383 lines
9.5 KiB
C
383 lines
9.5 KiB
C
/* $NetBSD: kern_lock.c,v 1.188 2024/01/14 11:46:05 andvar Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2002, 2006, 2007, 2008, 2009, 2020, 2023
|
|
* The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center, and by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.188 2024/01/14 11:46:05 andvar Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_lockdebug.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lockdebug.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/lwp.h>
|
|
#include <sys/pserialize.h>
|
|
|
|
#if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
|
|
#include <sys/ksyms.h>
|
|
#endif
|
|
|
|
#include <machine/lock.h>
|
|
|
|
#include <dev/lockstat.h>
|
|
|
|
#define RETURN_ADDRESS (uintptr_t)__builtin_return_address(0)
|
|
|
|
bool kernel_lock_dodebug;
|
|
|
|
__cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
|
|
__cacheline_aligned;
|
|
|
|
void
|
|
assert_sleepable(void)
|
|
{
|
|
const char *reason;
|
|
long pctr;
|
|
bool idle;
|
|
|
|
if (__predict_false(panicstr != NULL)) {
|
|
return;
|
|
}
|
|
|
|
LOCKDEBUG_BARRIER(kernel_lock, 1);
|
|
|
|
/*
|
|
* Avoid disabling/re-enabling preemption here since this
|
|
* routine may be called in delicate situations.
|
|
*/
|
|
do {
|
|
pctr = lwp_pctr();
|
|
idle = CURCPU_IDLE_P();
|
|
} while (__predict_false(pctr != lwp_pctr()));
|
|
|
|
reason = NULL;
|
|
if (__predict_false(idle) && !cold) {
|
|
reason = "idle";
|
|
goto panic;
|
|
}
|
|
if (__predict_false(cpu_intr_p())) {
|
|
reason = "interrupt";
|
|
goto panic;
|
|
}
|
|
if (__predict_false(cpu_softintr_p())) {
|
|
reason = "softint";
|
|
goto panic;
|
|
}
|
|
if (__predict_false(!pserialize_not_in_read_section())) {
|
|
reason = "pserialize";
|
|
goto panic;
|
|
}
|
|
return;
|
|
|
|
panic: panic("%s: %s caller=%p", __func__, reason, (void *)RETURN_ADDRESS);
|
|
}
|
|
|
|
/*
|
|
* Functions for manipulating the kernel_lock. We put them here
|
|
* so that they show up in profiles.
|
|
*/
|
|
|
|
#define _KERNEL_LOCK_ABORT(msg) \
|
|
LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
|
|
|
|
#ifdef LOCKDEBUG
|
|
#define _KERNEL_LOCK_ASSERT(cond) \
|
|
do { \
|
|
if (!(cond)) \
|
|
_KERNEL_LOCK_ABORT("assertion failed: " #cond); \
|
|
} while (/* CONSTCOND */ 0)
|
|
#else
|
|
#define _KERNEL_LOCK_ASSERT(cond) /* nothing */
|
|
#endif
|
|
|
|
static void _kernel_lock_dump(const volatile void *, lockop_printer_t);
|
|
|
|
lockops_t _kernel_lock_ops = {
|
|
.lo_name = "Kernel lock",
|
|
.lo_type = LOCKOPS_SPIN,
|
|
.lo_dump = _kernel_lock_dump,
|
|
};
|
|
|
|
#ifdef LOCKDEBUG
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
static void
|
|
kernel_lock_trace_ipi(void *cookie)
|
|
{
|
|
|
|
printf("%s[%d %s]: hogging kernel lock\n", cpu_name(curcpu()),
|
|
curlwp->l_lid,
|
|
curlwp->l_name ? curlwp->l_name : curproc->p_comm);
|
|
#ifdef DDB
|
|
db_stacktrace();
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the kernel lock.
