NetBSD/sys/dev/usb/if_urtwn.c

5274 lines
140 KiB
C

/* $NetBSD: if_urtwn.c,v 1.109 2024/02/28 20:18:13 riastradh Exp $ */
/* $OpenBSD: if_urtwn.c,v 1.42 2015/02/10 23:25:46 mpi Exp $ */
/*-
* Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2014 Kevin Lo <kevlo@FreeBSD.org>
* Copyright (c) 2016 Nathanial Sloss <nathanialsloss@yahoo.com.au>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188EU/RTL8188RU/RTL8192CU
* RTL8192EU.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_urtwn.c,v 1.109 2024/02/28 20:18:13 riastradh Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/module.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/rndsource.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <sys/intr.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#include <net80211/ieee80211_netbsd.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/firmload.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/usbhist.h>
#include <dev/ic/rtwnreg.h>
#include <dev/ic/rtwn_data.h>
#include <dev/usb/if_urtwnreg.h>
#include <dev/usb/if_urtwnvar.h>
/*
* The sc_write_mtx locking is to prevent sequences of writes from
* being intermingled with each other. I don't know if this is really
* needed. I have added it just to be on the safe side.
*/
#ifdef URTWN_DEBUG
#define DBG_INIT __BIT(0)
#define DBG_FN __BIT(1)
#define DBG_TX __BIT(2)
#define DBG_RX __BIT(3)
#define DBG_STM __BIT(4)
#define DBG_RF __BIT(5)
#define DBG_REG __BIT(6)
#define DBG_ALL 0xffffffffU
#ifndef URTWN_DEBUG_DEFAULT
#define URTWN_DEBUG_DEFAULT 0
#endif
u_int urtwn_debug = URTWN_DEBUG_DEFAULT;
#define DPRINTFN(n, fmt, a, b, c, d) do { \
if (urtwn_debug & (n)) { \
KERNHIST_LOG(usbhist, fmt, a, b, c, d); \
} \
} while (/*CONSTCOND*/0)
#define URTWNHIST_FUNC() USBHIST_FUNC()
#define URTWNHIST_CALLED() do { \
if (urtwn_debug & DBG_FN) { \
KERNHIST_CALLED(usbhist); \
} \
} while(/*CONSTCOND*/0)
#define URTWNHIST_CALLARGS(fmt, a, b, c, d) do { \
if (urtwn_debug & DBG_FN) { \
KERNHIST_CALLARGS(usbhist, fmt, a, b, c, d); \
} \
} while(/*CONSTCOND*/0)
#else
#define DPRINTFN(n, fmt, a, b, c, d)
#define URTWNHIST_FUNC()
#define URTWNHIST_CALLED()
#define URTWNHIST_CALLARGS(fmt, a, b, c, d)
#endif
#define URTWN_DEV(v,p) { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, 0 }
#define URTWN_RTL8188E_DEV(v,p) \
{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, FLAG_RTL8188E }
#define URTWN_RTL8192EU_DEV(v,p) \
{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, FLAG_RTL8192E }
static const struct urtwn_dev {
struct usb_devno dev;
uint32_t flags;
#define FLAG_RTL8188E __BIT(0)
#define FLAG_RTL8192E __BIT(1)
} urtwn_devs[] = {
URTWN_DEV(ABOCOM, RTL8188CU_1),
URTWN_DEV(ABOCOM, RTL8188CU_2),
URTWN_DEV(ABOCOM, RTL8192CU),
URTWN_DEV(ASUSTEK, RTL8192CU),
URTWN_DEV(ASUSTEK, RTL8192CU_3),
URTWN_DEV(ASUSTEK, USBN10NANO),
URTWN_DEV(ASUSTEK, RTL8192CU_3),
URTWN_DEV(AZUREWAVE, RTL8188CE_1),
URTWN_DEV(AZUREWAVE, RTL8188CE_2),
URTWN_DEV(AZUREWAVE, RTL8188CU),
URTWN_DEV(BELKIN, F7D2102),
URTWN_DEV(BELKIN, RTL8188CU),
URTWN_DEV(BELKIN, RTL8188CUS),
URTWN_DEV(BELKIN, RTL8192CU),
URTWN_DEV(BELKIN, RTL8192CU_1),
URTWN_DEV(BELKIN, RTL8192CU_2),
URTWN_DEV(CHICONY, RTL8188CUS_1),
URTWN_DEV(CHICONY, RTL8188CUS_2),
URTWN_DEV(CHICONY, RTL8188CUS_3),
URTWN_DEV(CHICONY, RTL8188CUS_4),
URTWN_DEV(CHICONY, RTL8188CUS_5),
URTWN_DEV(CHICONY, RTL8188CUS_6),
URTWN_DEV(COMPARE, RTL8192CU),
URTWN_DEV(COREGA, RTL8192CU),
URTWN_DEV(DLINK, DWA131B),
URTWN_DEV(DLINK, RTL8188CU),
URTWN_DEV(DLINK, RTL8192CU_1),
URTWN_DEV(DLINK, RTL8192CU_2),
URTWN_DEV(DLINK, RTL8192CU_3),
URTWN_DEV(DLINK, RTL8192CU_4),
URTWN_DEV(EDIMAX, RTL8188CU),
URTWN_DEV(EDIMAX, RTL8192CU),
URTWN_DEV(FEIXUN, RTL8188CU),
URTWN_DEV(FEIXUN, RTL8192CU),
URTWN_DEV(GUILLEMOT, HWNUP150),
URTWN_DEV(GUILLEMOT, RTL8192CU),
URTWN_DEV(HAWKING, RTL8192CU),
URTWN_DEV(HAWKING, RTL8192CU_2),
URTWN_DEV(HP3, RTL8188CU),
URTWN_DEV(IODATA, WNG150UM),
URTWN_DEV(IODATA, RTL8192CU),
URTWN_DEV(NETGEAR, WNA1000M),
URTWN_DEV(NETGEAR, RTL8192CU),
URTWN_DEV(NETGEAR4, RTL8188CU),
URTWN_DEV(NOVATECH, RTL8188CU),
URTWN_DEV(PLANEX2, RTL8188CU_1),
URTWN_DEV(PLANEX2, RTL8188CU_2),
URTWN_DEV(PLANEX2, RTL8192CU),
URTWN_DEV(PLANEX2, RTL8188CU_3),
URTWN_DEV(PLANEX2, RTL8188CU_4),
URTWN_DEV(PLANEX2, RTL8188CUS),
URTWN_DEV(REALTEK, RTL8188CE_0),
URTWN_DEV(REALTEK, RTL8188CE_1),
