NetBSD/sys/kern/vfs_wapbl.c

3446 lines
88 KiB
C

/* $NetBSD: vfs_wapbl.c,v 1.113 2024/05/13 00:01:53 msaitoh Exp $ */
/*-
* Copyright (c) 2003, 2008, 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This implements file system independent write ahead filesystem logging.
*/
#define WAPBL_INTERNAL
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vfs_wapbl.c,v 1.113 2024/05/13 00:01:53 msaitoh Exp $");
#include <sys/param.h>
#include <sys/bitops.h>
#include <sys/time.h>
#include <sys/wapbl.h>
#include <sys/wapbl_replay.h>
#ifdef _KERNEL
#include <sys/atomic.h>
#include <sys/conf.h>
#include <sys/evcnt.h>
#include <sys/file.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <sys/vnode.h>
#include <miscfs/specfs/specdev.h>
#define wapbl_alloc(s) kmem_alloc((s), KM_SLEEP)
#define wapbl_free(a, s) kmem_free((a), (s))
#define wapbl_calloc(n, s) kmem_zalloc((n)*(s), KM_SLEEP)
static int wapbl_flush_disk_cache = 1;
static int wapbl_verbose_commit = 0;
static int wapbl_allow_dpofua = 0; /* switched off by default for now */
static int wapbl_journal_iobufs = 4;
static inline size_t wapbl_space_free(size_t, off_t, off_t);
#else /* !_KERNEL */
#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define KDASSERT(x) assert(x)
#define KASSERT(x) assert(x)
#define wapbl_alloc(s) malloc(s)
#define wapbl_free(a, s) free(a)
#define wapbl_calloc(n, s) calloc((n), (s))
#endif /* !_KERNEL */
/*
* INTERNAL DATA STRUCTURES
*/
/*
* This structure holds per-mount log information.
*
* Legend: a = atomic access only
* r = read-only after init
* l = rwlock held
* m = mutex held
* lm = rwlock held writing or mutex held
* u = unlocked access ok
* b = bufcache_lock held
*/
LIST_HEAD(wapbl_ino_head, wapbl_ino);
struct wapbl {
struct vnode *wl_logvp; /* r: log here */
struct vnode *wl_devvp; /* r: log on this device */
struct mount *wl_mount; /* r: mountpoint wl is associated with */
daddr_t wl_logpbn; /* r: Physical block number of start of log */
int wl_log_dev_bshift; /* r: logarithm of device block size of log
device */
int wl_fs_dev_bshift; /* r: logarithm of device block size of
filesystem device */
unsigned wl_lock_count; /* m: Count of transactions in progress */
size_t wl_circ_size; /* r: Number of bytes in buffer of log */
size_t wl_circ_off; /* r: Number of bytes reserved at start */
size_t wl_bufcount_max; /* r: Number of buffers reserved for log */
size_t wl_bufbytes_max; /* r: Number of buf bytes reserved for log */
off_t wl_head; /* l: Byte offset of log head */
off_t wl_tail; /* l: Byte offset of log tail */
/*
* WAPBL log layout, stored on wl_devvp at wl_logpbn:
*
* ___________________ wl_circ_size __________________
* / \
* +---------+---------+-------+--------------+--------+
* [ commit0 | commit1 | CCWCW | EEEEEEEEEEEE | CCCWCW ]
* +---------+---------+-------+--------------+--------+
* wl_circ_off --^ ^-- wl_head ^-- wl_tail
*
* commit0 and commit1 are commit headers. A commit header has
* a generation number, indicating which of the two headers is
* more recent, and an assignment of head and tail pointers.
* The rest is a circular queue of log records, starting at
* the byte offset wl_circ_off.
*
* E marks empty space for records.
* W marks records for block writes issued but waiting.
* C marks completed records.
*
* wapbl_flush writes new records to empty `E' spaces after
* wl_head from the current transaction in memory.
*
* wapbl_truncate advances wl_tail past any completed `C'
* records, freeing them up for use.
*
* head == tail == 0 means log is empty.
* head == tail != 0 means log is full.
*
* See assertions in wapbl_advance() for other boundary
* conditions.
*
* Only wapbl_flush moves the head, except when wapbl_truncate
* sets it to 0 to indicate that the log is empty.
*
* Only wapbl_truncate moves the tail, except when wapbl_flush
* sets it to wl_circ_off to indicate that the log is full.
*/
struct wapbl_wc_header *wl_wc_header; /* l */
void *wl_wc_scratch; /* l: scratch space (XXX: por que?!?) */
kmutex_t wl_mtx; /* u: short-term lock */
krwlock_t wl_rwlock; /* u: File system transaction lock */
/*
* Must be held while accessing
* wl_count or wl_bufs or head or tail
*/
#if _KERNEL
/*
* Callback called from within the flush routine to flush any extra
* bits. Note that flush may be skipped without calling this if
* there are no outstanding buffers in the transaction.
*/
wapbl_flush_fn_t wl_flush; /* r */
wapbl_flush_fn_t wl_flush_abort;/* r */
/* Event counters */
char wl_ev_group[EVCNT_STRING_MAX]; /* r */
struct evcnt wl_ev_commit; /* l */
struct evcnt wl_ev_journalwrite; /* l */
struct evcnt wl_ev_jbufs_bio_nowait; /* l */
struct evcnt wl_ev_metawrite; /* lm */
struct evcnt wl_ev_cacheflush; /* l */
#endif
size_t wl_bufbytes; /* m: Byte count of pages in wl_bufs */
size_t wl_bufcount; /* m: Count of buffers in wl_bufs */
size_t wl_bcount; /* m: Total bcount of wl_bufs */
TAILQ_HEAD(, buf) wl_bufs; /* m: Buffers in current transaction */
kcondvar_t wl_reclaimable_cv; /* m (obviously) */
size_t wl_reclaimable_bytes; /* m: Amount of space available for
reclamation by truncate */
int wl_error_count; /* m: # of wl_entries with errors */
size_t wl_reserved_bytes; /* never truncate log smaller than this */
#ifdef WAPBL_DEBUG_BUFBYTES
size_t wl_unsynced_bufbytes; /* Byte count of unsynced buffers */
#endif
#if _KERNEL
int wl_brperjblock; /* r Block records per journal block */
#endif
TAILQ_HEAD(, wapbl_dealloc) wl_dealloclist; /* lm: list head */
int wl_dealloccnt; /* lm: total count */
int wl_dealloclim; /* r: max count */
/* hashtable of inode numbers for allocated but unlinked inodes */
/* synch ??? */
struct wapbl_ino_head *wl_inohash;
u_long wl_inohashmask;
int wl_inohashcnt;
SIMPLEQ_HEAD(, wapbl_entry) wl_entries; /* m: On disk transaction
accounting */
/* buffers for wapbl_buffered_write() */
TAILQ_HEAD(, buf) wl_iobufs; /* l: Free or filling bufs */
TAILQ_HEAD(, buf) wl_iobufs_busy; /* l: In-transit bufs */
int wl_dkcache; /* r: disk cache flags */
#define WAPBL_USE_FUA(wl) \
(wapbl_allow_dpofua && ISSET((wl)->wl_dkcache, DKCACHE_FUA))
#define WAPBL_JFLAGS(wl) \
(WAPBL_USE_FUA(wl) ? (wl)->wl_jwrite_flags : 0)
#define WAPBL_JDATA_FLAGS(wl) \
(WAPBL_JFLAGS(wl) & B_MEDIA_DPO) /* only DPO */
int wl_jwrite_flags; /* r: journal write flags */
};
#ifdef WAPBL_DEBUG_PRINT
int wapbl_debug_print = WAPBL_DEBUG_PRINT;
#endif
/****************************************************************/
#ifdef _KERNEL
#ifdef WAPBL_DEBUG
struct wapbl *wapbl_debug_wl;
#endif
static int wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail);
static int wapbl_write_blocks(struct wapbl *wl, off_t *offp);
static int wapbl_write_revocations(struct wapbl *wl, off_t *offp);
static int wapbl_write_inodes(struct wapbl *wl, off_t *offp);
#endif /* _KERNEL */
static int wapbl_replay_process(struct wapbl_replay *wr, off_t, off_t);
static inline size_t wapbl_space_used(size_t avail, off_t head,
off_t tail);
#ifdef _KERNEL
static struct pool wapbl_entry_pool;
static struct pool wapbl_dealloc_pool;
#define WAPBL_INODETRK_SIZE 83
static int wapbl_ino_pool_refcount;
static struct pool wapbl_ino_pool;
struct wapbl_ino {
LIST_ENTRY(wapbl_ino) wi_hash;
ino_t wi_ino;
mode_t wi_mode;
};
static void wapbl_inodetrk_init(struct wapbl *wl, u_int size);
static void wapbl_inodetrk_free(struct wapbl *wl);
static struct wapbl_ino *wapbl_inodetrk_get(struct wapbl *wl, ino_t ino);
static size_t wapbl_transaction_len(struct wapbl *wl);
static inline size_t wapbl_transaction_inodes_len(struct wapbl *wl);
static void wapbl_deallocation_free(struct wapbl *, struct wapbl_dealloc *,
bool);
static void wapbl_evcnt_init(struct wapbl *);
static void wapbl_evcnt_free(struct wapbl *);
static void wapbl_dkcache_init(struct wapbl *);
#if 0
int wapbl_replay_verify(struct wapbl_replay *, struct vnode *);
#endif
static int wapbl_replay_isopen1(struct wapbl_replay *);
const struct wapbl_ops wapbl_ops = {
.wo_wapbl_discard = wapbl_discard,
.wo_wapbl_replay_isopen = wapbl_replay_isopen1,
.wo_wapbl_replay_can_read = wapbl_replay_can_read,
.wo_wapbl_replay_read = wapbl_replay_read,
.wo_wapbl_add_buf = wapbl_add_buf,
.wo_wapbl_remove_buf = wapbl_remove_buf,
.wo_wapbl_resize_buf = wapbl_resize_buf,
.wo_wapbl_begin = wapbl_begin,
.wo_wapbl_end = wapbl_end,
.wo_wapbl_junlock_assert= wapbl_junlock_assert,
.wo_wapbl_jlock_assert = wapbl_jlock_assert,
/* XXX: the following is only used to say "this is a wapbl buf" */
.wo_wapbl_biodone = wapbl_biodone,
};
SYSCTL_SETUP(wapbl_sysctl_init, "wapbl sysctl")
{
int rv;
const struct sysctlnode *rnode, *cnode;
rv = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "wapbl",
SYSCTL_DESCR("WAPBL journaling options"),
NULL, 0, NULL, 0,
CTL_VFS, CTL_CREATE, CTL_EOL);
if (rv)
return;
rv = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "flush_disk_cache",
SYSCTL_DESCR("flush disk cache"),
NULL, 0, &wapbl_flush_disk_cache, 0,
CTL_CREATE, CTL_EOL);
if (rv)
return;
rv = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "verbose_commit",
SYSCTL_DESCR("show time and size of wapbl log commits"),
NULL, 0, &wapbl_verbose_commit, 0,
CTL_CREATE, CTL_EOL);
if (rv)
return;
rv = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "allow_dpofua",
SYSCTL_DESCR("allow use of FUA/DPO instead of cache flush if available"),
NULL, 0, &wapbl_allow_dpofua, 0,
CTL_CREATE, CTL_EOL);
if (rv)
return;
rv = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "journal_iobufs",
SYSCTL_DESCR("count of bufs used for journal I/O (max async count)"),
NULL, 0, &wapbl_journal_iobufs, 0,
CTL_CREATE, CTL_EOL);
if (rv)
return;
return;
}
static void
wapbl_init(void)
{
pool_init(&wapbl_entry_pool, sizeof(struct wapbl_entry), 0, 0, 0,
"wapblentrypl", &pool_allocator_kmem, IPL_VM);
pool_init(&wapbl_dealloc_pool, sizeof(struct wapbl_dealloc), 0, 0, 0,
"wapbldealloc", &pool_allocator_nointr, IPL_NONE);
}
static int
wapbl_fini(void)
{
pool_destroy(&wapbl_dealloc_pool);
pool_destroy(&wapbl_entry_pool);
return 0;
}
static void
wapbl_evcnt_init(struct wapbl *wl)
{
snprintf(wl->wl_ev_group, sizeof(wl->wl_ev_group),
"wapbl fsid 0x%x/0x%x",
wl->wl_mount->mnt_stat.f_fsidx.__fsid_val[0],
wl->wl_mount->mnt_stat.f_fsidx.__fsid_val[1]
);
evcnt_attach_dynamic(&wl->wl_ev_commit, EVCNT_TYPE_MISC,
NULL, wl->wl_ev_group, "commit");
evcnt_attach_dynamic(&wl->wl_ev_journalwrite, EVCNT_TYPE_MISC,
NULL, wl->wl_ev_group, "journal write total");
evcnt_attach_dynamic(&wl->wl_ev_jbufs_bio_nowait, EVCNT_TYPE_MISC,
NULL, wl->wl_ev_group, "journal write finished async");
evcnt_attach_dynamic(&wl->wl_ev_metawrite, EVCNT_TYPE_MISC,
NULL, wl->wl_ev_group, "metadata async write");
evcnt_attach_dynamic(&wl->wl_ev_cacheflush, EVCNT_TYPE_MISC,
NULL, wl->wl_ev_group, "cache flush");
}
static void
wapbl_evcnt_free(struct wapbl *wl)
{
evcnt_detach(&wl->wl_ev_commit);
evcnt_detach(&wl->wl_ev_journalwrite);
evcnt_detach(&wl->wl_ev_jbufs_bio_nowait);
evcnt_detach(&wl->wl_ev_metawrite);
evcnt_detach(&wl->wl_ev_cacheflush);
}
static void
wapbl_dkcache_init(struct wapbl *wl)
{
int error;
/* Get disk cache flags */
error = VOP_IOCTL(wl->wl_devvp, DIOCGCACHE, &wl->wl_dkcache,
FWRITE, FSCRED);
if (error) {
/* behave as if there was a write cache */
wl->wl_dkcache = DKCACHE_WRITE;
}
/* Use FUA instead of cache flush if available */
if (ISSET(wl->wl_dkcache, DKCACHE_FUA))
wl->wl_jwrite_flags |= B_MEDIA_FUA;
/* Use DPO for journal writes if available */
if (ISSET(wl->wl_dkcache, DKCACHE_DPO))
wl->wl_jwrite_flags |= B_MEDIA_DPO;
}
static int
wapbl_start_flush_inodes(struct wapbl *wl, struct wapbl_replay *wr)
{
int error, i;
WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
("wapbl_start: reusing log with %d inodes\n", wr->wr_inodescnt));
/*
* Its only valid to reuse the replay log if its
* the same as the new log we just opened.