|
|
*/
|
|
void
|
|
kernel_lock_init(void)
|
|
{
|
|
|
|
__cpu_simple_lock_init(kernel_lock);
|
|
kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
|
|
RETURN_ADDRESS);
|
|
}
|
|
CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
|
|
|
|
/*
|
|
* Print debugging information about the kernel lock.
|
|
*/
|
|
static void
|
|
_kernel_lock_dump(const volatile void *junk, lockop_printer_t pr)
|
|
{
|
|
struct cpu_info *ci = curcpu();
|
|
|
|
(void)junk;
|
|
|
|
pr("curcpu holds : %18d wanted by: %#018lx\n",
|
|
ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
|
|
}
|
|
|
|
/*
|
|
* Acquire 'nlocks' holds on the kernel lock.
|
|
*
|
|
* Although it may not look it, this is one of the most central, intricate
|
|
* routines in the kernel, and tons of code elsewhere depends on its exact
|
|
* behaviour. If you change something in here, expect it to bite you in the
|
|
* rear.
|
|
*/
|
|
void
|
|
_kernel_lock(int nlocks)
|
|
{
|
|
struct cpu_info *ci;
|
|
LOCKSTAT_TIMER(spintime);
|
|
LOCKSTAT_FLAG(lsflag);
|
|
struct lwp *owant;
|
|
#ifdef LOCKDEBUG
|
|
static struct cpu_info *kernel_lock_holder;
|
|
u_int spins = 0;
|
|
u_int starttime = getticks();
|
|
#endif
|
|
int s;
|
|
struct lwp *l = curlwp;
|
|
|
|
_KERNEL_LOCK_ASSERT(nlocks > 0);
|
|
|
|
s = splvm();
|
|
ci = curcpu();
|
|
if (ci->ci_biglock_count != 0) {
|
|
_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
|
|
ci->ci_biglock_count += nlocks;
|
|
l->l_blcnt += nlocks;
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
_KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
|
|
LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
|
|
0);
|
|
|
|
if (__predict_true(__cpu_simple_lock_try(kernel_lock))) {
|
|
#ifdef LOCKDEBUG
|
|
kernel_lock_holder = curcpu();
|
|
#endif
|
|
ci->ci_biglock_count = nlocks;
|
|
l->l_blcnt = nlocks;
|
|
LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
|
|
RETURN_ADDRESS, 0);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* To remove the ordering constraint between adaptive mutexes
|
|
* and kernel_lock we must make it appear as if this thread is
|
|
* blocking. For non-interlocked mutex release, a store fence
|
|
* is required to ensure that the result of any mutex_exit()
|
|
* by the current LWP becomes visible on the bus before the set
|
|
* of ci->ci_biglock_wanted becomes visible.
|
|
*
|
|
* This membar_producer matches the membar_consumer in
|
|
* mutex_vector_enter.
|
|
*
|
|
* That way, if l has just released a mutex, mutex_vector_enter
|
|
* can't see this store ci->ci_biglock_wanted := l until it
|
|
* will also see the mutex_exit store mtx->mtx_owner := 0 which
|
|
* clears the has-waiters bit.
|
|
*/
|
|
membar_producer();
|
|
owant = ci->ci_biglock_wanted;
|
|
atomic_store_relaxed(&ci->ci_biglock_wanted, l);
|
|
#if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
|
|
l->l_ld_wanted = __builtin_return_address(0);
|
|
#endif
|
|
|
|
/*
|
|
* Spin until we acquire the lock. Once we have it, record the
|
|
* time spent with lockstat.