URTWN_DEV(REALTEK, RTL8188CTV),
URTWN_DEV(REALTEK, RTL8188CU_0),
URTWN_DEV(REALTEK, RTL8188CU_1),
URTWN_DEV(REALTEK, RTL8188CU_2),
URTWN_DEV(REALTEK, RTL8188CU_3),
URTWN_DEV(REALTEK, RTL8188CU_COMBO),
URTWN_DEV(REALTEK, RTL8188CUS),
URTWN_DEV(REALTEK, RTL8188RU),
URTWN_DEV(REALTEK, RTL8188RU_2),
URTWN_DEV(REALTEK, RTL8188RU_3),
URTWN_DEV(REALTEK, RTL8191CU),
URTWN_DEV(REALTEK, RTL8192CE),
URTWN_DEV(REALTEK, RTL8192CU),
URTWN_DEV(SITECOMEU, RTL8188CU),
URTWN_DEV(SITECOMEU, RTL8188CU_2),
URTWN_DEV(SITECOMEU, RTL8192CU),
URTWN_DEV(SITECOMEU, RTL8192CUR2),
URTWN_DEV(TPLINK, RTL8192CU),
URTWN_DEV(TRENDNET, RTL8188CU),
URTWN_DEV(TRENDNET, RTL8192CU),
URTWN_DEV(TRENDNET, TEW648UBM),
URTWN_DEV(ZYXEL, RTL8192CU),
/* URTWN_RTL8188E */
URTWN_RTL8188E_DEV(DLINK, DWA125D1),
URTWN_RTL8188E_DEV(ELECOM, WDC150SU2M),
URTWN_RTL8188E_DEV(MERCUSYS, MW150USV2),
URTWN_RTL8188E_DEV(REALTEK, RTL8188ETV),
URTWN_RTL8188E_DEV(REALTEK, RTL8188EU),
URTWN_RTL8188E_DEV(ABOCOM, RTL8188EU),
URTWN_RTL8188E_DEV(TPLINK, RTL8188EU),
URTWN_RTL8188E_DEV(DLINK, DWA121B1),
URTWN_RTL8188E_DEV(EDIMAX, EW7811UNV2),
/* URTWN_RTL8192EU */
URTWN_RTL8192EU_DEV(DLINK, DWA131E),
URTWN_RTL8192EU_DEV(REALTEK, RTL8192EU),
URTWN_RTL8192EU_DEV(TPLINK, WN821NV5),
URTWN_RTL8192EU_DEV(TPLINK, WN822NV4),
URTWN_RTL8192EU_DEV(TPLINK, WN823NV2),
};
#undef URTWN_DEV
#undef URTWN_RTL8188E_DEV
#undef URTWN_RTL8192EU_DEV
static int urtwn_match(device_t, cfdata_t, void *);
static void urtwn_attach(device_t, device_t, void *);
static int urtwn_detach(device_t, int);
static int urtwn_activate(device_t, enum devact);
CFATTACH_DECL_NEW(urtwn, sizeof(struct urtwn_softc), urtwn_match,
urtwn_attach, urtwn_detach, urtwn_activate);
static int urtwn_open_pipes(struct urtwn_softc *);
static void urtwn_close_pipes(struct urtwn_softc *);
static int urtwn_alloc_rx_list(struct urtwn_softc *);
static void urtwn_free_rx_list(struct urtwn_softc *);
static int urtwn_alloc_tx_list(struct urtwn_softc *);
static void urtwn_free_tx_list(struct urtwn_softc *);
static void urtwn_task(void *);
static void urtwn_do_async(struct urtwn_softc *,
void (*)(struct urtwn_softc *, void *), void *, int);
static void urtwn_wait_async(struct urtwn_softc *);
static int urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
int);
static void urtwn_write_1(struct urtwn_softc *, uint16_t, uint8_t);
static void urtwn_write_2(struct urtwn_softc *, uint16_t, uint16_t);
static void urtwn_write_4(struct urtwn_softc *, uint16_t, uint32_t);
static int urtwn_write_region(struct urtwn_softc *, uint16_t, uint8_t *,
int);
static int urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
int);
static uint8_t urtwn_read_1(struct urtwn_softc *, uint16_t);
static uint16_t urtwn_read_2(struct urtwn_softc *, uint16_t);
static uint32_t urtwn_read_4(struct urtwn_softc *, uint16_t);
static int urtwn_fw_cmd(struct urtwn_softc *, uint8_t, const void *, int);
static void urtwn_r92c_rf_write(struct urtwn_softc *, int, uint8_t,
uint32_t);
static void urtwn_r88e_rf_write(struct urtwn_softc *, int, uint8_t,
uint32_t);
static void urtwn_r92e_rf_write(struct urtwn_softc *, int, uint8_t,
uint32_t);
static uint32_t urtwn_rf_read(struct urtwn_softc *, int, uint8_t);
static int urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t);
static uint8_t urtwn_efuse_read_1(struct urtwn_softc *, uint16_t);
static void urtwn_efuse_read(struct urtwn_softc *);
static void urtwn_efuse_switch_power(struct urtwn_softc *);
static int urtwn_read_chipid(struct urtwn_softc *);
#ifdef URTWN_DEBUG
static void urtwn_dump_rom(struct urtwn_softc *, struct r92c_rom *);
#endif
static void urtwn_read_rom(struct urtwn_softc *);
static void urtwn_r88e_read_rom(struct urtwn_softc *);
static int urtwn_media_change(struct ifnet *);
static int urtwn_ra_init(struct urtwn_softc *);
static int urtwn_get_nettype(struct urtwn_softc *);
static void urtwn_set_nettype0_msr(struct urtwn_softc *, uint8_t);
static void urtwn_tsf_sync_enable(struct urtwn_softc *);
static void urtwn_set_led(struct urtwn_softc *, int, int);
static void urtwn_calib_to(void *);
static void urtwn_calib_to_cb(struct urtwn_softc *, void *);
static void urtwn_next_scan(void *);
static int urtwn_newstate(struct ieee80211com *, enum ieee80211_state,
int);
static void urtwn_newstate_cb(struct urtwn_softc *, void *);