*/
KDASSERT(!wapbl_replay_isopen(wr));
KASSERT(wl->wl_devvp->v_type == VBLK);
KASSERT(wr->wr_devvp->v_type == VBLK);
KASSERT(wl->wl_devvp->v_rdev == wr->wr_devvp->v_rdev);
KASSERT(wl->wl_logpbn == wr->wr_logpbn);
KASSERT(wl->wl_circ_size == wr->wr_circ_size);
KASSERT(wl->wl_circ_off == wr->wr_circ_off);
KASSERT(wl->wl_log_dev_bshift == wr->wr_log_dev_bshift);
KASSERT(wl->wl_fs_dev_bshift == wr->wr_fs_dev_bshift);
wl->wl_wc_header->wc_generation = wr->wr_generation + 1;
for (i = 0; i < wr->wr_inodescnt; i++)
wapbl_register_inode(wl, wr->wr_inodes[i].wr_inumber,
wr->wr_inodes[i].wr_imode);
/* Make sure new transaction won't overwrite old inodes list */
KDASSERT(wapbl_transaction_len(wl) <=
wapbl_space_free(wl->wl_circ_size, wr->wr_inodeshead,
wr->wr_inodestail));
wl->wl_head = wl->wl_tail = wr->wr_inodeshead;
wl->wl_reclaimable_bytes = wl->wl_reserved_bytes =
wapbl_transaction_len(wl);
error = wapbl_write_inodes(wl, &wl->wl_head);
if (error)
return error;
KASSERT(wl->wl_head != wl->wl_tail);
KASSERT(wl->wl_head != 0);
return 0;
}
int
wapbl_start(struct wapbl ** wlp, struct mount *mp, struct vnode *vp,
daddr_t off, size_t count, size_t blksize, struct wapbl_replay *wr,
wapbl_flush_fn_t flushfn, wapbl_flush_fn_t flushabortfn)
{
struct wapbl *wl;
struct vnode *devvp;
daddr_t logpbn;
int error;
int log_dev_bshift = ilog2(blksize);
int fs_dev_bshift = log_dev_bshift;
int run;
WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_start: vp=%p off=%" PRId64
" count=%zu blksize=%zu\n", vp, off, count, blksize));
if (log_dev_bshift > fs_dev_bshift) {
WAPBL_PRINTF(WAPBL_PRINT_OPEN,
("wapbl: log device's block size cannot be larger "
"than filesystem's\n"));
/*
* Not currently implemented, although it could be if
* needed someday.
*/
return ENOSYS;
}
if (off < 0)
return EINVAL;
if (blksize < DEV_BSIZE)
return EINVAL;
if (blksize % DEV_BSIZE)
return EINVAL;
/* XXXTODO: verify that the full load is writable */
/*
* XXX check for minimum log size
* minimum is governed by minimum amount of space
* to complete a transaction. (probably truncate)
*/
/* XXX for now pick something minimal */
if ((count * blksize) < MAXPHYS) {
return ENOSPC;
}
if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, &run)) != 0) {
return error;
}
wl = wapbl_calloc(1, sizeof(*wl));
rw_init(&wl->wl_rwlock);
mutex_init(&wl->wl_mtx, MUTEX_DEFAULT, IPL_NONE);
cv_init(&wl->wl_reclaimable_cv, "wapblrec");
TAILQ_INIT(&wl->wl_bufs);
SIMPLEQ_INIT(&wl->wl_entries);
wl->wl_logvp = vp;
wl->wl_devvp = devvp;
wl->wl_mount = mp;
wl->wl_logpbn = logpbn;
wl->wl_log_dev_bshift = log_dev_bshift;
wl->wl_fs_dev_bshift = fs_dev_bshift;
wl->wl_flush = flushfn;
wl->wl_flush_abort = flushabortfn;
/* Reserve two log device blocks for the commit headers */
wl->wl_circ_off = 2<<wl->wl_log_dev_bshift;
wl->wl_circ_size = ((count * blksize) - wl->wl_circ_off);
/* truncate the log usage to a multiple of log_dev_bshift */
wl->wl_circ_size >>= wl->wl_log_dev_bshift;
wl->wl_circ_size <<= wl->wl_log_dev_bshift;
/*
* wl_bufbytes_max limits the size of the in memory transaction space.
* - Since buffers are allocated and accounted for in units of
* PAGE_SIZE it is required to be a multiple of PAGE_SIZE
* (i.e. 1<<PAGE_SHIFT)
* - Since the log device has to be written in units of
* 1<<wl_log_dev_bshift it is required to be a multiple of
* 1<<wl_log_dev_bshift.
* - Since filesystem will provide data in units of 1<<wl_fs_dev_bshift,
* it is convenient to be a multiple of 1<<wl_fs_dev_bshift.
* Therefore it must be multiple of the least common multiple of those
* three quantities. Fortunately, all of those quantities are
* guaranteed to be a power of two, and the least common multiple of
* a set of numbers which are all powers of two is simply the maximum
* of those numbers. Finally, the maximum logarithm of a power of two
* is the same as the log of the maximum power of two. So we can do
* the following operations to size wl_bufbytes_max:
*/
/* XXX fix actual number of pages reserved per filesystem. */
wl->wl_bufbytes_max = MIN(wl->wl_circ_size, buf_memcalc() / 2);
/* Round wl_bufbytes_max to the largest power of two constraint */
wl->wl_bufbytes_max >>= PAGE_SHIFT;
wl->wl_bufbytes_max <<= PAGE_SHIFT;
wl->wl_bufbytes_max >>= wl->wl_log_dev_bshift;
wl->wl_bufbytes_max <<= wl->wl_log_dev_bshift;
wl->wl_bufbytes_max >>= wl->wl_fs_dev_bshift;
wl->wl_bufbytes_max <<= wl->wl_fs_dev_bshift;
/* XXX maybe use filesystem fragment size instead of 1024 */
/* XXX fix actual number of buffers reserved per filesystem. */
wl->wl_bufcount_max = (buf_nbuf() / 2) * 1024;
wl->wl_brperjblock = ((1<<wl->wl_log_dev_bshift)
- offsetof(struct wapbl_wc_blocklist, wc_blocks)) /
sizeof(((struct wapbl_wc_blocklist *)0)->wc_blocks[0]);
KASSERT(wl->wl_brperjblock > 0);
/* XXX tie this into resource estimation */
wl->wl_dealloclim = wl->wl_bufbytes_max / mp->mnt_stat.f_bsize / 2;
TAILQ_INIT(&wl->wl_dealloclist);
wapbl_inodetrk_init(wl, WAPBL_INODETRK_SIZE);
wapbl_evcnt_init(wl);
wapbl_dkcache_init(wl);
/* Initialize the commit header */
{
struct wapbl_wc_header *wc;
size_t len = 1 << wl->wl_log_dev_bshift;
wc = wapbl_calloc(1, len);
wc->wc_type = WAPBL_WC_HEADER;
wc->wc_len = len;
wc->wc_circ_off = wl->wl_circ_off;
wc->wc_circ_size = wl->wl_circ_size;
/* XXX wc->wc_fsid */
wc->wc_log_dev_bshift = wl->wl_log_dev_bshift;
wc->wc_fs_dev_bshift = wl->wl_fs_dev_bshift;
wl->wl_wc_header = wc;
wl->wl_wc_scratch = wapbl_alloc(len);
}
TAILQ_INIT(&wl->wl_iobufs);
TAILQ_INIT(&wl->wl_iobufs_busy);
for (int i = 0; i < wapbl_journal_iobufs; i++) {
struct buf *bp;
if ((bp = geteblk(MAXPHYS)) == NULL)
goto errout;
mutex_enter(&bufcache_lock);
mutex_enter(devvp->v_interlock);
bgetvp(devvp, bp);
mutex_exit(devvp->v_interlock);
mutex_exit(&bufcache_lock);
bp->b_dev = devvp->v_rdev;
TAILQ_INSERT_TAIL(&wl->wl_iobufs, bp, b_wapbllist);
}
/*
* if there was an existing set of unlinked but
* allocated inodes, preserve it in the new
* log.
*/
if (wr && wr->wr_inodescnt) {
error = wapbl_start_flush_inodes(wl, wr);
if (error)
goto errout;
}
error = wapbl_write_commit(wl, wl->wl_head, wl->wl_tail);
if (error) {
goto errout;
}
*wlp = wl;
#if defined(WAPBL_DEBUG)
wapbl_debug_wl = wl;
#endif
return 0;
errout:
wapbl_discard(wl);
wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len);
wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len);
while (!TAILQ_EMPTY(&wl->wl_iobufs)) {
struct buf *bp;
bp = TAILQ_FIRST(&wl->wl_iobufs);
TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist);
brelse(bp, BC_INVAL);
}
wapbl_inodetrk_free(wl);
wapbl_free(wl, sizeof(*wl));
return error;
}
/*
* Like wapbl_flush, only discards the transaction
* completely
*/
void
wapbl_discard(struct wapbl *wl)
{
struct wapbl_entry *we;
struct wapbl_dealloc *wd;
struct buf *bp;
int i;
/*
* XXX we may consider using upgrade here
* if we want to call flush from inside a transaction
*/
rw_enter(&wl->wl_rwlock, RW_WRITER);
wl->wl_flush(wl->wl_mount, TAILQ_FIRST(&wl->wl_dealloclist));
#ifdef WAPBL_DEBUG_PRINT
{
pid_t pid = -1;
lwpid_t lid = -1;
if (curproc)
pid = curproc->p_pid;
if (curlwp)
lid = curlwp->l_lid;
#ifdef WAPBL_DEBUG_BUFBYTES
WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
("wapbl_discard: thread %d.%d discarding "
"transaction\n"
"\tbufcount=%zu bufbytes=%zu bcount=%zu "
"deallocs=%d inodes=%d\n"
"\terrcnt = %u, reclaimable=%zu reserved=%zu "
"unsynced=%zu\n",
pid, lid, wl->wl_bufcount, wl->wl_bufbytes,
wl->wl_bcount, wl->wl_dealloccnt,
wl->wl_inohashcnt, wl->wl_error_count,
wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
wl->wl_unsynced_bufbytes));
SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
("\tentry: bufcount = %zu, reclaimable = %zu, "
"error = %d, unsynced = %zu\n",
we->we_bufcount, we->we_reclaimable_bytes,
we->we_error, we->we_unsynced_bufbytes));
}
#else /* !WAPBL_DEBUG_BUFBYTES */
WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
("wapbl_discard: thread %d.%d discarding transaction\n"
"\tbufcount=%zu bufbytes=%zu bcount=%zu "
"deallocs=%d inodes=%d\n"
"\terrcnt = %u, reclaimable=%zu reserved=%zu\n",
pid, lid, wl->wl_bufcount, wl->wl_bufbytes,
wl->wl_bcount, wl->wl_dealloccnt,
wl->wl_inohashcnt, wl->wl_error_count,
wl->wl_reclaimable_bytes, wl->wl_reserved_bytes));
SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
("\tentry: bufcount = %zu, reclaimable = %zu, "
"error = %d\n",
we->we_bufcount, we->we_reclaimable_bytes,
we->we_error));
}
#endif /* !WAPBL_DEBUG_BUFBYTES */
}
#endif /* WAPBL_DEBUG_PRINT */
for (i = 0; i <= wl->wl_inohashmask; i++) {
struct wapbl_ino_head *wih;
struct wapbl_ino *wi;
wih = &wl->wl_inohash[i];
while ((wi = LIST_FIRST(wih)) != NULL) {
LIST_REMOVE(wi, wi_hash);
pool_put(&wapbl_ino_pool, wi);
KASSERT(wl->wl_inohashcnt > 0);
wl->wl_inohashcnt--;
}
}
/*
* clean buffer list
*/
mutex_enter(&bufcache_lock);
mutex_enter(&wl->wl_mtx);
while ((bp = TAILQ_FIRST(&wl->wl_bufs)) != NULL) {
if (bbusy(bp, 0, 0, &wl->wl_mtx) == 0) {
KASSERT(bp->b_flags & B_LOCKED);
KASSERT(bp->b_oflags & BO_DELWRI);
/*
* Buffer is already on BQ_LOCKED queue.