|
|
*/
|
|
LOCKSTAT_ENTER(lsflag);
|
|
LOCKSTAT_START_TIMER(lsflag, spintime);
|
|
|
|
do {
|
|
splx(s);
|
|
while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
|
|
#ifdef LOCKDEBUG
|
|
if (SPINLOCK_SPINOUT(spins) && start_init_exec &&
|
|
(getticks() - starttime) > 10*hz) {
|
|
ipi_msg_t msg = {
|
|
.func = kernel_lock_trace_ipi,
|
|
};
|
|
kpreempt_disable();
|
|
ipi_unicast(&msg, kernel_lock_holder);
|
|
ipi_wait(&msg);
|
|
kpreempt_enable();
|
|
_KERNEL_LOCK_ABORT("spinout");
|
|
}
|
|
#endif
|
|
SPINLOCK_BACKOFF_HOOK;
|
|
SPINLOCK_SPIN_HOOK;
|
|
}
|
|
s = splvm();
|
|
} while (!__cpu_simple_lock_try(kernel_lock));
|
|
|
|
ci->ci_biglock_count = nlocks;
|
|
l->l_blcnt = nlocks;
|
|
LOCKSTAT_STOP_TIMER(lsflag, spintime);
|
|
LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
|
|
RETURN_ADDRESS, 0);
|
|
if (owant == NULL) {
|
|
LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
|
|
LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
|
|
}
|
|
LOCKSTAT_EXIT(lsflag);
|
|
splx(s);
|
|
|
|
/*
|
|
* Now that we have kernel_lock, reset ci_biglock_wanted. This
|
|
* store must be visible on other CPUs before a mutex_exit() on
|
|
* this CPU can test the has-waiters bit.
|
|
*
|
|
* This membar_enter matches the membar_enter in
|
|
* mutex_vector_enter. (Yes, not membar_exit -- the legacy
|
|
* naming is confusing, but store-before-load usually pairs
|
|
* with store-before-load, in the extremely rare cases where it
|
|
* is used at all.)
|
|
*
|
|
* That way, mutex_vector_enter can't see this store
|
|
* ci->ci_biglock_wanted := owant until it has set the
|
|
* has-waiters bit.
|
|
*/
|
|
(void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
|
|
#ifndef __HAVE_ATOMIC_AS_MEMBAR
|
|
membar_enter();
|
|
#endif
|
|
|
|
#ifdef LOCKDEBUG
|
|
kernel_lock_holder = curcpu();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
|
|
* all holds.
|
|
*/
|
|
void
|
|
_kernel_unlock(int nlocks, int *countp)
|
|
{
|
|
struct cpu_info *ci;
|
|
u_int olocks;
|
|
int s;
|
|
struct lwp *l = curlwp;
|
|
|
|
_KERNEL_LOCK_ASSERT(nlocks < 2);
|
|
|
|
olocks = l->l_blcnt;
|
|
|
|
if (olocks == 0) {
|
|
_KERNEL_LOCK_ASSERT(nlocks <= 0);
|
|
if (countp != NULL)
|
|
*countp = 0;
|
|
return;
|
|
}
|
|
|
|
_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
|
|
|
|
if (nlocks == 0)
|
|
nlocks = olocks;
|
|
else if (nlocks == -1) {
|
|
nlocks = 1;
|
|
_KERNEL_LOCK_ASSERT(olocks == 1);
|
|
}
|
|
s = splvm();
|
|
ci = curcpu();
|
|
_KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
|
|
if (ci->ci_biglock_count == nlocks) {
|
|
LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
|
|
RETURN_ADDRESS, 0);
|
|
ci->ci_biglock_count = 0;
|
|
__cpu_simple_unlock(kernel_lock);
|
|
l->l_blcnt -= nlocks;
|
|
splx(s);
|
|
if (l->l_dopreempt)
|
|
kpreempt(0);
|
|
} else {
|
|
ci->ci_biglock_count -= nlocks;
|
|
l->l_blcnt -= nlocks;
|
|
splx(s);
|
|
}
|
|
|
|
if (countp != NULL)
|
|
*countp = olocks;
|
|
}
|
|
|
|
bool
|
|
_kernel_locked_p(void)
|
|
{
|
|
return __SIMPLELOCK_LOCKED_P(kernel_lock);
|
|
}
|