static int urtwn_wme_update(struct ieee80211com *);
static void urtwn_wme_update_cb(struct urtwn_softc *, void *);
static void urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t);
static int8_t urtwn_get_rssi(struct urtwn_softc *, int, void *);
static int8_t urtwn_r88e_get_rssi(struct urtwn_softc *, int, void *);
static void urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int);
static void urtwn_rxeof(struct usbd_xfer *, void *, usbd_status);
static void urtwn_txeof(struct usbd_xfer *, void *, usbd_status);
static int urtwn_tx(struct urtwn_softc *, struct mbuf *,
struct ieee80211_node *, struct urtwn_tx_data *);
static struct urtwn_tx_data *
urtwn_get_tx_data(struct urtwn_softc *, size_t);
static void urtwn_start(struct ifnet *);
static void urtwn_watchdog(struct ifnet *);
static int urtwn_ioctl(struct ifnet *, u_long, void *);
static int urtwn_r92c_power_on(struct urtwn_softc *);
static int urtwn_r92e_power_on(struct urtwn_softc *);
static int urtwn_r88e_power_on(struct urtwn_softc *);
static int urtwn_llt_init(struct urtwn_softc *);
static void urtwn_fw_reset(struct urtwn_softc *);
static void urtwn_r88e_fw_reset(struct urtwn_softc *);
static int urtwn_fw_loadpage(struct urtwn_softc *, int, uint8_t *, int);
static int urtwn_load_firmware(struct urtwn_softc *);
static int urtwn_r92c_dma_init(struct urtwn_softc *);
static int urtwn_r88e_dma_init(struct urtwn_softc *);
static void urtwn_mac_init(struct urtwn_softc *);
static void urtwn_bb_init(struct urtwn_softc *);
static void urtwn_rf_init(struct urtwn_softc *);
static void urtwn_cam_init(struct urtwn_softc *);
static void urtwn_pa_bias_init(struct urtwn_softc *);
static void urtwn_rxfilter_init(struct urtwn_softc *);
static void urtwn_edca_init(struct urtwn_softc *);
static void urtwn_write_txpower(struct urtwn_softc *, int,
uint16_t[URTWN_RIDX_COUNT]);
static void urtwn_get_txpower(struct urtwn_softc *, size_t, u_int, u_int,
uint16_t[URTWN_RIDX_COUNT]);
static void urtwn_r88e_get_txpower(struct urtwn_softc *, size_t, u_int,
u_int, uint16_t[URTWN_RIDX_COUNT]);
static void urtwn_set_txpower(struct urtwn_softc *, u_int, u_int);
static void urtwn_set_chan(struct urtwn_softc *, struct ieee80211_channel *,
u_int);
static void urtwn_iq_calib(struct urtwn_softc *, bool);
static void urtwn_lc_calib(struct urtwn_softc *);
static void urtwn_temp_calib(struct urtwn_softc *);
static int urtwn_init(struct ifnet *);
static void urtwn_stop(struct ifnet *, int);
static int urtwn_reset(struct ifnet *);
static void urtwn_chip_stop(struct urtwn_softc *);
static void urtwn_newassoc(struct ieee80211_node *, int);
static void urtwn_delay_ms(struct urtwn_softc *, int ms);
/* Aliases. */
#define urtwn_bb_write urtwn_write_4
#define urtwn_bb_read urtwn_read_4
#define urtwn_lookup(d,v,p) ((const struct urtwn_dev *)usb_lookup(d,v,p))
static const uint16_t addaReg[] = {
R92C_FPGA0_XCD_SWITCHCTL, R92C_BLUETOOTH, R92C_RX_WAIT_CCA,
R92C_TX_CCK_RFON, R92C_TX_CCK_BBON, R92C_TX_OFDM_RFON,
R92C_TX_OFDM_BBON, R92C_TX_TO_RX, R92C_TX_TO_TX, R92C_RX_CCK,
R92C_RX_OFDM, R92C_RX_WAIT_RIFS, R92C_RX_TO_RX,
R92C_STANDBY, R92C_SLEEP, R92C_PMPD_ANAEN
};
static int
urtwn_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return urtwn_lookup(urtwn_devs, uaa->uaa_vendor, uaa->uaa_product) !=
NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
static void
urtwn_attach(device_t parent, device_t self, void *aux)
{
struct urtwn_softc *sc = device_private(self);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct usb_attach_arg *uaa = aux;
char *devinfop;
const struct urtwn_dev *dev;
usb_device_request_t req;
size_t i;
int error;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
sc->sc_dev = self;
sc->sc_udev = uaa->uaa_device;
sc->chip = 0;
dev = urtwn_lookup(urtwn_devs, uaa->uaa_vendor, uaa->uaa_product);
if (dev != NULL && ISSET(dev->flags, FLAG_RTL8188E))
SET(sc->chip, URTWN_CHIP_88E);
if (dev != NULL && ISSET(dev->flags, FLAG_RTL8192E))
SET(sc->chip, URTWN_CHIP_92EU);
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
req.bmRequestType = UT_WRITE_DEVICE;
req.bRequest = UR_SET_FEATURE;
USETW(req.wValue, UF_DEVICE_REMOTE_WAKEUP);
USETW(req.wIndex, UHF_PORT_SUSPEND);
USETW(req.wLength, 0);
(void) usbd_do_request(sc->sc_udev, &req, 0);
cv_init(&sc->sc_task_cv, "urtwntsk");
mutex_init(&sc->sc_task_mtx, MUTEX_DEFAULT, IPL_NET);