* The buffer will be unlocked and
* removed from the transaction in brelsel()
*/
mutex_exit(&wl->wl_mtx);
bremfree(bp);
brelsel(bp, BC_INVAL);
mutex_enter(&wl->wl_mtx);
}
}
/*
* Remove references to this wl from wl_entries, free any which
* no longer have buffers, others will be freed in wapbl_biodone()
* when they no longer have any buffers.
*/
while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries);
/* XXX should we be accumulating wl_error_count
* and increasing reclaimable bytes ? */
we->we_wapbl = NULL;
if (we->we_bufcount == 0) {
#ifdef WAPBL_DEBUG_BUFBYTES
KASSERT(we->we_unsynced_bufbytes == 0);
#endif
pool_put(&wapbl_entry_pool, we);
}
}
mutex_exit(&wl->wl_mtx);
mutex_exit(&bufcache_lock);
/* Discard list of deallocs */
while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL)
wapbl_deallocation_free(wl, wd, true);
/* XXX should we clear wl_reserved_bytes? */
KASSERT(wl->wl_bufbytes == 0);
KASSERT(wl->wl_bcount == 0);
KASSERT(wl->wl_bufcount == 0);
KASSERT(TAILQ_EMPTY(&wl->wl_bufs));
KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries));
KASSERT(wl->wl_inohashcnt == 0);
KASSERT(TAILQ_EMPTY(&wl->wl_dealloclist));
KASSERT(wl->wl_dealloccnt == 0);
rw_exit(&wl->wl_rwlock);
}
int
wapbl_stop(struct wapbl *wl, int force)
{
int error;
WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_stop called\n"));
error = wapbl_flush(wl, 1);
if (error) {
if (force)
wapbl_discard(wl);
else
return error;
}
/* Unlinked inodes persist after a flush */
if (wl->wl_inohashcnt) {
if (force) {
wapbl_discard(wl);
} else {
return EBUSY;
}
}
KASSERT(wl->wl_bufbytes == 0);
KASSERT(wl->wl_bcount == 0);
KASSERT(wl->wl_bufcount == 0);
KASSERT(TAILQ_EMPTY(&wl->wl_bufs));
KASSERT(wl->wl_dealloccnt == 0);
KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries));
KASSERT(wl->wl_inohashcnt == 0);
KASSERT(TAILQ_EMPTY(&wl->wl_dealloclist));
KASSERT(wl->wl_dealloccnt == 0);
KASSERT(TAILQ_EMPTY(&wl->wl_iobufs_busy));
wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len);
wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len);
while (!TAILQ_EMPTY(&wl->wl_iobufs)) {
struct buf *bp;
bp = TAILQ_FIRST(&wl->wl_iobufs);
TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist);
brelse(bp, BC_INVAL);
}
wapbl_inodetrk_free(wl);
wapbl_evcnt_free(wl);
cv_destroy(&wl->wl_reclaimable_cv);
mutex_destroy(&wl->wl_mtx);
rw_destroy(&wl->wl_rwlock);
wapbl_free(wl, sizeof(*wl));
return 0;
}
/****************************************************************/
/*
* Unbuffered disk I/O
*/
static void
wapbl_doio_accounting(struct vnode *devvp, int flags)
{
struct pstats *pstats = curlwp->l_proc->p_stats;
if ((flags & (B_WRITE | B_READ)) == B_WRITE) {
mutex_enter(devvp->v_interlock);
devvp->v_numoutput++;
mutex_exit(devvp->v_interlock);
pstats->p_ru.ru_oublock++;
} else {
pstats->p_ru.ru_inblock++;
}
}
static int
wapbl_doio(void *data, size_t len, struct vnode *devvp, daddr_t pbn, int flags)
{
struct buf *bp;
int error;
KASSERT(devvp->v_type == VBLK);
wapbl_doio_accounting(devvp, flags);
bp = getiobuf(devvp, true);
bp->b_flags = flags;
bp->b_cflags |= BC_BUSY; /* mandatory, asserted by biowait() */
bp->b_dev = devvp->v_rdev;
bp->b_data = data;
bp->b_bufsize = bp->b_resid = bp->b_bcount = len;
bp->b_blkno = pbn;
BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
WAPBL_PRINTF(WAPBL_PRINT_IO,
("wapbl_doio: %s %d bytes at block %"PRId64" on dev 0x%"PRIx64"\n",
BUF_ISWRITE(bp) ? "write" : "read", bp->b_bcount,
bp->b_blkno, bp->b_dev));
VOP_STRATEGY(devvp, bp);
error = biowait(bp);
putiobuf(bp);
if (error) {
WAPBL_PRINTF(WAPBL_PRINT_ERROR,
("wapbl_doio: %s %zu bytes at block %" PRId64
" on dev 0x%"PRIx64" failed with error %d\n",
(((flags & (B_WRITE | B_READ)) == B_WRITE) ?
"write" : "read"),
len, pbn, devvp->v_rdev, error));
}
return error;
}
/*
* wapbl_write(data, len, devvp, pbn)
*
* Synchronously write len bytes from data to physical block pbn
* on devvp.
*/
int
wapbl_write(void *data, size_t len, struct vnode *devvp, daddr_t pbn)
{
return wapbl_doio(data, len, devvp, pbn, B_WRITE);
}
/*
* wapbl_read(data, len, devvp, pbn)
*
* Synchronously read len bytes into data from physical block pbn
* on devvp.
*/
int
wapbl_read(void *data, size_t len, struct vnode *devvp, daddr_t pbn)
{
return wapbl_doio(data, len, devvp, pbn, B_READ);
}
/****************************************************************/
/*
* Buffered disk writes -- try to coalesce writes and emit
* MAXPHYS-aligned blocks.
*/
/*
* wapbl_buffered_write_async(wl, bp)
*
* Send buffer for asynchronous write.
*/
static void
wapbl_buffered_write_async(struct wapbl *wl, struct buf *bp)
{
wapbl_doio_accounting(wl->wl_devvp, bp->b_flags);
KASSERT(TAILQ_FIRST(&wl->wl_iobufs) == bp);
TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist);
bp->b_flags |= B_WRITE;
bp->b_cflags |= BC_BUSY; /* mandatory, asserted by biowait() */
bp->b_oflags = 0;
bp->b_bcount = bp->b_resid;
BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
VOP_STRATEGY(wl->wl_devvp, bp);
wl->wl_ev_journalwrite.ev_count++;
TAILQ_INSERT_TAIL(&wl->wl_iobufs_busy, bp, b_wapbllist);
}
/*
* wapbl_buffered_flush(wl)
*
* Flush any buffered writes from wapbl_buffered_write.
*/
static int
wapbl_buffered_flush(struct wapbl *wl, bool full)
{
int error = 0;
struct buf *bp, *bnext;
bool only_done = true, found = false;
/* if there is outstanding buffered write, send it now */
if ((bp = TAILQ_FIRST(&wl->wl_iobufs)) && bp->b_resid > 0)
wapbl_buffered_write_async(wl, bp);
/* wait for I/O to complete */
again:
TAILQ_FOREACH_SAFE(bp, &wl->wl_iobufs_busy, b_wapbllist, bnext) {
if (!full && only_done) {
/* skip unfinished */
if (!ISSET(bp->b_oflags, BO_DONE))
continue;
}
if (ISSET(bp->b_oflags, BO_DONE))
wl->wl_ev_jbufs_bio_nowait.ev_count++;
TAILQ_REMOVE(&wl->wl_iobufs_busy, bp, b_wapbllist);
error = biowait(bp);
/* reset for reuse */
bp->b_blkno = bp->b_resid = bp->b_flags = 0;
TAILQ_INSERT_TAIL(&wl->wl_iobufs, bp, b_wapbllist);
found = true;
if (!full)
break;
}
if (!found && only_done && !TAILQ_EMPTY(&wl->wl_iobufs_busy)) {
only_done = false;
goto again;
}
return error;
}
/*
* wapbl_buffered_write(data, len, wl, pbn)
*
* Write len bytes from data to physical block pbn on
* wl->wl_devvp. The write may not complete until
* wapbl_buffered_flush.
*/
static int
wapbl_buffered_write(void *data, size_t len, struct wapbl *wl, daddr_t pbn,
int bflags)
{
size_t resid;
struct buf *bp;
again:
bp = TAILQ_FIRST(&wl->wl_iobufs);
if (bp == NULL) {
/* No more buffers, wait for any previous I/O to finish. */
wapbl_buffered_flush(wl, false);
bp = TAILQ_FIRST(&wl->wl_iobufs);
KASSERT(bp != NULL);
}
/*
* If not adjacent to buffered data flush first. Disk block
* address is always valid for non-empty buffer.
*/
if ((bp->b_resid > 0 && pbn != bp->b_blkno + btodb(bp->b_resid))) {
wapbl_buffered_write_async(wl, bp);
goto again;
}
/*
* If this write goes to an empty buffer we have to
* save the disk block address first.
*/
if (bp->b_blkno == 0) {
bp->b_blkno = pbn;
bp->b_flags |= bflags;
}
/*
* Remaining space so this buffer ends on a buffer size boundary.
*
* Cannot become less or equal zero as the buffer would have been
* flushed on the last call then.
*/
resid = bp->b_bufsize - dbtob(bp->b_blkno % btodb(bp->b_bufsize)) -
bp->b_resid;
KASSERT(resid > 0);
KASSERT(dbtob(btodb(resid)) == resid);
if (len < resid)
resid = len;
memcpy((uint8_t *)bp->b_data + bp->b_resid, data, resid);
bp->b_resid += resid;
if (len >= resid) {
/* Just filled the buf, or data did not fit */
wapbl_buffered_write_async(wl, bp);
data = (uint8_t *)data + resid;
len -= resid;
pbn += btodb(resid);
if (len > 0)
goto again;
}
return 0;
}
/*
* wapbl_circ_write(wl, data, len, offp)
*
* Write len bytes from data to the circular queue of wl, starting
* at linear byte offset *offp, and returning the new linear byte
* offset in *offp.
*
* If the starting linear byte offset precedes wl->wl_circ_off,
* the write instead begins at wl->wl_circ_off. XXX WTF? This
* should be a KASSERT, not a conditional.
*
* The write is buffered in wl and must be flushed with
* wapbl_buffered_flush before it will be submitted to the disk.
*/
static int
wapbl_circ_write(struct wapbl *wl, void *data, size_t len, off_t *offp)
{
size_t slen;
off_t off = *offp;
int error;
daddr_t pbn;
KDASSERT(((len >> wl->wl_log_dev_bshift) <<
wl->wl_log_dev_bshift) == len);
if (off < wl->wl_circ_off)
off = wl->wl_circ_off;
slen = wl->wl_circ_off + wl->wl_circ_size - off;
if (slen < len) {
pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift);
#ifdef _KERNEL
pbn = btodb(pbn << wl->wl_log_dev_bshift);
#endif
error = wapbl_buffered_write(data, slen, wl, pbn,
WAPBL_JDATA_FLAGS(wl));
if (error)
return error;
data = (uint8_t *)data + slen;
len -= slen;
off = wl->wl_circ_off;
}
pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift);
#ifdef _KERNEL
pbn = btodb(pbn << wl->wl_log_dev_bshift);
#endif
error = wapbl_buffered_write(data, len, wl, pbn,
WAPBL_JDATA_FLAGS(wl));
if (error)
return error;
off += len;
if (off >= wl->wl_circ_off + wl->wl_circ_size)
off = wl->wl_circ_off;
*offp = off;
return 0;
}
/****************************************************************/
/*
* WAPBL transactions: entering, adding/removing bufs, and exiting
*/
int
wapbl_begin(struct wapbl *wl, const char *file, int line)
{
int doflush;
unsigned lockcount;
KDASSERT(wl);
/*
* XXX this needs to be made much more sophisticated.
* perhaps each wapbl_begin could reserve a specified
* number of buffers and bytes.
*/
mutex_enter(&wl->wl_mtx);
lockcount = wl->wl_lock_count;
doflush = ((wl->wl_bufbytes + (lockcount * MAXPHYS)) >
wl->wl_bufbytes_max / 2) ||
((wl->wl_bufcount + (lockcount * 10)) >
wl->wl_bufcount_max / 2) ||
(wapbl_transaction_len(wl) > wl->wl_circ_size / 2) ||
(wl->wl_dealloccnt >= (wl->wl_dealloclim / 2));
mutex_exit(&wl->wl_mtx);
if (doflush) {
WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
("force flush lockcnt=%d bufbytes=%zu "
"(max=%zu) bufcount=%zu (max=%zu) "
"dealloccnt %d (lim=%d)\n",
lockcount, wl->wl_bufbytes,
wl->wl_bufbytes_max, wl->wl_bufcount,
wl->wl_bufcount_max,
wl->wl_dealloccnt, wl->wl_dealloclim));
}
if (doflush) {
int error = wapbl_flush(wl, 0);
if (error)
return error;
}
rw_enter(&wl->wl_rwlock, RW_READER);
mutex_enter(&wl->wl_mtx);
wl->wl_lock_count++;
mutex_exit(&wl->wl_mtx);
#if defined(WAPBL_DEBUG_PRINT)
WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION,
("wapbl_begin thread %d.%d with bufcount=%zu "
"bufbytes=%zu bcount=%zu at %s:%d\n",
curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
wl->wl_bufbytes, wl->wl_bcount, file, line));
#endif
return 0;
}
void
wapbl_end(struct wapbl *wl)
{
#if defined(WAPBL_DEBUG_PRINT)
WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION,
("wapbl_end thread %d.%d with bufcount=%zu "
"bufbytes=%zu bcount=%zu\n",
curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
wl->wl_bufbytes, wl->wl_bcount));
#endif
/*
* XXX this could be handled more gracefully, perhaps place
* only a partial transaction in the log and allow the
* remaining to flush without the protection of the journal.
