRINTF(" ) C(");
pdsim_dumpq(CLOCKPRO_COLDQ);
DPRINTF(" ) N(");
pdsim_dumpq(CLOCKPRO_NEWQ);
DPRINTF(" ) ncold=%d/%d, coldadj=%d\n",
s->s_ncold, s->s_coldtarget, coldadj);
#endif /* defined(DEBUG) */
}
#endif /* defined(PDSIM) */