mutex_init(&sc->sc_tx_mtx, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_rx_mtx, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_fwcmd_mtx, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_write_mtx, MUTEX_DEFAULT, IPL_NONE);
usb_init_task(&sc->sc_task, urtwn_task, sc, 0);
callout_init(&sc->sc_scan_to, 0);
callout_setfunc(&sc->sc_scan_to, urtwn_next_scan, sc);
callout_init(&sc->sc_calib_to, 0);
callout_setfunc(&sc->sc_calib_to, urtwn_calib_to, sc);
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
error = usbd_set_config_no(sc->sc_udev, 1, 0);
if (error != 0) {
aprint_error_dev(self, "failed to set configuration"
", err=%s\n", usbd_errstr(error));
goto fail;
}
/* Get the first interface handle. */
error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
if (error != 0) {
aprint_error_dev(self, "could not get interface handle\n");
goto fail;
}
error = urtwn_read_chipid(sc);
if (error != 0) {
aprint_error_dev(self, "unsupported test chip\n");
goto fail;
}
/* Determine number of Tx/Rx chains. */
if (sc->chip & URTWN_CHIP_92C) {
sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2;
sc->nrxchains = 2;
} else if (sc->chip & URTWN_CHIP_92EU) {
sc->ntxchains = 2;
sc->nrxchains = 2;
} else {
sc->ntxchains = 1;
sc->nrxchains = 1;
}
if (ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU))
urtwn_r88e_read_rom(sc);
else
urtwn_read_rom(sc);
aprint_normal_dev(self, "MAC/BB RTL%s, RF 6052 %zdT%zdR, address %s\n",
(sc->chip & URTWN_CHIP_92EU) ? "8192EU" :
(sc->chip & URTWN_CHIP_92C) ? "8192CU" :
(sc->chip & URTWN_CHIP_88E) ? "8188EU" :
(sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" :
(sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" :
"8188CUS", sc->ntxchains, sc->nrxchains,
ether_sprintf(ic->ic_myaddr));
error = urtwn_open_pipes(sc);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not open pipes\n");
goto fail;
}
aprint_normal_dev(self, "%d rx pipe%s, %d tx pipe%s\n",
sc->rx_npipe, sc->rx_npipe > 1 ? "s" : "",
sc->tx_npipe, sc->tx_npipe > 1 ? "s" : "");
/*
* Setup the 802.11 device.
*/
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */
ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_MONITOR | /* Monitor mode supported. */
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_HOSTAP | /* HostAp mode supported */
IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
IEEE80211_C_SHSLOT | /* Short slot time supported. */
IEEE80211_C_WME | /* 802.11e */
IEEE80211_C_WPA; /* 802.11i */
/* Set supported .11b and .11g rates. */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* Set supported .11b and .11g channels (1 through 14). */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = urtwn_init;
ifp->if_ioctl = urtwn_ioctl;
ifp->if_start = urtwn_start;
ifp->if_watchdog = urtwn_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
if_initialize(ifp);
ieee80211_ifattach(ic);
/* override default methods */
ic->ic_newassoc = urtwn_newassoc;
ic->ic_reset = urtwn_reset;
ic->ic_wme.wme_update = urtwn_wme_update;
/* Override state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = urtwn_newstate;
/* XXX media locking needs revisiting */
mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
ieee80211_media_init_with_lock(ic,
urtwn_media_change, ieee80211_media_status, &sc->sc_media_mtx);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(URTWN_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(URTWN_TX_RADIOTAP_PRESENT);
ifp->if_percpuq = if_percpuq_create(ifp);
if_register(ifp);
ieee80211_announce(ic);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
SET(sc->sc_flags, URTWN_FLAG_ATTACHED);
return;
fail:
sc->sc_dying = 1;
aprint_error_dev(self, "attach failed\n");
}
static int
urtwn_detach(device_t self, int flags)
{
struct urtwn_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_if;
int s;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
pmf_device_deregister(self);
s = splusb();
sc->sc_dying = 1;
callout_halt(&sc->sc_scan_to, NULL);
callout_halt(&sc->sc_calib_to, NULL);
if (ISSET(sc->sc_flags, URTWN_FLAG_ATTACHED)) {
urtwn_stop(ifp, 0);
usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER,
NULL);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
bpf_detach(ifp);
ieee80211_ifdetach(&sc->sc_ic);
if_detach(ifp);
mutex_destroy(&sc->sc_media_mtx);