*/
KASSERTMSG((wapbl_transaction_len(wl) <=
(wl->wl_circ_size - wl->wl_reserved_bytes)),
"wapbl_end: current transaction too big to flush");
mutex_enter(&wl->wl_mtx);
KASSERT(wl->wl_lock_count > 0);
wl->wl_lock_count--;
mutex_exit(&wl->wl_mtx);
rw_exit(&wl->wl_rwlock);
}
void
wapbl_add_buf(struct wapbl *wl, struct buf * bp)
{
KASSERT(bp->b_cflags & BC_BUSY);
KASSERT(bp->b_vp);
wapbl_jlock_assert(wl);
#if 0
/*
* XXX this might be an issue for swapfiles.
* see uvm_swap.c:1702
*
* XXX2 why require it then? leap of semantics?
*/
KASSERT((bp->b_cflags & BC_NOCACHE) == 0);
#endif
mutex_enter(&wl->wl_mtx);
if (bp->b_flags & B_LOCKED) {
TAILQ_REMOVE(&wl->wl_bufs, bp, b_wapbllist);
WAPBL_PRINTF(WAPBL_PRINT_BUFFER2,
("wapbl_add_buf thread %d.%d re-adding buf %p "
"with %d bytes %d bcount\n",
curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize,
bp->b_bcount));
} else {
/* unlocked by dirty buffers shouldn't exist */
KASSERT(!(bp->b_oflags & BO_DELWRI));
wl->wl_bufbytes += bp->b_bufsize;
wl->wl_bcount += bp->b_bcount;
wl->wl_bufcount++;
WAPBL_PRINTF(WAPBL_PRINT_BUFFER,
("wapbl_add_buf thread %d.%d adding buf %p "
"with %d bytes %d bcount\n",
curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize,
bp->b_bcount));
}
TAILQ_INSERT_TAIL(&wl->wl_bufs, bp, b_wapbllist);
mutex_exit(&wl->wl_mtx);
bp->b_flags |= B_LOCKED;
}
static void
wapbl_remove_buf_locked(struct wapbl * wl, struct buf *bp)
{
KASSERT(mutex_owned(&wl->wl_mtx));
KASSERT(bp->b_cflags & BC_BUSY);
wapbl_jlock_assert(wl);
#if 0
/*
* XXX this might be an issue for swapfiles.
* see uvm_swap.c:1725
*
* XXXdeux: see above
*/
KASSERT((bp->b_flags & BC_NOCACHE) == 0);
#endif
KASSERT(bp->b_flags & B_LOCKED);
WAPBL_PRINTF(WAPBL_PRINT_BUFFER,
("wapbl_remove_buf thread %d.%d removing buf %p with "
"%d bytes %d bcount\n",
curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize, bp->b_bcount));
KASSERT(wl->wl_bufbytes >= bp->b_bufsize);
wl->wl_bufbytes -= bp->b_bufsize;
KASSERT(wl->wl_bcount >= bp->b_bcount);
wl->wl_bcount -= bp->b_bcount;
KASSERT(wl->wl_bufcount > 0);
wl->wl_bufcount--;
KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0));
KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0));
TAILQ_REMOVE(&wl->wl_bufs, bp, b_wapbllist);
bp->b_flags &= ~B_LOCKED;
}
/* called from brelsel() in vfs_bio among other places */
void
wapbl_remove_buf(struct wapbl * wl, struct buf *bp)
{
mutex_enter(&wl->wl_mtx);
wapbl_remove_buf_locked(wl, bp);
mutex_exit(&wl->wl_mtx);
}
void
wapbl_resize_buf(struct wapbl *wl, struct buf *bp, long oldsz, long oldcnt)
{
KASSERT(bp->b_cflags & BC_BUSY);
/*
* XXX: why does this depend on B_LOCKED? otherwise the buf
* is not for a transaction? if so, why is this called in the
* first place?
*/
if (bp->b_flags & B_LOCKED) {
mutex_enter(&wl->wl_mtx);
wl->wl_bufbytes += bp->b_bufsize - oldsz;
wl->wl_bcount += bp->b_bcount - oldcnt;
mutex_exit(&wl->wl_mtx);
}
}
#endif /* _KERNEL */
/****************************************************************/
/* Some utility inlines */
/*
* wapbl_space_used(avail, head, tail)
*
* Number of bytes used in a circular queue of avail total bytes,
* from tail to head.
*/
static inline size_t
wapbl_space_used(size_t avail, off_t head, off_t tail)
{
if (tail == 0) {
KASSERT(head == 0);
return 0;
}
return ((head + (avail - 1) - tail) % avail) + 1;
}
#ifdef _KERNEL
/*
* wapbl_advance(size, off, oldoff, delta)
*
* Given a byte offset oldoff into a circular queue of size bytes
* starting at off, return a new byte offset oldoff + delta into
* the circular queue.
*/
static inline off_t
wapbl_advance(size_t size, size_t off, off_t oldoff, size_t delta)
{
off_t newoff;
/* Define acceptable ranges for inputs. */
KASSERT(delta <= (size_t)size);
KASSERT((oldoff == 0) || ((size_t)oldoff >= off));
KASSERT(oldoff < (off_t)(size + off));
if ((oldoff == 0) && (delta != 0))
newoff = off + delta;
else if ((oldoff + delta) < (size + off))
newoff = oldoff + delta;
else
newoff = (oldoff + delta) - size;
/* Note some interesting axioms */
KASSERT((delta != 0) || (newoff == oldoff));
KASSERT((delta == 0) || (newoff != 0));
KASSERT((delta != (size)) || (newoff == oldoff));
/* Define acceptable ranges for output. */
KASSERT((newoff == 0) || ((size_t)newoff >= off));
KASSERT((size_t)newoff < (size + off));
return newoff;
}
/*
* wapbl_space_free(avail, head, tail)
*
* Number of bytes free in a circular queue of avail total bytes,
* in which everything from tail to head is used.
*/
static inline size_t
wapbl_space_free(size_t avail, off_t head, off_t tail)
{
return avail - wapbl_space_used(avail, head, tail);
}
/*
* wapbl_advance_head(size, off, delta, headp, tailp)
*
* In a circular queue of size bytes starting at off, given the
* old head and tail offsets *headp and *tailp, store the new head
* and tail offsets in *headp and *tailp resulting from adding
* delta bytes of data to the head.
*/
static inline void
wapbl_advance_head(size_t size, size_t off, size_t delta, off_t *headp,
off_t *tailp)
{
off_t head = *headp;
off_t tail = *tailp;
KASSERT(delta <= wapbl_space_free(size, head, tail));
head = wapbl_advance(size, off, head, delta);
if ((tail == 0) && (head != 0))
tail = off;
*headp = head;
*tailp = tail;
}
/*
* wapbl_advance_tail(size, off, delta, headp, tailp)
*
* In a circular queue of size bytes starting at off, given the
* old head and tail offsets *headp and *tailp, store the new head
* and tail offsets in *headp and *tailp resulting from removing
* delta bytes of data from the tail.
*/
static inline void
wapbl_advance_tail(size_t size, size_t off, size_t delta, off_t *headp,
off_t *tailp)
{
off_t head = *headp;
off_t tail = *tailp;
KASSERT(delta <= wapbl_space_used(size, head, tail));
tail = wapbl_advance(size, off, tail, delta);
if (head == tail) {
head = tail = 0;
}
*headp = head;
*tailp = tail;
}
/****************************************************************/
/*
* wapbl_truncate(wl, minfree)
*
* Wait until at least minfree bytes are available in the log.
*
* If it was necessary to wait for writes to complete,
* advance the circular queue tail to reflect the new write
* completions and issue a write commit to the log.
*
* => Caller must hold wl->wl_rwlock writer lock.
*/
static int
wapbl_truncate(struct wapbl *wl, size_t minfree)
{
size_t delta;
size_t avail;
off_t head;
off_t tail;
int error = 0;
KASSERT(minfree <= (wl->wl_circ_size - wl->wl_reserved_bytes));
KASSERT(rw_write_held(&wl->wl_rwlock));
mutex_enter(&wl->wl_mtx);
/*
* First check to see if we have to do a commit
* at all.
*/
avail = wapbl_space_free(wl->wl_circ_size, wl->wl_head, wl->wl_tail);
if (minfree < avail) {
mutex_exit(&wl->wl_mtx);
return 0;
}
minfree -= avail;
while ((wl->wl_error_count == 0) &&
(wl->wl_reclaimable_bytes < minfree)) {
WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE,
("wapbl_truncate: sleeping on %p wl=%p bytes=%zd "
"minfree=%zd\n",
&wl->wl_reclaimable_bytes, wl, wl->wl_reclaimable_bytes,
minfree));
cv_wait(&wl->wl_reclaimable_cv, &wl->wl_mtx);
}
if (wl->wl_reclaimable_bytes < minfree) {
KASSERT(wl->wl_error_count);
/* XXX maybe get actual error from buffer instead someday? */
error = EIO;
}
head = wl->wl_head;
tail = wl->wl_tail;
delta = wl->wl_reclaimable_bytes;
/* If all of the entries are flushed, then be sure to keep
* the reserved bytes reserved. Watch out for discarded transactions,
* which could leave more bytes reserved than are reclaimable.
*/
if (SIMPLEQ_EMPTY(&wl->wl_entries) &&
(delta >= wl->wl_reserved_bytes)) {
delta -= wl->wl_reserved_bytes;
}
wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta, &head,
&tail);
KDASSERT(wl->wl_reserved_bytes <=
wapbl_space_used(wl->wl_circ_size, head, tail));
mutex_exit(&wl->wl_mtx);
if (error)
return error;
/*
* This is where head, tail and delta are unprotected
* from races against itself or flush. This is ok since
* we only call this routine from inside flush itself.
*
* XXX: how can it race against itself when accessed only
* from behind the write-locked rwlock?
*/
error = wapbl_write_commit(wl, head, tail);
if (error)
return error;
wl->wl_head = head;
wl->wl_tail = tail;
mutex_enter(&wl->wl_mtx);
KASSERT(wl->wl_reclaimable_bytes >= delta);
wl->wl_reclaimable_bytes -= delta;
mutex_exit(&wl->wl_mtx);
WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE,
("wapbl_truncate thread %d.%d truncating %zu bytes\n",
curproc->p_pid, curlwp->l_lid, delta));
return 0;
}
/****************************************************************/
void
wapbl_biodone(struct buf *bp)
{
struct wapbl_entry *we = bp->b_private;
struct wapbl *wl;
#ifdef WAPBL_DEBUG_BUFBYTES
const int bufsize = bp->b_bufsize;
#endif
mutex_enter(&bufcache_lock);
wl = we->we_wapbl;
mutex_exit(&bufcache_lock);
/*
* Handle possible flushing of buffers after log has been
* decomissioned.
*/
if (!wl) {
KASSERT(we->we_bufcount > 0);
we->we_bufcount--;
#ifdef WAPBL_DEBUG_BUFBYTES
KASSERT(we->we_unsynced_bufbytes >= bufsize);
we->we_unsynced_bufbytes -= bufsize;
#endif
if (we->we_bufcount == 0) {
#ifdef WAPBL_DEBUG_BUFBYTES
KASSERT(we->we_unsynced_bufbytes == 0);
#endif
pool_put(&wapbl_entry_pool, we);
}
brelse(bp, 0);
return;
}
#ifdef ohbother
KDASSERT(bp->b_oflags & BO_DONE);
KDASSERT(!(bp->b_oflags & BO_DELWRI));
KDASSERT(bp->b_flags & B_ASYNC);
KDASSERT(bp->b_cflags & BC_BUSY);
KDASSERT(!(bp->b_flags & B_LOCKED));
KDASSERT(!(bp->b_flags & B_READ));
KDASSERT(!(bp->b_cflags & BC_INVAL));
KDASSERT(!(bp->b_cflags & BC_NOCACHE));
#endif
if (bp->b_error) {
/*
* If an error occurs, it would be nice to leave the buffer
* as a delayed write on the LRU queue so that we can retry
* it later. But buffercache(9) can't handle dirty buffer
* reuse, so just mark the log permanently errored out.
*/
mutex_enter(&wl->wl_mtx);
if (wl->wl_error_count == 0) {
wl->wl_error_count++;
cv_broadcast(&wl->wl_reclaimable_cv);
}
mutex_exit(&wl->wl_mtx);
}
/*
* Make sure that the buf doesn't retain the media flags, so that
* e.g. wapbl_allow_fuadpo has immediate effect on any following I/O.
* The flags will be set again if needed by another I/O.
*/
bp->b_flags &= ~B_MEDIA_FLAGS;
/*
* Release the buffer here. wapbl_flush() may wait for the
* log to become empty and we better unbusy the buffer before
* wapbl_flush() returns.
