NetBSD/sys/kern/sys_select.c

980 lines
26 KiB
C

/* $NetBSD: sys_select.c,v 1.66 2023/10/15 10:29:34 riastradh Exp $ */
/*-
* Copyright (c) 2007, 2008, 2009, 2010, 2019, 2020, 2023
* The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran and Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
*/
/*
* System calls of synchronous I/O multiplexing subsystem.
*
* Locking
*
* Two locks are used: <object-lock> and selcluster_t::sc_lock.
*
* The <object-lock> might be a device driver or another subsystem, e.g.
* socket or pipe. This lock is not exported, and thus invisible to this
* subsystem. Mainly, synchronisation between selrecord() and selnotify()
* routines depends on this lock, as it will be described in the comments.
*
* Lock order
*
* <object-lock> ->
* selcluster_t::sc_lock
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.66 2023/10/15 10:29:34 riastradh Exp $");
#include <sys/param.h>
#include <sys/atomic.h>
#include <sys/bitops.h>
#include <sys/cpu.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/lwp.h>
#include <sys/mount.h>
#include <sys/poll.h>
#include <sys/proc.h>
#include <sys/signalvar.h>
#include <sys/sleepq.h>
#include <sys/socketvar.h>
#include <sys/socketvar.h>
#include <sys/syncobj.h>
#include <sys/syscallargs.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/uio.h>
/* Flags for lwp::l_selflag. */
#define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
#define SEL_SCANNING 1 /* polling descriptors */
#define SEL_BLOCKING 2 /* blocking and waiting for event */
#define SEL_EVENT 3 /* interrupted, events set directly */
/*
* Per-cluster state for select()/poll(). For a system with fewer
* than 64 CPUs, this gives us per-CPU clusters.
*/
#define SELCLUSTERS 64
#define SELCLUSTERMASK (SELCLUSTERS - 1)
typedef struct selcluster {
kmutex_t *sc_lock;
sleepq_t sc_sleepq;
uint64_t sc_mask;
int sc_ncoll;
} selcluster_t;
static inline int selscan(char *, const int, const size_t, register_t *);
static inline int pollscan(struct pollfd *, const int, register_t *);
static void selclear(void);
static const int sel_flag[] = {
POLLRDNORM | POLLHUP | POLLERR,
POLLWRNORM | POLLHUP | POLLERR,
POLLRDBAND
};
/*
* LWPs are woken using the sleep queue only due to a collision, the case
* with the maximum Suck Factor. Save the cost of sorting for named waiters
* by inserting in LIFO order. In the future it would be preferable to not
* enqueue LWPs at all, unless subject to a collision.
*/
syncobj_t select_sobj = {
.sobj_name = "select",
.sobj_flag = SOBJ_SLEEPQ_LIFO,
.sobj_boostpri = PRI_KERNEL,
.sobj_unsleep = sleepq_unsleep,
.sobj_changepri = sleepq_changepri,
.sobj_lendpri = sleepq_lendpri,
.sobj_owner = syncobj_noowner,
};
static selcluster_t *selcluster[SELCLUSTERS] __read_mostly;
static int direct_select __read_mostly = 0;
/* Operations: either select() or poll(). */
const char selop_select[] = "select";
const char selop_poll[] = "poll";
/*
* Select system call.
*/
int
sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
register_t *retval)
{
/* {
syscallarg(int) nd;
syscallarg(fd_set *) in;
syscallarg(fd_set *) ou;
syscallarg(fd_set *) ex;
syscallarg(const struct timespec *) ts;
syscallarg(sigset_t *) mask;
} */
struct timespec ats, *ts = NULL;
sigset_t amask, *mask = NULL;
int error;
if (SCARG(uap, ts)) {
error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
if (error)
return error;
ts = &ats;
}
if (SCARG(uap, mask) != NULL) {
error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
if (error)
return error;
mask = &amask;
}
return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
SCARG(uap, ou), SCARG(uap, ex), ts, mask);
}
int
sys___select50(struct lwp *l, const struct sys___select50_args *uap,
register_t *retval)
{
/* {
syscallarg(int) nd;
syscallarg(fd_set *) in;
syscallarg(fd_set *) ou;
syscallarg(fd_set *) ex;
syscallarg(struct timeval *) tv;
} */
struct timeval atv;
struct timespec ats, *ts = NULL;
int error;
if (SCARG(uap, tv)) {
error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
if (error)
return error;
if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
return EINVAL;
TIMEVAL_TO_TIMESPEC(&atv, &ats);
ts = &ats;
}
return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
}
/*
* sel_do_scan: common code to perform the scan on descriptors.