/* Close Tx/Rx pipes. Abort done by urtwn_stop. */
urtwn_close_pipes(sc);
}
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
rnd_detach_source(&sc->rnd_source);
callout_destroy(&sc->sc_scan_to);
callout_destroy(&sc->sc_calib_to);
cv_destroy(&sc->sc_task_cv);
mutex_destroy(&sc->sc_write_mtx);
mutex_destroy(&sc->sc_fwcmd_mtx);
mutex_destroy(&sc->sc_tx_mtx);
mutex_destroy(&sc->sc_rx_mtx);
mutex_destroy(&sc->sc_task_mtx);
return 0;
}
static int
urtwn_activate(device_t self, enum devact act)
{
struct urtwn_softc *sc = device_private(self);
URTWNHIST_FUNC(); URTWNHIST_CALLED();
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(sc->sc_ic.ic_ifp);
return 0;
default:
return EOPNOTSUPP;
}
}
static int
urtwn_open_pipes(struct urtwn_softc *sc)
{
/* Bulk-out endpoints addresses (from highest to lowest prio). */
static uint8_t epaddr[R92C_MAX_EPOUT];
static uint8_t rxepaddr[R92C_MAX_EPIN];
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
size_t i, ntx = 0, nrx = 0;
int error;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
/* Determine the number of bulk-out pipes. */
id = usbd_get_interface_descriptor(sc->sc_iface);
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
if (ed == NULL || UE_GET_XFERTYPE(ed->bmAttributes) != UE_BULK) {
continue;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT) {
if (ntx < sizeof(epaddr))
epaddr[ntx] = ed->bEndpointAddress;
ntx++;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) {
if (nrx < sizeof(rxepaddr))
rxepaddr[nrx] = ed->bEndpointAddress;
nrx++;
}
}
if (nrx == 0 || nrx > R92C_MAX_EPIN) {
aprint_error_dev(sc->sc_dev,
"%zd: invalid number of Rx bulk pipes\n", nrx);
return EIO;
}
if (ntx == 0 || ntx > R92C_MAX_EPOUT) {
aprint_error_dev(sc->sc_dev,
"%zd: invalid number of Tx bulk pipes\n", ntx);
return EIO;
}
DPRINTFN(DBG_INIT, "found %jd/%jd bulk-in/out pipes",
nrx, ntx, 0, 0);
sc->rx_npipe = nrx;
sc->tx_npipe = ntx;
/* Open bulk-in pipe at address 0x81. */
for (i = 0; i < nrx; i++) {
error = usbd_open_pipe(sc->sc_iface, rxepaddr[i],
USBD_EXCLUSIVE_USE, &sc->rx_pipe[i]);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not open Rx bulk pipe 0x%02x: %d\n",
rxepaddr[i], error);
goto fail;
}
}
/* Open bulk-out pipes (up to 3). */
for (i = 0; i < ntx; i++) {
error = usbd_open_pipe(sc->sc_iface, epaddr[i],
USBD_EXCLUSIVE_USE, &sc->tx_pipe[i]);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not open Tx bulk pipe 0x%02x: %d\n",
epaddr[i], error);
goto fail;
}
}
/* Map 802.11 access categories to USB pipes. */
sc->ac2idx[WME_AC_BK] =
sc->ac2idx[WME_AC_BE] = (ntx == 3) ? 2 : ((ntx == 2) ? 1 : 0);
sc->ac2idx[WME_AC_VI] = (ntx == 3) ? 1 : 0;
sc->ac2idx[WME_AC_VO] = 0; /* Always use highest prio. */
fail:
if (error != 0)
urtwn_close_pipes(sc);
return error;
}
static void
urtwn_close_pipes(struct urtwn_softc *sc)
{
struct usbd_pipe *pipe;
size_t i;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
/* Close Rx pipes. */
CTASSERT(sizeof(pipe) == sizeof(void *));
for (i = 0; i < sc->rx_npipe; i++) {
pipe = atomic_swap_ptr(&sc->rx_pipe[i], NULL);
if (pipe != NULL) {
usbd_close_pipe(pipe);
}
}
/* Close Tx pipes. */
for (i = 0; i < sc->tx_npipe; i++) {
pipe = atomic_swap_ptr(&sc->tx_pipe[i], NULL);
if (pipe != NULL) {
usbd_close_pipe(pipe);
}
}
}
static int __noinline
urtwn_alloc_rx_list(struct urtwn_softc *sc)
{
struct urtwn_rx_data *data;
size_t i;
int error = 0;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
for (size_t j = 0; j < sc->rx_npipe; j++) {
TAILQ_INIT(&sc->rx_free_list[j]);
for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
data = &sc->rx_data[j][i];
data->sc = sc; /* Backpointer for callbacks. */
error = usbd_create_xfer(sc->rx_pipe[j], URTWN_RXBUFSZ,
0, 0, &data->xfer);
if (error) {
aprint_error_dev(sc->sc_dev,
"could not allocate xfer\n");
break;
}
data->buf = usbd_get_buffer(data->xfer);
TAILQ_INSERT_TAIL(&sc->rx_free_list[j], data, next);
}
}
if (error != 0)
urtwn_free_rx_list(sc);
return error;
}
static void
urtwn_free_rx_list(struct urtwn_softc *sc)
{
struct usbd_xfer *xfer;
size_t i;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
/* NB: Caller must abort pipe first. */
for (size_t j = 0; j < sc->rx_npipe; j++) {
for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
CTASSERT(sizeof(xfer) == sizeof(void *));
xfer = atomic_swap_ptr(&sc->rx_data[j][i].xfer, NULL);