*/
brelse(bp, 0);
mutex_enter(&wl->wl_mtx);
KASSERT(we->we_bufcount > 0);
we->we_bufcount--;
#ifdef WAPBL_DEBUG_BUFBYTES
KASSERT(we->we_unsynced_bufbytes >= bufsize);
we->we_unsynced_bufbytes -= bufsize;
KASSERT(wl->wl_unsynced_bufbytes >= bufsize);
wl->wl_unsynced_bufbytes -= bufsize;
#endif
wl->wl_ev_metawrite.ev_count++;
/*
* If the current transaction can be reclaimed, start
* at the beginning and reclaim any consecutive reclaimable
* transactions. If we successfully reclaim anything,
* then wakeup anyone waiting for the reclaim.
*/
if (we->we_bufcount == 0) {
size_t delta = 0;
int errcnt = 0;
#ifdef WAPBL_DEBUG_BUFBYTES
KDASSERT(we->we_unsynced_bufbytes == 0);
#endif
/*
* clear any posted error, since the buffer it came from
* has successfully flushed by now
*/
while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) &&
(we->we_bufcount == 0)) {
delta += we->we_reclaimable_bytes;
if (we->we_error)
errcnt++;
SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries);
pool_put(&wapbl_entry_pool, we);
}
if (delta) {
wl->wl_reclaimable_bytes += delta;
KASSERT(wl->wl_error_count >= errcnt);
wl->wl_error_count -= errcnt;
cv_broadcast(&wl->wl_reclaimable_cv);
}
}
mutex_exit(&wl->wl_mtx);
}
/*
* wapbl_flush(wl, wait)
*
* Flush pending block writes, deallocations, and inodes from
* the current transaction in memory to the log on disk:
*
* 1. Call the file system's wl_flush callback to flush any
* per-file-system pending updates.
* 2. Wait for enough space in the log for the current transaction.
* 3. Synchronously write the new log records, advancing the
* circular queue head.
* 4. Issue the pending block writes asynchronously, now that they
* are recorded in the log and can be replayed after crash.
* 5. If wait is true, wait for all writes to complete and for the
* log to become empty.
*
* On failure, call the file system's wl_flush_abort callback.
*/
int
wapbl_flush(struct wapbl *wl, int waitfor)
{
struct buf *bp;
struct wapbl_entry *we;
off_t off;
off_t head;
off_t tail;
size_t delta = 0;
size_t flushsize;
size_t reserved;
int error = 0;
/*
* Do a quick check to see if a full flush can be skipped
* This assumes that the flush callback does not need to be called
* unless there are other outstanding bufs.
*/
if (!waitfor) {
size_t nbufs;
mutex_enter(&wl->wl_mtx); /* XXX need mutex here to
protect the KASSERTS */
nbufs = wl->wl_bufcount;
KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0));
KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0));
mutex_exit(&wl->wl_mtx);
if (nbufs == 0)
return 0;
}
/*
* XXX we may consider using LK_UPGRADE here
* if we want to call flush from inside a transaction
*/
rw_enter(&wl->wl_rwlock, RW_WRITER);
wl->wl_flush(wl->wl_mount, TAILQ_FIRST(&wl->wl_dealloclist));
/*
* Now that we are exclusively locked and the file system has
* issued any deferred block writes for this transaction, check
* whether there are any blocks to write to the log. If not,
* skip waiting for space or writing any log entries.
*
* XXX Shouldn't this also check wl_dealloccnt and
* wl_inohashcnt? Perhaps wl_dealloccnt doesn't matter if the
* file system didn't produce any blocks as a consequence of
* it, but the same does not seem to be so of wl_inohashcnt.
*/
if (wl->wl_bufcount == 0) {
goto wait_out;
}
#if 0
WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
("wapbl_flush thread %d.%d flushing entries with "
"bufcount=%zu bufbytes=%zu\n",
curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
wl->wl_bufbytes));
#endif
/* Calculate amount of space needed to flush */
flushsize = wapbl_transaction_len(wl);
if (wapbl_verbose_commit) {
struct timespec ts;
getnanotime(&ts);
printf("%s: %lld.%09ld this transaction = %zu bytes\n",
__func__, (long long)ts.tv_sec,
(long)ts.tv_nsec, flushsize);
}
if (flushsize > (wl->wl_circ_size - wl->wl_reserved_bytes)) {
/*
* XXX this could be handled more gracefully, perhaps place
* only a partial transaction in the log and allow the
* remaining to flush without the protection of the journal.
*/
panic("wapbl_flush: current transaction too big to flush");
}
error = wapbl_truncate(wl, flushsize);
if (error)
goto out;
off = wl->wl_head;
KASSERT((off == 0) || (off >= wl->wl_circ_off));
KASSERT((off == 0) || (off < wl->wl_circ_off + wl->wl_circ_size));
error = wapbl_write_blocks(wl, &off);
if (error)
goto out;
error = wapbl_write_revocations(wl, &off);
if (error)
goto out;
error = wapbl_write_inodes(wl, &off);
if (error)
goto out;
reserved = 0;
if (wl->wl_inohashcnt)
reserved = wapbl_transaction_inodes_len(wl);
head = wl->wl_head;
tail = wl->wl_tail;
wapbl_advance_head(wl->wl_circ_size, wl->wl_circ_off, flushsize,
&head, &tail);
KASSERTMSG(head == off,
"lost head! head=%"PRIdMAX" tail=%" PRIdMAX
" off=%"PRIdMAX" flush=%zu",
(intmax_t)head, (intmax_t)tail, (intmax_t)off,
flushsize);
/* Opportunistically move the tail forward if we can */
mutex_enter(&wl->wl_mtx);
delta = wl->wl_reclaimable_bytes;
mutex_exit(&wl->wl_mtx);
wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta,
&head, &tail);
error = wapbl_write_commit(wl, head, tail);
if (error)
goto out;
we = pool_get(&wapbl_entry_pool, PR_WAITOK);
#ifdef WAPBL_DEBUG_BUFBYTES
WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu"
" unsynced=%zu"
"\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d "
"inodes=%d\n",
curproc->p_pid, curlwp->l_lid, flushsize, delta,
wapbl_space_used(wl->wl_circ_size, head, tail),
wl->wl_unsynced_bufbytes, wl->wl_bufcount,
wl->wl_bufbytes, wl->wl_bcount, wl->wl_dealloccnt,
wl->wl_inohashcnt));
#else
WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu"
"\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d "
"inodes=%d\n",
curproc->p_pid, curlwp->l_lid, flushsize, delta,
wapbl_space_used(wl->wl_circ_size, head, tail),
wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount,
wl->wl_dealloccnt, wl->wl_inohashcnt));
#endif
mutex_enter(&bufcache_lock);
mutex_enter(&wl->wl_mtx);
wl->wl_reserved_bytes = reserved;
wl->wl_head = head;
wl->wl_tail = tail;
KASSERT(wl->wl_reclaimable_bytes >= delta);
wl->wl_reclaimable_bytes -= delta;
KDASSERT(wl->wl_dealloccnt == 0);
#ifdef WAPBL_DEBUG_BUFBYTES
wl->wl_unsynced_bufbytes += wl->wl_bufbytes;
#endif
we->we_wapbl = wl;
we->we_bufcount = wl->wl_bufcount;
#ifdef WAPBL_DEBUG_BUFBYTES
we->we_unsynced_bufbytes = wl->wl_bufbytes;
#endif
we->we_reclaimable_bytes = flushsize;
we->we_error = 0;
SIMPLEQ_INSERT_TAIL(&wl->wl_entries, we, we_entries);
/*
* This flushes bufs in order than they were queued, so the LRU
* order is preserved.
*/
while ((bp = TAILQ_FIRST(&wl->wl_bufs)) != NULL) {
if (bbusy(bp, 0, 0, &wl->wl_mtx)) {
continue;
}
bp->b_iodone = wapbl_biodone;
bp->b_private = we;
bremfree(bp);
wapbl_remove_buf_locked(wl, bp);
mutex_exit(&wl->wl_mtx);
mutex_exit(&bufcache_lock);
bawrite(bp);
mutex_enter(&bufcache_lock);
mutex_enter(&wl->wl_mtx);
}
mutex_exit(&wl->wl_mtx);
mutex_exit(&bufcache_lock);
#if 0
WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
("wapbl_flush thread %d.%d done flushing entries...\n",
curproc->p_pid, curlwp->l_lid));
#endif
wait_out:
/*
* If the waitfor flag is set, don't return until everything is
* fully flushed and the on disk log is empty.
*/
if (waitfor) {
error = wapbl_truncate(wl, wl->wl_circ_size -
wl->wl_reserved_bytes);
}
out:
if (error) {
wl->wl_flush_abort(wl->wl_mount,
TAILQ_FIRST(&wl->wl_dealloclist));
}
#ifdef WAPBL_DEBUG_PRINT
if (error) {
pid_t pid = -1;
lwpid_t lid = -1;
if (curproc)
pid = curproc->p_pid;
if (curlwp)
lid = curlwp->l_lid;
mutex_enter(&wl->wl_mtx);
#ifdef WAPBL_DEBUG_BUFBYTES
WAPBL_PRINTF(WAPBL_PRINT_ERROR,
("wapbl_flush: thread %d.%d aborted flush: "
"error = %d\n"
"\tbufcount=%zu bufbytes=%zu bcount=%zu "
"deallocs=%d inodes=%d\n"
"\terrcnt = %d, reclaimable=%zu reserved=%zu "
"unsynced=%zu\n",
pid, lid, error, wl->wl_bufcount,
wl->wl_bufbytes, wl->wl_bcount,
wl->wl_dealloccnt, wl->wl_inohashcnt,
wl->wl_error_count, wl->wl_reclaimable_bytes,
wl->wl_reserved_bytes, wl->wl_unsynced_bufbytes));
SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
WAPBL_PRINTF(WAPBL_PRINT_ERROR,
("\tentry: bufcount = %zu, reclaimable = %zu, "
"error = %d, unsynced = %zu\n",
we->we_bufcount, we->we_reclaimable_bytes,
we->we_error, we->we_unsynced_bufbytes));
}
#else
WAPBL_PRINTF(WAPBL_PRINT_ERROR,
("wapbl_flush: thread %d.%d aborted flush: "
"error = %d\n"
"\tbufcount=%zu bufbytes=%zu bcount=%zu "
"deallocs=%d inodes=%d\n"
"\terrcnt = %d, reclaimable=%zu reserved=%zu\n",
pid, lid, error, wl->wl_bufcount,
wl->wl_bufbytes, wl->wl_bcount,
wl->wl_dealloccnt, wl->wl_inohashcnt,
wl->wl_error_count, wl->wl_reclaimable_bytes,
wl->wl_reserved_bytes));
SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
WAPBL_PRINTF(WAPBL_PRINT_ERROR,
("\tentry: bufcount = %zu, reclaimable = %zu, "
"error = %d\n", we->we_bufcount,
we->we_reclaimable_bytes, we->we_error));
}
#endif
mutex_exit(&wl->wl_mtx);
}
#endif
rw_exit(&wl->wl_rwlock);
return error;
}
/****************************************************************/
void
wapbl_jlock_assert(struct wapbl *wl)
{
KASSERT(rw_lock_held(&wl->wl_rwlock));
}
void
wapbl_junlock_assert(struct wapbl *wl)
{
KASSERT(!rw_write_held(&wl->wl_rwlock));
}
/****************************************************************/
/* locks missing */
void
wapbl_print(struct wapbl *wl,
int full,
void (*pr)(const char *, ...))