*/
static int
sel_do_scan(const char *opname, void *fds, const int nf, const size_t ni,
struct timespec *ts, sigset_t *mask, register_t *retval)
{
lwp_t * const l = curlwp;
selcluster_t *sc;
kmutex_t *lock;
struct timespec sleepts;
int error, timo;
timo = 0;
if (ts && inittimeleft(ts, &sleepts) == -1) {
return EINVAL;
}
if (__predict_false(mask))
sigsuspendsetup(l, mask);
/*
* We may context switch during or at any time after picking a CPU
* and cluster to associate with, but it doesn't matter. In the
* unlikely event we migrate elsewhere all we risk is a little lock
* contention; correctness is not sacrificed.
*/
sc = curcpu()->ci_data.cpu_selcluster;
lock = sc->sc_lock;
l->l_selcluster = sc;
if (opname == selop_select) {
l->l_selbits = fds;
l->l_selni = ni;
} else {
l->l_selbits = NULL;
}
for (;;) {
int ncoll;
SLIST_INIT(&l->l_selwait);
l->l_selret = 0;
/*
* No need to lock. If this is overwritten by another value
* while scanning, we will retry below. We only need to see
* exact state from the descriptors that we are about to poll,
* and lock activity resulting from fo_poll is enough to
* provide an up to date value for new polling activity.
*/
if (ts && (ts->tv_sec | ts->tv_nsec | direct_select) == 0) {
/* Non-blocking: no need for selrecord()/selclear() */
l->l_selflag = SEL_RESET;
} else {
l->l_selflag = SEL_SCANNING;
}
ncoll = sc->sc_ncoll;
membar_release();
if (opname == selop_select) {
error = selscan((char *)fds, nf, ni, retval);
} else {
error = pollscan((struct pollfd *)fds, nf, retval);
}
if (error || *retval)
break;
if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
break;
/*
* Acquire the lock and perform the (re)checks. Note, if
* collision has occurred, then our state does not matter,
* as we must perform re-scan. Therefore, check it first.
*/
state_check:
mutex_spin_enter(lock);
if (__predict_false(sc->sc_ncoll != ncoll)) {
/* Collision: perform re-scan. */
mutex_spin_exit(lock);
selclear();
continue;
}
if (__predict_true(l->l_selflag == SEL_EVENT)) {
/* Events occurred, they are set directly. */
mutex_spin_exit(lock);
break;
}
if (__predict_true(l->l_selflag == SEL_RESET)) {
/* Events occurred, but re-scan is requested. */
mutex_spin_exit(lock);
selclear();
continue;
}
/* Nothing happen, therefore - sleep. */
l->l_selflag = SEL_BLOCKING;
KASSERT(l->l_blcnt == 0);
(void)sleepq_enter(&sc->sc_sleepq, l, lock);
sleepq_enqueue(&sc->sc_sleepq, sc, opname, &select_sobj, true);
error = sleepq_block(timo, true, &select_sobj, 0);
if (error != 0) {
break;
}
/* Awoken: need to check the state. */
goto state_check;
}
selclear();
/* Add direct events if any. */
if (l->l_selflag == SEL_EVENT) {
KASSERT(l->l_selret != 0);
*retval += l->l_selret;
}
if (__predict_false(mask))
sigsuspendteardown(l);
/* select and poll are not restarted after signals... */
if (error == ERESTART)
return EINTR;
if (error == EWOULDBLOCK)
return 0;
return error;
}
int
selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
fd_set *u_ex, struct timespec *ts, sigset_t *mask)
{
char smallbits[howmany(FD_SETSIZE, NFDBITS) *
sizeof(fd_mask) * 6];
char *bits;
int error, nf;
size_t ni;
if (nd < 0)
return (EINVAL);
nf = atomic_load_consume(&curlwp->l_fd->fd_dt)->dt_nfiles;
if (nd > nf) {
/* forgiving; slightly wrong */
nd = nf;
}
ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
if (ni * 6 > sizeof(smallbits))
bits = kmem_alloc(ni * 6, KM_SLEEP);
else
bits = smallbits;
#define getbits(name, x) \
if (u_ ## name) { \
error = copyin(u_ ## name, bits + ni * x, ni); \
if (error) \
goto fail; \
} else \
memset(bits + ni * x, 0, ni);
getbits(in, 0);
getbits(ou, 1);
getbits(ex, 2);
#undef getbits
error = sel_do_scan(selop_select, bits, nd, ni, ts, mask, retval);
if (error == 0 && u_in != NULL)
error = copyout(bits + ni * 3, u_in, ni);
if (error == 0 && u_ou != NULL)
error = copyout(bits + ni * 4, u_ou, ni);
if (error == 0 && u_ex != NULL)
error = copyout(bits + ni * 5, u_ex, ni);
fail:
if (bits != smallbits)
kmem_free(bits, ni * 6);
return (error);
}
static inline int
selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
{
fd_mask *ibitp, *obitp;
int msk, i, j, fd, n;
file_t *fp;
lwp_t *l;
ibitp = (fd_mask *)(bits + ni * 0);
obitp = (fd_mask *)(bits + ni * 3);
n = 0;
l = curlwp;
memset(obitp, 0, ni * 3);
for (msk = 0; msk < 3; msk++) {
for (i = 0; i < nfd; i += NFDBITS) {
fd_mask ibits, obits;
ibits = *ibitp;
obits = 0;
while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
ibits &= ~(1U << j);
if ((fp = fd_getfile(fd)) == NULL)
return (EBADF);
/*
* Setup an argument to selrecord(), which is
* a file descriptor number.
*/
l->l_selrec = fd;
if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
if (!direct_select) {
/*
* Have events: do nothing in
* selrecord().
*/
l->l_selflag = SEL_RESET;
}
obits |= (1U << j);
n++;
}
fd_putfile(fd);
}
if (obits != 0) {
if (direct_select) {
kmutex_t *lock;
lock = l->l_selcluster->sc_lock;
mutex_spin_enter(lock);
*obitp |= obits;
mutex_spin_exit(lock);
} else {
*obitp |= obits;
}
}
ibitp++;
obitp++;
}
}
*retval = n;
return (0);
}
/*
* Poll system call.
*/
int
sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
{
/* {
syscallarg(struct pollfd *) fds;
syscallarg(u_int) nfds;
syscallarg(int) timeout;
} */
struct timespec ats, *ts = NULL;
if (SCARG(uap, timeout) != INFTIM) {
ats.tv_sec = SCARG(uap, timeout) / 1000;
ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
ts = &ats;
}
return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
}
/*
* Poll system call.
*/
int
sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
register_t *retval)
{
/* {
syscallarg(struct pollfd *) fds;
syscallarg(u_int) nfds;
syscallarg(const struct timespec *) ts;
syscallarg(const sigset_t *) mask;
} */
struct timespec ats, *ts = NULL;
sigset_t amask, *mask = NULL;
int error;
if (SCARG(uap, ts)) {
error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
if (error)
return error;
ts = &ats;
}
if (SCARG(uap, mask)) {
error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
if (error)
return error;
mask = &amask;
}
return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
}
int
pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
struct timespec *ts, sigset_t *mask)
{
struct pollfd smallfds[32];
struct pollfd *fds;
int error;
size_t ni;
if (nfds > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + 1000) {
/*
* Prevent userland from causing over-allocation.
* Raising the default limit too high can still cause
* a lot of memory to be allocated, but this also means
* that the file descriptor array will also be large.