if (xfer != NULL)
usbd_destroy_xfer(xfer);
}
}
}
static int __noinline
urtwn_alloc_tx_list(struct urtwn_softc *sc)
{
struct urtwn_tx_data *data;
size_t i;
int error = 0;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
mutex_enter(&sc->sc_tx_mtx);
for (size_t j = 0; j < sc->tx_npipe; j++) {
TAILQ_INIT(&sc->tx_free_list[j]);
for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
data = &sc->tx_data[j][i];
data->sc = sc; /* Backpointer for callbacks. */
data->pidx = j;
error = usbd_create_xfer(sc->tx_pipe[j],
URTWN_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0,
&data->xfer);
if (error) {
aprint_error_dev(sc->sc_dev,
"could not allocate xfer\n");
goto fail;
}
data->buf = usbd_get_buffer(data->xfer);
/* Append this Tx buffer to our free list. */
TAILQ_INSERT_TAIL(&sc->tx_free_list[j], data, next);
}
}
mutex_exit(&sc->sc_tx_mtx);
return 0;
fail:
urtwn_free_tx_list(sc);
mutex_exit(&sc->sc_tx_mtx);
return error;
}
static void
urtwn_free_tx_list(struct urtwn_softc *sc)
{
struct usbd_xfer *xfer;
size_t i;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
/* NB: Caller must abort pipe first. */
for (size_t j = 0; j < sc->tx_npipe; j++) {
for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
CTASSERT(sizeof(xfer) == sizeof(void *));
xfer = atomic_swap_ptr(&sc->tx_data[j][i].xfer, NULL);
if (xfer != NULL)
usbd_destroy_xfer(xfer);
}
}
}
static int
urtwn_tx_beacon(struct urtwn_softc *sc, struct mbuf *m,
struct ieee80211_node *ni)
{
struct urtwn_tx_data *data =
urtwn_get_tx_data(sc, sc->ac2idx[WME_AC_VO]);
if (data == NULL)
return ENOBUFS;
return urtwn_tx(sc, m, ni, data);
}
static void
urtwn_cmdq_invariants(struct urtwn_softc *sc)
{
struct urtwn_host_cmd_ring *const ring = &sc->cmdq;
KASSERT(mutex_owned(&sc->sc_task_mtx));
KASSERTMSG((ring->cur >= 0 && ring->cur < URTWN_HOST_CMD_RING_COUNT),
"%s: cur=%d next=%d queued=%d",
device_xname(sc->sc_dev), ring->cur, ring->next, ring->queued);
KASSERTMSG((ring->next >= 0 && ring->next < URTWN_HOST_CMD_RING_COUNT),
"%s: cur=%d next=%d queued=%d",
device_xname(sc->sc_dev), ring->cur, ring->next, ring->queued);
KASSERTMSG((ring->queued >= 0 &&
ring->queued <= URTWN_HOST_CMD_RING_COUNT),
"%s: %d commands queued",
device_xname(sc->sc_dev), ring->queued);
}
static void
urtwn_task(void *arg)
{
struct urtwn_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct urtwn_host_cmd_ring *ring = &sc->cmdq;
struct urtwn_host_cmd *cmd;
int s;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
if (ic->ic_state == IEEE80211_S_RUN &&
(ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_IBSS)) {
struct mbuf *m = ieee80211_beacon_alloc(ic, ic->ic_bss,
&sc->sc_bo);
if (m == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate beacon");
}
if (urtwn_tx_beacon(sc, m, ic->ic_bss) != 0) {
aprint_error_dev(sc->sc_dev, "could not send beacon\n");
}
/* beacon is no longer needed */
m_freem(m);
}
/* Process host commands. */
s = splusb();
mutex_spin_enter(&sc->sc_task_mtx);
urtwn_cmdq_invariants(sc);
while (ring->next != ring->cur) {
KASSERTMSG(ring->queued > 0, "%s: cur=%d next=%d queued=%d",
device_xname(sc->sc_dev),
ring->cur, ring->next, ring->queued);
cmd = &ring->cmd[ring->next];
mutex_spin_exit(&sc->sc_task_mtx);
splx(s);
/* Invoke callback with kernel lock held. */
cmd->cb(sc, cmd->data);
s = splusb();
mutex_spin_enter(&sc->sc_task_mtx);
urtwn_cmdq_invariants(sc);
KASSERTMSG(ring->queued > 0, "%s: cur=%d next=%d queued=%d",
device_xname(sc->sc_dev),
ring->cur, ring->next, ring->queued);
ring->queued--;
ring->next = (ring->next + 1) % URTWN_HOST_CMD_RING_COUNT;
}
cv_broadcast(&sc->sc_task_cv);
mutex_spin_exit(&sc->sc_task_mtx);
splx(s);
}
static void
urtwn_do_async(struct urtwn_softc *sc, void (*cb)(struct urtwn_softc *, void *),
void *arg, int len)
{
struct urtwn_host_cmd_ring *ring = &sc->cmdq;
struct urtwn_host_cmd *cmd;
bool schedtask = false;
int s;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("cb=%#jx, arg=%#jx, len=%jd",
(uintptr_t)cb, (uintptr_t)arg, len, 0);
s = splusb();
mutex_spin_enter(&sc->sc_task_mtx);
urtwn_cmdq_invariants(sc);
cmd = &ring->cmd[ring->cur];
cmd->cb = cb;
KASSERT(len <= sizeof(cmd->data));
memcpy(cmd->data, arg, len);
ring->cur = (ring->cur + 1) % URTWN_HOST_CMD_RING_COUNT;
/*
* Schedule a task to process the command if need be.