{
struct buf *bp;
struct wapbl_entry *we;
(*pr)("wapbl %p", wl);
(*pr)("\nlogvp = %p, devvp = %p, logpbn = %"PRId64"\n",
wl->wl_logvp, wl->wl_devvp, wl->wl_logpbn);
(*pr)("circ = %zu, header = %zu, head = %"PRIdMAX" tail = %"PRIdMAX"\n",
wl->wl_circ_size, wl->wl_circ_off,
(intmax_t)wl->wl_head, (intmax_t)wl->wl_tail);
(*pr)("fs_dev_bshift = %d, log_dev_bshift = %d\n",
wl->wl_log_dev_bshift, wl->wl_fs_dev_bshift);
#ifdef WAPBL_DEBUG_BUFBYTES
(*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu "
"reserved = %zu errcnt = %d unsynced = %zu\n",
wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount,
wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
wl->wl_error_count, wl->wl_unsynced_bufbytes);
#else
(*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu "
"reserved = %zu errcnt = %d\n", wl->wl_bufcount, wl->wl_bufbytes,
wl->wl_bcount, wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
wl->wl_error_count);
#endif
(*pr)("\tdealloccnt = %d, dealloclim = %d\n",
wl->wl_dealloccnt, wl->wl_dealloclim);
(*pr)("\tinohashcnt = %d, inohashmask = 0x%08x\n",
wl->wl_inohashcnt, wl->wl_inohashmask);
(*pr)("entries:\n");
SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
#ifdef WAPBL_DEBUG_BUFBYTES
(*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d, "
"unsynced = %zu\n",
we->we_bufcount, we->we_reclaimable_bytes,
we->we_error, we->we_unsynced_bufbytes);
#else
(*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d\n",
we->we_bufcount, we->we_reclaimable_bytes, we->we_error);
#endif
}
if (full) {
int cnt = 0;
(*pr)("bufs =");
TAILQ_FOREACH(bp, &wl->wl_bufs, b_wapbllist) {
if (!TAILQ_NEXT(bp, b_wapbllist)) {
(*pr)(" %p", bp);
} else if ((++cnt % 6) == 0) {
(*pr)(" %p,\n\t", bp);
} else {
(*pr)(" %p,", bp);
}
}
(*pr)("\n");
(*pr)("dealloced blks = ");
{
struct wapbl_dealloc *wd;
cnt = 0;
TAILQ_FOREACH(wd, &wl->wl_dealloclist, wd_entries) {
(*pr)(" %"PRId64":%d,",
wd->wd_blkno,
wd->wd_len);
if ((++cnt % 4) == 0) {
(*pr)("\n\t");
}
}
}
(*pr)("\n");
(*pr)("registered inodes = ");
{
int i;
cnt = 0;
for (i = 0; i <= wl->wl_inohashmask; i++) {
struct wapbl_ino_head *wih;
struct wapbl_ino *wi;
wih = &wl->wl_inohash[i];
LIST_FOREACH(wi, wih, wi_hash) {
if (wi->wi_ino == 0)
continue;
(*pr)(" %"PRIu64"/0%06"PRIo32",",
wi->wi_ino, wi->wi_mode);
if ((++cnt % 4) == 0) {
(*pr)("\n\t");
}
}
}
(*pr)("\n");
}
(*pr)("iobufs free =");
TAILQ_FOREACH(bp, &wl->wl_iobufs, b_wapbllist) {
if (!TAILQ_NEXT(bp, b_wapbllist)) {
(*pr)(" %p", bp);
} else if ((++cnt % 6) == 0) {
(*pr)(" %p,\n\t", bp);
} else {
(*pr)(" %p,", bp);
}
}
(*pr)("\n");
(*pr)("iobufs busy =");
TAILQ_FOREACH(bp, &wl->wl_iobufs_busy, b_wapbllist) {
if (!TAILQ_NEXT(bp, b_wapbllist)) {
(*pr)(" %p", bp);
} else if ((++cnt % 6) == 0) {
(*pr)(" %p,\n\t", bp);
} else {
(*pr)(" %p,", bp);
}
}
(*pr)("\n");
}
}
#if defined(WAPBL_DEBUG) || defined(DDB)
void
wapbl_dump(struct wapbl *wl)
{
#if defined(WAPBL_DEBUG)
if (!wl)
wl = wapbl_debug_wl;
#endif
if (!wl)
return;
wapbl_print(wl, 1, printf);
}
#endif
/****************************************************************/
int
wapbl_register_deallocation(struct wapbl *wl, daddr_t blk, int len, bool force,
void **cookiep)
{
struct wapbl_dealloc *wd;
int error = 0;
wapbl_jlock_assert(wl);
mutex_enter(&wl->wl_mtx);
if (__predict_false(wl->wl_dealloccnt >= wl->wl_dealloclim)) {
if (!force) {
error = EAGAIN;
goto out;
}
/*
* Forced registration can only be used when:
* 1) the caller can't cope with failure
* 2) the path can be triggered only bounded, small
* times per transaction
* If this is not fullfilled, and the path would be triggered
* many times, this could overflow maximum transaction size
* and panic later.
*/
printf("%s: forced dealloc registration over limit: %d >= %d\n",
wl->wl_mount->mnt_stat.f_mntonname,
wl->wl_dealloccnt, wl->wl_dealloclim);
}
wl->wl_dealloccnt++;
mutex_exit(&wl->wl_mtx);
wd = pool_get(&wapbl_dealloc_pool, PR_WAITOK);
wd->wd_blkno = blk;
wd->wd_len = len;
mutex_enter(&wl->wl_mtx);
TAILQ_INSERT_TAIL(&wl->wl_dealloclist, wd, wd_entries);
if (cookiep)
*cookiep = wd;
out:
mutex_exit(&wl->wl_mtx);
WAPBL_PRINTF(WAPBL_PRINT_ALLOC,
("wapbl_register_deallocation: blk=%"PRId64" len=%d error=%d\n",
blk, len, error));
return error;
}
static void
wapbl_deallocation_free(struct wapbl *wl, struct wapbl_dealloc *wd,
bool locked)
{
KASSERT(!locked
|| rw_lock_held(&wl->wl_rwlock) || mutex_owned(&wl->wl_mtx));
if (!locked)
mutex_enter(&wl->wl_mtx);
TAILQ_REMOVE(&wl->wl_dealloclist, wd, wd_entries);
wl->wl_dealloccnt--;
if (!locked)
mutex_exit(&wl->wl_mtx);
pool_put(&wapbl_dealloc_pool, wd);
}
void
wapbl_unregister_deallocation(struct wapbl *wl, void *cookie)
{
KASSERT(cookie != NULL);
wapbl_deallocation_free(wl, cookie, false);
}
/****************************************************************/
static void
wapbl_inodetrk_init(struct wapbl *wl, u_int size)
{
wl->wl_inohash = hashinit(size, HASH_LIST, true, &wl->wl_inohashmask);
if (atomic_inc_uint_nv(&wapbl_ino_pool_refcount) == 1) {
pool_init(&wapbl_ino_pool, sizeof(struct wapbl_ino), 0, 0, 0,
"wapblinopl", &pool_allocator_nointr, IPL_NONE);
}
}
static void
wapbl_inodetrk_free(struct wapbl *wl)
{
/* XXX this KASSERT needs locking/mutex analysis */
KASSERT(wl->wl_inohashcnt == 0);
hashdone(wl->wl_inohash, HASH_LIST, wl->wl_inohashmask);
membar_release();
if (atomic_dec_uint_nv(&wapbl_ino_pool_refcount) == 0) {
membar_acquire();
pool_destroy(&wapbl_ino_pool);
}
}
static struct wapbl_ino *
wapbl_inodetrk_get(struct wapbl *wl, ino_t ino)
{
struct wapbl_ino_head *wih;
struct wapbl_ino *wi;
KASSERT(mutex_owned(&wl->wl_mtx));
wih = &wl->wl_inohash[ino & wl->wl_inohashmask];
LIST_FOREACH(wi, wih, wi_hash) {
if (ino == wi->wi_ino)
return wi;
}
return 0;
}
void
wapbl_register_inode(struct wapbl *wl, ino_t ino, mode_t mode)
{
struct wapbl_ino_head *wih;
struct wapbl_ino *wi;
wi = pool_get(&wapbl_ino_pool, PR_WAITOK);
mutex_enter(&wl->wl_mtx);
if (wapbl_inodetrk_get(wl, ino) == NULL) {
wi->wi_ino = ino;
wi->wi_mode = mode;
wih = &wl->wl_inohash[ino & wl->wl_inohashmask];
LIST_INSERT_HEAD(wih, wi, wi_hash);
wl->wl_inohashcnt++;
WAPBL_PRINTF(WAPBL_PRINT_INODE,
("wapbl_register_inode: ino=%"PRId64"\n", ino));
mutex_exit(&wl->wl_mtx);
} else {
mutex_exit(&wl->wl_mtx);
pool_put(&wapbl_ino_pool, wi);
}
}
void
wapbl_unregister_inode(struct wapbl *wl, ino_t ino, mode_t mode)
{
struct wapbl_ino *wi;
mutex_enter(&wl->wl_mtx);
wi = wapbl_inodetrk_get(wl, ino);
if (wi) {
WAPBL_PRINTF(WAPBL_PRINT_INODE,
("wapbl_unregister_inode: ino=%"PRId64"\n", ino));
KASSERT(wl->wl_inohashcnt > 0);
wl->wl_inohashcnt--;
LIST_REMOVE(wi, wi_hash);
mutex_exit(&wl->wl_mtx);
pool_put(&wapbl_ino_pool, wi);
} else {
mutex_exit(&wl->wl_mtx);
}
}
/****************************************************************/
/*
* wapbl_transaction_inodes_len(wl)
*
* Calculate the number of bytes required for inode registration
* log records in wl.
*/
static inline size_t
wapbl_transaction_inodes_len(struct wapbl *wl)
{
int blocklen = 1<<wl->wl_log_dev_bshift;
int iph;
/* Calculate number of inodes described in a inodelist header */
iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) /
sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]);
KASSERT(iph > 0);
return MAX(1, howmany(wl->wl_inohashcnt, iph)) * blocklen;
}
/*
* wapbl_transaction_len(wl)
*
* Calculate number of bytes required for all log records in wl.
*/
static size_t
wapbl_transaction_len(struct wapbl *wl)
{
int blocklen = 1<<wl->wl_log_dev_bshift;
size_t len;
/* Calculate number of blocks described in a blocklist header */
len = wl->wl_bcount;
len += howmany(wl->wl_bufcount, wl->wl_brperjblock) * blocklen;
len += howmany(wl->wl_dealloccnt, wl->wl_brperjblock) * blocklen;
len += wapbl_transaction_inodes_len(wl);
return len;
}
/*
* wapbl_cache_sync(wl, msg)
*
* Issue DIOCCACHESYNC to wl->wl_devvp.
*
* If sysctl(vfs.wapbl.verbose_commit) >= 2, print a message
* including msg about the duration of the cache sync.
*/
static int
wapbl_cache_sync(struct wapbl *wl, const char *msg)
{
const bool verbose = wapbl_verbose_commit >= 2;
struct bintime start_time;
int force = 1;
int error;
/* Skip full cache sync if disabled */
if (!wapbl_flush_disk_cache) {
return 0;
}
if (verbose) {
bintime(&start_time);
}
error = VOP_IOCTL(wl->wl_devvp, DIOCCACHESYNC, &force,
FWRITE, FSCRED);
if (error) {
WAPBL_PRINTF(WAPBL_PRINT_ERROR,
("wapbl_cache_sync: DIOCCACHESYNC on dev 0x%jx "
"returned %d\n", (uintmax_t)wl->wl_devvp->v_rdev, error));
}
if (verbose) {
struct bintime d;
struct timespec ts;
bintime(&d);
bintime_sub(&d, &start_time);
bintime2timespec(&d, &ts);
printf("wapbl_cache_sync: %s: dev 0x%jx %ju.%09lu\n",
msg, (uintmax_t)wl->wl_devvp->v_rdev,
(uintmax_t)ts.tv_sec, ts.tv_nsec);
}
wl->wl_ev_cacheflush.ev_count++;
return error;
}
/*
* wapbl_write_commit(wl, head, tail)
*
* Issue a disk cache sync to wait for all pending writes to the
* log to complete, and then synchronously commit the current
* circular queue head and tail to the log, in the next of two
* locations for commit headers on disk.
*
* Increment the generation number. If the generation number
* rolls over to zero, then a subsequent commit would appear to
* have an older generation than this one -- in that case, issue a
* duplicate commit to avoid this.
*
* => Caller must have exclusive access to wl, either by holding
* wl->wl_rwlock for writer or by being wapbl_start before anyone
* else has seen wl.
*/
static int
wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail)
{
struct wapbl_wc_header *wc = wl->wl_wc_header;
struct timespec ts;
int error;
daddr_t pbn;
error = wapbl_buffered_flush(wl, true);
if (error)
return error;
/*
* Flush disk cache to ensure that blocks we've written are actually
* written to the stable storage before the commit header.
* This flushes to disk not only journal blocks, but also all
* metadata blocks, written asynchronously since previous commit.
*
* XXX Calc checksum here, instead we do this for now
*/
wapbl_cache_sync(wl, "1");
wc->wc_head = head;
wc->wc_tail = tail;
wc->wc_checksum = 0;
wc->wc_version = 1;
getnanotime(&ts);
wc->wc_time = ts.tv_sec;
wc->wc_timensec = ts.tv_nsec;
WAPBL_PRINTF(WAPBL_PRINT_WRITE,
("wapbl_write_commit: head = %"PRIdMAX "tail = %"PRIdMAX"\n",
(intmax_t)head, (intmax_t)tail));
/*
* write the commit header.
*
* XXX if generation will rollover, then first zero
* over second commit header before trying to write both headers.
*/
pbn = wl->wl_logpbn + (wc->wc_generation % 2);
#ifdef _KERNEL
pbn = btodb(pbn << wc->wc_log_dev_bshift);
#endif
error = wapbl_buffered_write(wc, wc->wc_len, wl, pbn, WAPBL_JFLAGS(wl));
if (error)
return error;
error = wapbl_buffered_flush(wl, true);
if (error)
return error;
/*
* Flush disk cache to ensure that the commit header is actually
* written before meta data blocks. Commit block is written using
* FUA when enabled, in that case this flush is not needed.
*/
if (!WAPBL_USE_FUA(wl))
wapbl_cache_sync(wl, "2");
/*
* If the generation number was zero, write it out a second time.
* This handles initialization and generation number rollover
*/
if (wc->wc_generation++ == 0) {
error = wapbl_write_commit(wl, head, tail);
/*
* This panic should be able to be removed if we do the
* zero'ing mentioned above, and we are certain to roll
* back generation number on failure.
*/
if (error)
panic("wapbl_write_commit: error writing duplicate "
"log header: %d", error);
}
wl->wl_ev_commit.ev_count++;
return 0;
}
/*
* wapbl_write_blocks(wl, offp)
*
* Write all pending physical blocks in the current transaction
* from wapbl_add_buf to the log on disk, adding to the circular
* queue head at byte offset *offp, and returning the new head's
* byte offset in *offp.