*
* To reduce the memory requirements here, we could
* process the 'fds' array in chunks, but that
* is a lot of code that isn't normally useful.
* (Or just move the copyin/out into pollscan().)
*
* Historically the code silently truncated 'fds' to
* dt_nfiles entries - but that does cause issues.
*
* Using the max limit equivalent to sysctl
* kern.maxfiles is the moral equivalent of OPEN_MAX
* as specified by POSIX.
*
* We add a slop of 1000 in case the resource limit was
* changed after opening descriptors or the same descriptor
* was specified more than once.
*/
return EINVAL;
}
ni = nfds * sizeof(struct pollfd);
if (ni > sizeof(smallfds))
fds = kmem_alloc(ni, KM_SLEEP);
else
fds = smallfds;
error = copyin(u_fds, fds, ni);
if (error)
goto fail;
error = sel_do_scan(selop_poll, fds, nfds, ni, ts, mask, retval);
if (error == 0)
error = copyout(fds, u_fds, ni);
fail:
if (fds != smallfds)
kmem_free(fds, ni);
return (error);
}
static inline int
pollscan(struct pollfd *fds, const int nfd, register_t *retval)
{
file_t *fp;
int i, n = 0, revents;
for (i = 0; i < nfd; i++, fds++) {
fds->revents = 0;
if (fds->fd < 0) {
revents = 0;
} else if ((fp = fd_getfile(fds->fd)) == NULL) {
revents = POLLNVAL;
} else {
/*
* Perform poll: registers select request or returns
* the events which are set. Setup an argument for
* selrecord(), which is a pointer to struct pollfd.
*/
curlwp->l_selrec = (uintptr_t)fds;
revents = (*fp->f_ops->fo_poll)(fp,
fds->events | POLLERR | POLLHUP);
fd_putfile(fds->fd);
}
if (revents) {
if (!direct_select) {
/* Have events: do nothing in selrecord(). */
curlwp->l_selflag = SEL_RESET;
}
fds->revents = revents;
n++;
}
}
*retval = n;
return (0);
}
int
seltrue(dev_t dev, int events, lwp_t *l)
{
return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
}
/*
* Record a select request. Concurrency issues:
*
* The caller holds the same lock across calls to selrecord() and
* selnotify(), so we don't need to consider a concurrent wakeup
* while in this routine.
*
* The only activity we need to guard against is selclear(), called by
* another thread that is exiting sel_do_scan().
* `sel_lwp' can only become non-NULL while the caller's lock is held,
* so it cannot become non-NULL due to a change made by another thread
* while we are in this routine. It can only become _NULL_ due to a
* call to selclear().
*
* If it is non-NULL and != selector there is the potential for
* selclear() to be called by another thread. If either of those
* conditions are true, we're not interested in touching the `named
* waiter' part of the selinfo record because we need to record a
* collision. Hence there is no need for additional locking in this
* routine.
*/
void
selrecord(lwp_t *selector, struct selinfo *sip)
{
selcluster_t *sc;
lwp_t *other;
KASSERT(selector == curlwp);
sc = selector->l_selcluster;
other = sip->sel_lwp;
if (selector->l_selflag == SEL_RESET) {
/* 0. We're not going to block - will poll again if needed. */
} else if (other == selector) {
/* 1. We (selector) already claimed to be the first LWP. */
KASSERT(sip->sel_cluster == sc);
} else if (other == NULL) {
/*
* 2. No first LWP, therefore we (selector) are the first.
*
* There may be unnamed waiters (collisions). Issue a memory
* barrier to ensure that we access sel_lwp (above) before
* other fields - this guards against a call to selclear().
*/
membar_acquire();
sip->sel_lwp = selector;
SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
/* Copy the argument, which is for selnotify(). */
sip->sel_fdinfo = selector->l_selrec;
/* Replace selinfo's lock with the chosen cluster's lock. */
sip->sel_cluster = sc;
} else {
/* 3. Multiple waiters: record a collision. */
sip->sel_collision |= sc->sc_mask;
KASSERT(sip->sel_cluster != NULL);
}
}
/*
* Record a knote.