*/
if (!sc->sc_dying) {
if (ring->queued == URTWN_HOST_CMD_RING_COUNT)
device_printf(sc->sc_dev, "command queue overflow\n");
else if (ring->queued++ == 0)
schedtask = true;
}
mutex_spin_exit(&sc->sc_task_mtx);
splx(s);
if (schedtask)
usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
}
static void
urtwn_wait_async(struct urtwn_softc *sc)
{
URTWNHIST_FUNC(); URTWNHIST_CALLED();
/* Wait for all queued asynchronous commands to complete. */
mutex_spin_enter(&sc->sc_task_mtx);
while (sc->cmdq.queued > 0)
cv_wait(&sc->sc_task_cv, &sc->sc_task_mtx);
mutex_spin_exit(&sc->sc_task_mtx);
}
static int
urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
int len)
{
usb_device_request_t req;
usbd_status error;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = R92C_REQ_REGS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
error = usbd_do_request(sc->sc_udev, &req, buf);
if (error != USBD_NORMAL_COMPLETION) {
DPRINTFN(DBG_REG, "error=%jd: addr=%#jx, len=%jd",
error, addr, len, 0);
}
return error;
}
static void
urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val)
{
URTWNHIST_FUNC(); URTWNHIST_CALLED();
DPRINTFN(DBG_REG, "addr=%#jx, val=%#jx", addr, val, 0, 0);
urtwn_write_region_1(sc, addr, &val, 1);
}
static void
urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val)
{
uint8_t buf[2];
URTWNHIST_FUNC(); URTWNHIST_CALLED();
DPRINTFN(DBG_REG, "addr=%#jx, val=%#jx", addr, val, 0, 0);
buf[0] = (uint8_t)val;
buf[1] = (uint8_t)(val >> 8);
urtwn_write_region_1(sc, addr, buf, 2);
}
static void
urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val)
{
uint8_t buf[4];
URTWNHIST_FUNC(); URTWNHIST_CALLED();
DPRINTFN(DBG_REG, "addr=%#jx, val=%#jx", addr, val, 0, 0);
buf[0] = (uint8_t)val;
buf[1] = (uint8_t)(val >> 8);
buf[2] = (uint8_t)(val >> 16);
buf[3] = (uint8_t)(val >> 24);
urtwn_write_region_1(sc, addr, buf, 4);
}
static int
urtwn_write_region(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len)
{
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("addr=%#jx, len=%#jx", addr, len, 0, 0);
return urtwn_write_region_1(sc, addr, buf, len);
}
static int
urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
int len)
{
usb_device_request_t req;
usbd_status error;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = R92C_REQ_REGS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
error = usbd_do_request(sc->sc_udev, &req, buf);
if (error != USBD_NORMAL_COMPLETION) {
DPRINTFN(DBG_REG, "error=%jd: addr=%#jx, len=%jd",
error, addr, len, 0);
}
return error;
}
static uint8_t
urtwn_read_1(struct urtwn_softc *sc, uint16_t addr)
{
uint8_t val;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
if (urtwn_read_region_1(sc, addr, &val, 1) != USBD_NORMAL_COMPLETION)
return 0xff;
DPRINTFN(DBG_REG, "addr=%#jx, val=%#jx", addr, val, 0, 0);
return val;
}
static uint16_t
urtwn_read_2(struct urtwn_softc *sc, uint16_t addr)
{
uint8_t buf[2];
uint16_t val;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
if (urtwn_read_region_1(sc, addr, buf, 2) != USBD_NORMAL_COMPLETION)
return 0xffff;
val = LE_READ_2(&buf[0]);
DPRINTFN(DBG_REG, "addr=%#jx, val=%#jx", addr, val, 0, 0);
return val;
}
static uint32_t
urtwn_read_4(struct urtwn_softc *sc, uint16_t addr)
{
uint8_t buf[4];
uint32_t val;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
if (urtwn_read_region_1(sc, addr, buf, 4) != USBD_NORMAL_COMPLETION)
return 0xffffffff;
val = LE_READ_4(&buf[0]);
DPRINTFN(DBG_REG, "addr=%#jx, val=%#jx", addr, val, 0, 0);
return val;
}
static int
urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len)
{
struct r92c_fw_cmd cmd;
uint8_t *cp;
int fwcur;
int ntries;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
DPRINTFN(DBG_REG, "id=%jd, buf=%#jx, len=%jd", id, (uintptr_t)buf, len, 0);
KASSERT(mutex_owned(&sc->sc_write_mtx));
mutex_enter(&sc->sc_fwcmd_mtx);
fwcur = sc->fwcur;
sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX;
/* Wait for current FW box to be empty. */
for (ntries = 0; ntries < 100; ntries++) {
if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << fwcur)))
break;
urtwn_delay_ms(sc, 2);
}
if (ntries == 100) {
aprint_error_dev(sc->sc_dev,
"could not send firmware command %d\n", id);
mutex_exit(&sc->sc_fwcmd_mtx);
return ETIMEDOUT;
}
memset(&cmd, 0, sizeof(cmd));
KASSERT(len <= sizeof(cmd.msg));
memcpy(cmd.msg, buf, len);
/* Write the first word last since that will trigger the FW. */
cp = (uint8_t *)&cmd;
cmd.id = id;
if (len >= 4) {
if (!ISSET(sc->chip, URTWN_CHIP_92EU)) {
cmd.id |= R92C_CMD_FLAG_EXT;
urtwn_write_region(sc, R92C_HMEBOX_EXT(fwcur),
&cp[1], 2);
urtwn_write_4(sc, R92C_HMEBOX(fwcur),
cp[0] + (cp[3] << 8) + (cp[4] << 16) +
((uint32_t)cp[5] << 24));
} else {
urtwn_write_region(sc, R92E_HMEBOX_EXT(fwcur),
&cp[4], 2);
urtwn_write_4(sc, R92C_HMEBOX(fwcur),
cp[0] + (cp[1] << 8) + (cp[2] << 16) +
((uint32_t)cp[3] << 24));
}
} else {
urtwn_write_region(sc, R92C_HMEBOX(fwcur), cp, len);
}