*/
static int
wapbl_write_blocks(struct wapbl *wl, off_t *offp)
{
struct wapbl_wc_blocklist *wc =
(struct wapbl_wc_blocklist *)wl->wl_wc_scratch;
int blocklen = 1<<wl->wl_log_dev_bshift;
struct buf *bp;
off_t off = *offp;
int error;
size_t padding;
KASSERT(rw_write_held(&wl->wl_rwlock));
bp = TAILQ_FIRST(&wl->wl_bufs);
while (bp) {
int cnt;
struct buf *obp = bp;
KASSERT(bp->b_flags & B_LOCKED);
wc->wc_type = WAPBL_WC_BLOCKS;
wc->wc_len = blocklen;
wc->wc_blkcount = 0;
wc->wc_unused = 0;
while (bp && (wc->wc_blkcount < wl->wl_brperjblock)) {
/*
* Make sure all the physical block numbers are up to
* date. If this is not always true on a given
* filesystem, then VOP_BMAP must be called. We
* could call VOP_BMAP here, or else in the filesystem
* specific flush callback, although neither of those
* solutions allow us to take the vnode lock. If a
* filesystem requires that we must take the vnode lock
* to call VOP_BMAP, then we can probably do it in
* bwrite when the vnode lock should already be held
* by the invoking code.
*/
KASSERT((bp->b_vp->v_type == VBLK) ||
(bp->b_blkno != bp->b_lblkno));
KASSERT(bp->b_blkno > 0);
wc->wc_blocks[wc->wc_blkcount].wc_daddr = bp->b_blkno;
wc->wc_blocks[wc->wc_blkcount].wc_dlen = bp->b_bcount;
wc->wc_len += bp->b_bcount;
wc->wc_blkcount++;
bp = TAILQ_NEXT(bp, b_wapbllist);
}
if (wc->wc_len % blocklen != 0) {
padding = blocklen - wc->wc_len % blocklen;
wc->wc_len += padding;
} else {
padding = 0;
}
WAPBL_PRINTF(WAPBL_PRINT_WRITE,
("wapbl_write_blocks: len = %u (padding %zu) off = %"PRIdMAX"\n",
wc->wc_len, padding, (intmax_t)off));
error = wapbl_circ_write(wl, wc, blocklen, &off);
if (error)
return error;
bp = obp;
cnt = 0;
while (bp && (cnt++ < wl->wl_brperjblock)) {
error = wapbl_circ_write(wl, bp->b_data,
bp->b_bcount, &off);
if (error)
return error;
bp = TAILQ_NEXT(bp, b_wapbllist);
}
if (padding) {
void *zero;
zero = wapbl_alloc(padding);
memset(zero, 0, padding);
error = wapbl_circ_write(wl, zero, padding, &off);
wapbl_free(zero, padding);
if (error)
return error;
}
}
*offp = off;
return 0;
}
/*
* wapbl_write_revocations(wl, offp)
*
* Write all pending deallocations in the current transaction from
* wapbl_register_deallocation to the log on disk, adding to the
* circular queue's head at byte offset *offp, and returning the
* new head's byte offset in *offp.
*/
static int
wapbl_write_revocations(struct wapbl *wl, off_t *offp)
{
struct wapbl_wc_blocklist *wc =
(struct wapbl_wc_blocklist *)wl->wl_wc_scratch;
struct wapbl_dealloc *wd, *lwd;
int blocklen = 1<<wl->wl_log_dev_bshift;
off_t off = *offp;
int error;
KASSERT(rw_write_held(&wl->wl_rwlock));
if (wl->wl_dealloccnt == 0)
return 0;
while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) {
wc->wc_type = WAPBL_WC_REVOCATIONS;
wc->wc_len = blocklen;
wc->wc_blkcount = 0;
wc->wc_unused = 0;
while (wd && (wc->wc_blkcount < wl->wl_brperjblock)) {
wc->wc_blocks[wc->wc_blkcount].wc_daddr =
wd->wd_blkno;
wc->wc_blocks[wc->wc_blkcount].wc_dlen =
wd->wd_len;
wc->wc_blkcount++;
wd = TAILQ_NEXT(wd, wd_entries);
}
WAPBL_PRINTF(WAPBL_PRINT_WRITE,
("wapbl_write_revocations: len = %u off = %"PRIdMAX"\n",
wc->wc_len, (intmax_t)off));
error = wapbl_circ_write(wl, wc, blocklen, &off);
if (error)
return error;
/* free all successfully written deallocs */
lwd = wd;
while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) {
if (wd == lwd)
break;
wapbl_deallocation_free(wl, wd, true);
}
}
*offp = off;
return 0;
}
/*
* wapbl_write_inodes(wl, offp)
*
* Write all pending inode allocations in the current transaction
* from wapbl_register_inode to the log on disk, adding to the
* circular queue's head at byte offset *offp and returning the
* new head's byte offset in *offp.
*/
static int
wapbl_write_inodes(struct wapbl *wl, off_t *offp)
{
struct wapbl_wc_inodelist *wc =
(struct wapbl_wc_inodelist *)wl->wl_wc_scratch;
int i;
int blocklen = 1 << wl->wl_log_dev_bshift;
off_t off = *offp;
int error;
struct wapbl_ino_head *wih;
struct wapbl_ino *wi;
int iph;
iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) /
sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]);
i = 0;
wih = &wl->wl_inohash[0];
wi = 0;
do {
wc->wc_type = WAPBL_WC_INODES;
wc->wc_len = blocklen;
wc->wc_inocnt = 0;
wc->wc_clear = (i == 0);
while ((i < wl->wl_inohashcnt) && (wc->wc_inocnt < iph)) {
while (!wi) {
KASSERT((wih - &wl->wl_inohash[0])
<= wl->wl_inohashmask);
wi = LIST_FIRST(wih++);
}
wc->wc_inodes[wc->wc_inocnt].wc_inumber = wi->wi_ino;
wc->wc_inodes[wc->wc_inocnt].wc_imode = wi->wi_mode;
wc->wc_inocnt++;
i++;
wi = LIST_NEXT(wi, wi_hash);
}
WAPBL_PRINTF(WAPBL_PRINT_WRITE,
("wapbl_write_inodes: len = %u off = %"PRIdMAX"\n",
wc->wc_len, (intmax_t)off));
error = wapbl_circ_write(wl, wc, blocklen, &off);
if (error)
return error;
} while (i < wl->wl_inohashcnt);
*offp = off;
return 0;
}
#endif /* _KERNEL */
/****************************************************************/
struct wapbl_blk {
LIST_ENTRY(wapbl_blk) wb_hash;
daddr_t wb_blk;
off_t wb_off; /* Offset of this block in the log */
};
#define WAPBL_BLKPOOL_MIN 83
static void
wapbl_blkhash_init(struct wapbl_replay *wr, u_int size)
{
if (size < WAPBL_BLKPOOL_MIN)
size = WAPBL_BLKPOOL_MIN;
KASSERT(wr->wr_blkhash == 0);
#ifdef _KERNEL
wr->wr_blkhash = hashinit(size, HASH_LIST, true, &wr->wr_blkhashmask);
#else /* ! _KERNEL */
/* Manually implement hashinit */
{
unsigned long i, hashsize;
for (hashsize = 1; hashsize < size; hashsize <<= 1)
continue;
wr->wr_blkhash = wapbl_alloc(hashsize * sizeof(*wr->wr_blkhash));
for (i = 0; i < hashsize; i++)
LIST_INIT(&wr->wr_blkhash[i]);
wr->wr_blkhashmask = hashsize - 1;
}
#endif /* ! _KERNEL */
}
static void
wapbl_blkhash_free(struct wapbl_replay *wr)
{
KASSERT(wr->wr_blkhashcnt == 0);
#ifdef _KERNEL
hashdone(wr->wr_blkhash, HASH_LIST, wr->wr_blkhashmask);
#else /* ! _KERNEL */
wapbl_free(wr->wr_blkhash,
(wr->wr_blkhashmask + 1) * sizeof(*wr->wr_blkhash));
#endif /* ! _KERNEL */
}
static struct wapbl_blk *
wapbl_blkhash_get(struct wapbl_replay *wr, daddr_t blk)
{
struct wapbl_blk_head *wbh;
struct wapbl_blk *wb;
wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask];
LIST_FOREACH(wb, wbh, wb_hash) {
if (blk == wb->wb_blk)
return wb;
}
return 0;
}
static void
wapbl_blkhash_ins(struct wapbl_replay *wr, daddr_t blk, off_t off)
{
struct wapbl_blk_head *wbh;
struct wapbl_blk *wb;
wb = wapbl_blkhash_get(wr, blk);
if (wb) {
KASSERT(wb->wb_blk == blk);
wb->wb_off = off;
} else {
wb = wapbl_alloc(sizeof(*wb));
wb->wb_blk = blk;
wb->wb_off = off;
wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask];
LIST_INSERT_HEAD(wbh, wb, wb_hash);
wr->wr_blkhashcnt++;
}
}
static void
wapbl_blkhash_rem(struct wapbl_replay *wr, daddr_t blk)
{
struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
if (wb) {
KASSERT(wr->wr_blkhashcnt > 0);
wr->wr_blkhashcnt--;
LIST_REMOVE(wb, wb_hash);
wapbl_free(wb, sizeof(*wb));
}
}
static void
wapbl_blkhash_clear(struct wapbl_replay *wr)
{
unsigned long i;
for (i = 0; i <= wr->wr_blkhashmask; i++) {
struct wapbl_blk *wb;
while ((wb = LIST_FIRST(&wr->wr_blkhash[i]))) {
KASSERT(wr->wr_blkhashcnt > 0);
wr->wr_blkhashcnt--;
LIST_REMOVE(wb, wb_hash);
wapbl_free(wb, sizeof(*wb));
}
}
KASSERT(wr->wr_blkhashcnt == 0);
}
/****************************************************************/
/*
* wapbl_circ_read(wr, data, len, offp)
*
* Read len bytes into data from the circular queue of wr,
* starting at the linear byte offset *offp, and returning the new
* linear byte offset in *offp.
*
* If the starting linear byte offset precedes wr->wr_circ_off,
* the read instead begins at wr->wr_circ_off. XXX WTF? This
* should be a KASSERT, not a conditional.
*/
static int
wapbl_circ_read(struct wapbl_replay *wr, void *data, size_t len, off_t *offp)
{
size_t slen;
off_t off = *offp;
int error;
daddr_t pbn;
KASSERT(((len >> wr->wr_log_dev_bshift) <<
wr->wr_log_dev_bshift) == len);
if (off < wr->wr_circ_off)
off = wr->wr_circ_off;
slen = wr->wr_circ_off + wr->wr_circ_size - off;
if (slen < len) {
pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift);
#ifdef _KERNEL
pbn = btodb(pbn << wr->wr_log_dev_bshift);
#endif
error = wapbl_read(data, slen, wr->wr_devvp, pbn);
if (error)
return error;
data = (uint8_t *)data + slen;
len -= slen;
off = wr->wr_circ_off;
}
pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift);
#ifdef _KERNEL
pbn = btodb(pbn << wr->wr_log_dev_bshift);
#endif
error = wapbl_read(data, len, wr->wr_devvp, pbn);
if (error)
return error;
off += len;
if (off >= wr->wr_circ_off + wr->wr_circ_size)
off = wr->wr_circ_off;
*offp = off;
return 0;
}
/*
* wapbl_circ_advance(wr, len, offp)
*
* Compute the linear byte offset of the circular queue of wr that
* is len bytes past *offp, and store it in *offp.
*
* This is as if wapbl_circ_read, but without actually reading
* anything.
*
* If the starting linear byte offset precedes wr->wr_circ_off, it
* is taken to be wr->wr_circ_off instead. XXX WTF? This should
* be a KASSERT, not a conditional.