*
* The caller holds the same lock as for selrecord().
*/
void
selrecord_knote(struct selinfo *sip, struct knote *kn)
{
klist_insert(&sip->sel_klist, kn);
}
/*
* Remove a knote.
*
* The caller holds the same lock as for selrecord().
*
* Returns true if the last knote was removed and the list
* is now empty.
*/
bool
selremove_knote(struct selinfo *sip, struct knote *kn)
{
return klist_remove(&sip->sel_klist, kn);
}
/*
* sel_setevents: a helper function for selnotify(), to set the events
* for LWP sleeping in selcommon() or pollcommon().
*/
static inline bool
sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
{
const int oflag = l->l_selflag;
int ret = 0;
/*
* If we require re-scan or it was required by somebody else,
* then just (re)set SEL_RESET and return.
*/
if (__predict_false(events == 0 || oflag == SEL_RESET)) {
l->l_selflag = SEL_RESET;
return true;
}
/*
* Direct set. Note: select state of LWP is locked. First,
* determine whether it is selcommon() or pollcommon().
*/
if (l->l_selbits != NULL) {
const size_t ni = l->l_selni;
fd_mask *fds = (fd_mask *)l->l_selbits;
fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
const int idx = fd >> __NFDSHIFT;
int n;
for (n = 0; n < 3; n++) {
if ((fds[idx] & fbit) != 0 &&
(ofds[idx] & fbit) == 0 &&
(sel_flag[n] & events)) {
ofds[idx] |= fbit;
ret++;
}
fds = (fd_mask *)((char *)fds + ni);
ofds = (fd_mask *)((char *)ofds + ni);
}
} else {
struct pollfd *pfd = (void *)sip->sel_fdinfo;
int revents = events & (pfd->events | POLLERR | POLLHUP);
if (revents) {
if (pfd->revents == 0)
ret = 1;
pfd->revents |= revents;
}
}
/* Check whether there are any events to return. */
if (!ret) {
return false;
}
/* Indicate direct set and note the event (cluster lock is held). */
l->l_selflag = SEL_EVENT;
l->l_selret += ret;
return true;
}
/*
* Do a wakeup when a selectable event occurs. Concurrency issues:
*
* As per selrecord(), the caller's object lock is held. If there
* is a named waiter, we must acquire the associated selcluster's lock
* in order to synchronize with selclear() and pollers going to sleep
* in sel_do_scan().
*
* sip->sel_cluser cannot change at this point, as it is only changed
* in selrecord(), and concurrent calls to selrecord() are locked
* out by the caller.
*/
void
selnotify(struct selinfo *sip, int events, long knhint)
{
selcluster_t *sc;
uint64_t mask;
int index, oflag;
lwp_t *l;
kmutex_t *lock;
KNOTE(&sip->sel_klist, knhint);
if (sip->sel_lwp != NULL) {
/* One named LWP is waiting. */
sc = sip->sel_cluster;
lock = sc->sc_lock;
mutex_spin_enter(lock);
/* Still there? */
if (sip->sel_lwp != NULL) {
/*
* Set the events for our LWP and indicate that.
* Otherwise, request for a full re-scan.
*/
l = sip->sel_lwp;
oflag = l->l_selflag;
if (!direct_select) {
l->l_selflag = SEL_RESET;
} else if (!sel_setevents(l, sip, events)) {
/* No events to return. */
mutex_spin_exit(lock);
return;
}
/*
* If thread is sleeping, wake it up. If it's not
* yet asleep, it will notice the change in state
* and will re-poll the descriptors.
*/
if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
KASSERT(l->l_wchan == sc);
sleepq_remove(l->l_sleepq, l, true);
}
}
mutex_spin_exit(lock);
}
if ((mask = sip->sel_collision) != 0) {
/*
* There was a collision (multiple waiters): we must
* inform all potentially interested waiters.
*/
sip->sel_collision = 0;
do {
index = ffs64(mask) - 1;
mask ^= __BIT(index);
sc = selcluster[index];
lock = sc->sc_lock;
mutex_spin_enter(lock);
sc->sc_ncoll++;
sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
} while (__predict_false(mask != 0));
}
}
/*
* Remove an LWP from all objects that it is waiting for. Concurrency
* issues:
*
* The object owner's (e.g. device driver) lock is not held here. Calls
* can be made to selrecord() and we do not synchronize against those
* directly using locks. However, we use `sel_lwp' to lock out changes.
* Before clearing it we must use memory barriers to ensure that we can
* safely traverse the list of selinfo records.
*/
static void
selclear(void)
{
struct selinfo *sip, *next;
selcluster_t *sc;
lwp_t *l;
kmutex_t *lock;
l = curlwp;
sc = l->l_selcluster;
lock = sc->sc_lock;
/*
* If the request was non-blocking, or we found events on the first
* descriptor, there will be no need to clear anything - avoid
* taking the lock.
*/
if (SLIST_EMPTY(&l->l_selwait)) {
return;
}
mutex_spin_enter(lock);
for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
KASSERT(sip->sel_lwp == l);
KASSERT(sip->sel_cluster == l->l_selcluster);
/*
* Read link to next selinfo record, if any.
* It's no longer safe to touch `sip' after clearing
* `sel_lwp', so ensure that the read of `sel_chain'
* completes before the clearing of sel_lwp becomes
* globally visible.
*/
next = SLIST_NEXT(sip, sel_chain);
/* Release the record for another named waiter to use. */
atomic_store_release(&sip->sel_lwp, NULL);
}
mutex_spin_exit(lock);
}
/*
* Initialize the select/poll system calls. Called once for each
* CPU in the system, as they are attached.
*/
void
selsysinit(struct cpu_info *ci)
{
selcluster_t *sc;
u_int index;
/* If already a cluster in place for this bit, re-use. */
index = cpu_index(ci) & SELCLUSTERMASK;
sc = selcluster[index];
if (sc == NULL) {
sc = kmem_alloc(roundup2(sizeof(selcluster_t),
coherency_unit) + coherency_unit, KM_SLEEP);
sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
sleepq_init(&sc->sc_sleepq);
sc->sc_ncoll = 0;
sc->sc_mask = __BIT(index);
selcluster[index] = sc;
}
ci->ci_data.cpu_selcluster = sc;
}
/*
* Initialize a selinfo record.
*/
void
selinit(struct selinfo *sip)
{
memset(sip, 0, sizeof(*sip));
klist_init(&sip->sel_klist);
}
/*
* Destroy a selinfo record. The owning object must not gain new
* references while this is in progress: all activity on the record
* must be stopped.
*
* Concurrency issues: we only need guard against a call to selclear()
* by a thread exiting sel_do_scan(). The caller has prevented further
* references being made to the selinfo record via selrecord(), and it
* will not call selnotify() again.
*/
void
seldestroy(struct selinfo *sip)
{
selcluster_t *sc;
kmutex_t *lock;
lwp_t *l;
klist_fini(&sip->sel_klist);
if (sip->sel_lwp == NULL)
return;
/*
* Lock out selclear(). The selcluster pointer can't change while
* we are here since it is only ever changed in selrecord(),
* and that will not be entered again for this record because
* it is dying.
*/
KASSERT(sip->sel_cluster != NULL);
sc = sip->sel_cluster;
lock = sc->sc_lock;
mutex_spin_enter(lock);
if ((l = sip->sel_lwp) != NULL) {
/*
* This should rarely happen, so although SLIST_REMOVE()
* is slow, using it here is not a problem.
*/
KASSERT(l->l_selcluster == sc);
SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
sip->sel_lwp = NULL;
}
mutex_spin_exit(lock);
}
/*
* System control nodes.
*/
SYSCTL_SETUP(sysctl_select_setup, "sysctl select setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "direct_select",
SYSCTL_DESCR("Enable/disable direct select (for testing)"),
NULL, 0, &direct_select, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
}