*/
static void
wapbl_circ_advance(struct wapbl_replay *wr, size_t len, off_t *offp)
{
size_t slen;
off_t off = *offp;
KASSERT(((len >> wr->wr_log_dev_bshift) <<
wr->wr_log_dev_bshift) == len);
if (off < wr->wr_circ_off)
off = wr->wr_circ_off;
slen = wr->wr_circ_off + wr->wr_circ_size - off;
if (slen < len) {
len -= slen;
off = wr->wr_circ_off;
}
off += len;
if (off >= wr->wr_circ_off + wr->wr_circ_size)
off = wr->wr_circ_off;
*offp = off;
}
/****************************************************************/
int
wapbl_replay_start(struct wapbl_replay **wrp, struct vnode *vp,
daddr_t off, size_t count, size_t blksize)
{
struct wapbl_replay *wr;
int error;
struct vnode *devvp;
daddr_t logpbn;
uint8_t *scratch;
struct wapbl_wc_header *wch;
struct wapbl_wc_header *wch2;
/* Use this until we read the actual log header */
int log_dev_bshift = ilog2(blksize);
size_t used;
daddr_t pbn;
WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
("wapbl_replay_start: vp=%p off=%"PRId64 " count=%zu blksize=%zu\n",
vp, off, count, blksize));
if (off < 0)
return EINVAL;
if (blksize < DEV_BSIZE)
return EINVAL;
if (blksize % DEV_BSIZE)
return EINVAL;
#ifdef _KERNEL
#if 0
/* XXX vp->v_size isn't reliably set for VBLK devices,
* especially root. However, we might still want to verify
* that the full load is readable */
if ((off + count) * blksize > vp->v_size)
return EINVAL;
#endif
if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, 0)) != 0) {
return error;
}
#else /* ! _KERNEL */
devvp = vp;
logpbn = off;
#endif /* ! _KERNEL */
scratch = wapbl_alloc(MAXBSIZE);
pbn = logpbn;
#ifdef _KERNEL
pbn = btodb(pbn << log_dev_bshift);
#endif
error = wapbl_read(scratch, 2<<log_dev_bshift, devvp, pbn);
if (error)
goto errout;
wch = (struct wapbl_wc_header *)scratch;
wch2 =
(struct wapbl_wc_header *)(scratch + (1<<log_dev_bshift));
/* XXX verify checksums and magic numbers */
if (wch->wc_type != WAPBL_WC_HEADER) {
printf("Unrecognized wapbl magic: 0x%08x\n", wch->wc_type);
error = EFTYPE;
goto errout;
}
if (wch2->wc_generation > wch->wc_generation)
wch = wch2;
wr = wapbl_calloc(1, sizeof(*wr));
wr->wr_logvp = vp;
wr->wr_devvp = devvp;
wr->wr_logpbn = logpbn;
wr->wr_scratch = scratch;
wr->wr_log_dev_bshift = wch->wc_log_dev_bshift;
wr->wr_fs_dev_bshift = wch->wc_fs_dev_bshift;
wr->wr_circ_off = wch->wc_circ_off;
wr->wr_circ_size = wch->wc_circ_size;
wr->wr_generation = wch->wc_generation;
used = wapbl_space_used(wch->wc_circ_size, wch->wc_head, wch->wc_tail);
WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
("wapbl_replay: head=%"PRId64" tail=%"PRId64" off=%"PRId64
" len=%"PRId64" used=%zu\n",
wch->wc_head, wch->wc_tail, wch->wc_circ_off,
wch->wc_circ_size, used));
wapbl_blkhash_init(wr, (used >> wch->wc_fs_dev_bshift));
error = wapbl_replay_process(wr, wch->wc_head, wch->wc_tail);
if (error) {
wapbl_replay_stop(wr);
wapbl_replay_free(wr);
return error;
}
*wrp = wr;
return 0;
errout:
wapbl_free(scratch, MAXBSIZE);
return error;
}
void
wapbl_replay_stop(struct wapbl_replay *wr)
{
if (!wapbl_replay_isopen(wr))
return;
WAPBL_PRINTF(WAPBL_PRINT_REPLAY, ("wapbl_replay_stop called\n"));
wapbl_free(wr->wr_scratch, MAXBSIZE);
wr->wr_scratch = NULL;
wr->wr_logvp = NULL;
wapbl_blkhash_clear(wr);
wapbl_blkhash_free(wr);
}
void
wapbl_replay_free(struct wapbl_replay *wr)
{
KDASSERT(!wapbl_replay_isopen(wr));
if (wr->wr_inodes)
wapbl_free(wr->wr_inodes,
wr->wr_inodescnt * sizeof(wr->wr_inodes[0]));
wapbl_free(wr, sizeof(*wr));
}
#ifdef _KERNEL
int
wapbl_replay_isopen1(struct wapbl_replay *wr)
{
return wapbl_replay_isopen(wr);
}
#endif
/*
* calculate the disk address for the i'th block in the wc_blockblist
* offset by j blocks of size blen.
*
* wc_daddr is always a kernel disk address in DEV_BSIZE units that
* was written to the journal.
*
* The kernel needs that address plus the offset in DEV_BSIZE units.
*
* Userland needs that address plus the offset in blen units.
*
*/
static daddr_t
wapbl_block_daddr(struct wapbl_wc_blocklist *wc, int i, int j, int blen)
{
daddr_t pbn;
#ifdef _KERNEL
pbn = wc->wc_blocks[i].wc_daddr + btodb(j * blen);
#else
pbn = dbtob(wc->wc_blocks[i].wc_daddr) / blen + j;
#endif
return pbn;
}
static void
wapbl_replay_process_blocks(struct wapbl_replay *wr, off_t *offp)
{
struct wapbl_wc_blocklist *wc =
(struct wapbl_wc_blocklist *)wr->wr_scratch;
int fsblklen = 1 << wr->wr_fs_dev_bshift;
int i, j, n;
for (i = 0; i < wc->wc_blkcount; i++) {
/*
* Enter each physical block into the hashtable independently.
*/
n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift;
for (j = 0; j < n; j++) {
wapbl_blkhash_ins(wr, wapbl_block_daddr(wc, i, j, fsblklen),
*offp);
wapbl_circ_advance(wr, fsblklen, offp);
}
}
}
static void
wapbl_replay_process_revocations(struct wapbl_replay *wr)
{
struct wapbl_wc_blocklist *wc =
(struct wapbl_wc_blocklist *)wr->wr_scratch;
int fsblklen = 1 << wr->wr_fs_dev_bshift;
int i, j, n;
for (i = 0; i < wc->wc_blkcount; i++) {
/*
* Remove any blocks found from the hashtable.
*/
n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift;
for (j = 0; j < n; j++)
wapbl_blkhash_rem(wr, wapbl_block_daddr(wc, i, j, fsblklen));
}
}
static void
wapbl_replay_process_inodes(struct wapbl_replay *wr, off_t oldoff, off_t newoff)
{
struct wapbl_wc_inodelist *wc =
(struct wapbl_wc_inodelist *)wr->wr_scratch;
void *new_inodes;
const size_t oldsize = wr->wr_inodescnt * sizeof(wr->wr_inodes[0]);
KASSERT(sizeof(wr->wr_inodes[0]) == sizeof(wc->wc_inodes[0]));
/*
* Keep track of where we found this so location won't be
* overwritten.
*/
if (wc->wc_clear) {
wr->wr_inodestail = oldoff;
wr->wr_inodescnt = 0;
if (wr->wr_inodes != NULL) {
wapbl_free(wr->wr_inodes, oldsize);
wr->wr_inodes = NULL;
}
}
wr->wr_inodeshead = newoff;
if (wc->wc_inocnt == 0)
return;
new_inodes = wapbl_alloc((wr->wr_inodescnt + wc->wc_inocnt) *
sizeof(wr->wr_inodes[0]));
if (wr->wr_inodes != NULL) {
memcpy(new_inodes, wr->wr_inodes, oldsize);
wapbl_free(wr->wr_inodes, oldsize);
}
wr->wr_inodes = new_inodes;
memcpy(&wr->wr_inodes[wr->wr_inodescnt], wc->wc_inodes,
wc->wc_inocnt * sizeof(wr->wr_inodes[0]));
wr->wr_inodescnt += wc->wc_inocnt;
}
static int
wapbl_replay_process(struct wapbl_replay *wr, off_t head, off_t tail)
{
off_t off;
int error;
int logblklen = 1 << wr->wr_log_dev_bshift;
wapbl_blkhash_clear(wr);
off = tail;
while (off != head) {
struct wapbl_wc_null *wcn;
off_t saveoff = off;
error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off);
if (error)
goto errout;
wcn = (struct wapbl_wc_null *)wr->wr_scratch;
switch (wcn->wc_type) {
case WAPBL_WC_BLOCKS:
wapbl_replay_process_blocks(wr, &off);
break;
case WAPBL_WC_REVOCATIONS:
wapbl_replay_process_revocations(wr);
break;
case WAPBL_WC_INODES:
wapbl_replay_process_inodes(wr, saveoff, off);
break;
default:
printf("Unrecognized wapbl type: 0x%08x\n",
wcn->wc_type);
error = EFTYPE;
goto errout;
}
wapbl_circ_advance(wr, wcn->wc_len, &saveoff);
if (off != saveoff) {
printf("wapbl_replay: corrupted records\n");
error = EFTYPE;
goto errout;
}
}
return 0;
errout:
wapbl_blkhash_clear(wr);
return error;
}
#if 0
int
wapbl_replay_verify(struct wapbl_replay *wr, struct vnode *fsdevvp)
{
off_t off;
int mismatchcnt = 0;
int logblklen = 1 << wr->wr_log_dev_bshift;
int fsblklen = 1 << wr->wr_fs_dev_bshift;
void *scratch1 = wapbl_alloc(MAXBSIZE);
void *scratch2 = wapbl_alloc(MAXBSIZE);
int error = 0;
KDASSERT(wapbl_replay_isopen(wr));
off = wch->wc_tail;
while (off != wch->wc_head) {
struct wapbl_wc_null *wcn;
#ifdef DEBUG
off_t saveoff = off;
#endif
error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off);
if (error)
goto out;
wcn = (struct wapbl_wc_null *)wr->wr_scratch;
switch (wcn->wc_type) {
case WAPBL_WC_BLOCKS:
{
struct wapbl_wc_blocklist *wc =
(struct wapbl_wc_blocklist *)wr->wr_scratch;
int i;
for (i = 0; i < wc->wc_blkcount; i++) {
int foundcnt = 0;
int dirtycnt = 0;
int j, n;
/*
* Check each physical block into the
* hashtable independently
*/
n = wc->wc_blocks[i].wc_dlen >>
wch->wc_fs_dev_bshift;
for (j = 0; j < n; j++) {
struct wapbl_blk *wb =
wapbl_blkhash_get(wr,
wapbl_block_daddr(wc, i, j, fsblklen));
if (wb && (wb->wb_off == off)) {
foundcnt++;
error =
wapbl_circ_read(wr,
scratch1, fsblklen,
&off);
if (error)
goto out;
error =
wapbl_read(scratch2,
fsblklen, fsdevvp,
wb->wb_blk);
if (error)
goto out;
if (memcmp(scratch1,
scratch2,
fsblklen)) {
printf(
"wapbl_verify: mismatch block %"PRId64" at off %"PRIdMAX"\n",
wb->wb_blk, (intmax_t)off);
dirtycnt++;
mismatchcnt++;
}
} else {
wapbl_circ_advance(wr,
fsblklen, &off);
}
}
#if 0
/*
* If all of the blocks in an entry
* are clean, then remove all of its
* blocks from the hashtable since they
* never will need replay.
*/
if ((foundcnt != 0) &&
(dirtycnt == 0)) {
off = saveoff;
wapbl_circ_advance(wr,
logblklen, &off);
for (j = 0; j < n; j++) {
struct wapbl_blk *wb =
wapbl_blkhash_get(wr,
wapbl_block_daddr(wc, i, j, fsblklen));
if (wb &&
(wb->wb_off == off)) {
wapbl_blkhash_rem(wr, wb->wb_blk);
}
wapbl_circ_advance(wr,
fsblklen, &off);
}
}
#endif
}
}
break;
case WAPBL_WC_REVOCATIONS:
case WAPBL_WC_INODES:
break;
default:
KASSERT(0);
}
#ifdef DEBUG
wapbl_circ_advance(wr, wcn->wc_len, &saveoff);
KASSERT(off == saveoff);
#endif
}
out:
wapbl_free(scratch1, MAXBSIZE);
wapbl_free(scratch2, MAXBSIZE);
if (!error && mismatchcnt)
error = EFTYPE;
return error;
}
#endif
int
wapbl_replay_write(struct wapbl_replay *wr, struct vnode *fsdevvp)
{
struct wapbl_blk *wb;
size_t i;
off_t off;
void *scratch;
int error = 0;
int fsblklen = 1 << wr->wr_fs_dev_bshift;
KDASSERT(wapbl_replay_isopen(wr));
scratch = wapbl_alloc(MAXBSIZE);
for (i = 0; i <= wr->wr_blkhashmask; ++i) {
LIST_FOREACH(wb, &wr->wr_blkhash[i], wb_hash) {
off = wb->wb_off;
error = wapbl_circ_read(wr, scratch, fsblklen, &off);
if (error)
break;
error = wapbl_write(scratch, fsblklen, fsdevvp,
wb->wb_blk);
if (error)
break;
}
}
wapbl_free(scratch, MAXBSIZE);
return error;
}
int
wapbl_replay_can_read(struct wapbl_replay *wr, daddr_t blk, long len)
{
int fsblklen = 1 << wr->wr_fs_dev_bshift;
KDASSERT(wapbl_replay_isopen(wr));
KASSERT((len % fsblklen) == 0);
while (len != 0) {
struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
if (wb)
return 1;
len -= fsblklen;
}
return 0;
}
int
wapbl_replay_read(struct wapbl_replay *wr, void *data, daddr_t blk, long len)
{
int fsblklen = 1 << wr->wr_fs_dev_bshift;
KDASSERT(wapbl_replay_isopen(wr));
KASSERT((len % fsblklen) == 0);
while (len != 0) {
struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
if (wb) {
off_t off = wb->wb_off;
int error;
error = wapbl_circ_read(wr, data, fsblklen, &off);
if (error)
return error;
}
data = (uint8_t *)data + fsblklen;
len -= fsblklen;
blk++;
}
return 0;
}
#ifdef _KERNEL
MODULE(MODULE_CLASS_VFS, wapbl, NULL);
static int
wapbl_modcmd(modcmd_t cmd, void *arg)
{
switch (cmd) {
case MODULE_CMD_INIT:
wapbl_init();
return 0;
case MODULE_CMD_FINI:
return wapbl_fini();
default:
return ENOTTY;
}
}
#endif /* _KERNEL */