mutex_exit(&sc->sc_fwcmd_mtx);
return 0;
}
static __inline void
urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val)
{
sc->sc_rf_write(sc, chain, addr, val);
}
static void
urtwn_r92c_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr,
uint32_t val)
{
urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val));
}
static void
urtwn_r88e_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr,
uint32_t val)
{
urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
SM(R88E_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val));
}
static void
urtwn_r92e_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr,
uint32_t val)
{
urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
SM(R88E_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val));
}
static uint32_t
urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr)
{
uint32_t reg[R92C_MAX_CHAINS], val;
reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0));
if (chain != 0) {
reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain));
}
urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE);
urtwn_delay_ms(sc, 1);
urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain),
RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) |
R92C_HSSI_PARAM2_READ_EDGE);
urtwn_delay_ms(sc, 1);
urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
reg[0] | R92C_HSSI_PARAM2_READ_EDGE);
urtwn_delay_ms(sc, 1);
if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI) {
val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain));
} else {
val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain));
}
return MS(val, R92C_LSSI_READBACK_DATA);
}
static int
urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data)
{
int ntries;
KASSERT(mutex_owned(&sc->sc_write_mtx));
urtwn_write_4(sc, R92C_LLT_INIT,
SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) |
SM(R92C_LLT_INIT_ADDR, addr) |
SM(R92C_LLT_INIT_DATA, data));
/* Wait for write operation to complete. */
for (ntries = 0; ntries < 20; ntries++) {
if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) ==
R92C_LLT_INIT_OP_NO_ACTIVE) {
/* Done */
return 0;
}
DELAY(5);
}
return ETIMEDOUT;
}
static uint8_t
urtwn_efuse_read_1(struct urtwn_softc *sc, uint16_t addr)
{
uint32_t reg;
int ntries;
KASSERT(mutex_owned(&sc->sc_write_mtx));
reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr);
reg &= ~R92C_EFUSE_CTRL_VALID;
urtwn_write_4(sc, R92C_EFUSE_CTRL, reg);
/* Wait for read operation to complete. */
for (ntries = 0; ntries < 100; ntries++) {
reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
if (reg & R92C_EFUSE_CTRL_VALID) {
/* Done */
return MS(reg, R92C_EFUSE_CTRL_DATA);
}
DELAY(5);
}
aprint_error_dev(sc->sc_dev,
"could not read efuse byte at address 0x%04x\n", addr);
return 0xff;
}
static void
urtwn_efuse_read(struct urtwn_softc *sc)
{
uint8_t *rom = (uint8_t *)&sc->rom;
uint32_t reg;
uint16_t addr = 0;
uint8_t off, msk;
size_t i;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
urtwn_efuse_switch_power(sc);
memset(&sc->rom, 0xff, sizeof(sc->rom));
while (addr < 512) {
reg = urtwn_efuse_read_1(sc, addr);
if (reg == 0xff)
break;
addr++;
off = reg >> 4;
msk = reg & 0xf;
for (i = 0; i < 4; i++) {
if (msk & (1U << i))
continue;
rom[off * 8 + i * 2 + 0] = urtwn_efuse_read_1(sc, addr);
addr++;
rom[off * 8 + i * 2 + 1] = urtwn_efuse_read_1(sc, addr);
addr++;
}
}
#ifdef URTWN_DEBUG
/* Dump ROM content. */
for (i = 0; i < (int)sizeof(sc->rom); i++)
DPRINTFN(DBG_INIT, "%04jx: %02jx", i, rom[i], 0, 0);
#endif
}
static void
urtwn_efuse_switch_power(struct urtwn_softc *sc)
{
uint32_t reg;
reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL);
if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) {
urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
reg | R92C_SYS_ISO_CTRL_PWC_EV12V);
}
reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
if (!(reg & R92C_SYS_FUNC_EN_ELDR)) {
urtwn_write_2(sc, R92C_SYS_FUNC_EN,
reg | R92C_SYS_FUNC_EN_ELDR);
}
reg = urtwn_read_2(sc, R92C_SYS_CLKR);
if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) !=
(R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) {
urtwn_write_2(sc, R92C_SYS_CLKR,
reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M);
}
}
static int
urtwn_read_chipid(struct urtwn_softc *sc)
{
uint32_t reg;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
if (ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU))
return 0;
reg = urtwn_read_4(sc, R92C_SYS_CFG);
if (reg & R92C_SYS_CFG_TRP_VAUX_EN) {
/* test chip, not supported */
return EIO;
}
if (reg & R92C_SYS_CFG_TYPE_92C) {
sc->chip |= URTWN_CHIP_92C;
/* Check if it is a castrated 8192C. */
if (MS(urtwn_read_4(sc, R92C_HPON_FSM),
R92C_HPON_FSM_CHIP_BONDING_ID) ==
R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R) {
sc->chip |= URTWN_CHIP_92C_1T2R;
}
}
if (reg & R92C_SYS_CFG_VENDOR_UMC) {
sc->chip |= URTWN_CHIP_UMC;
if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0) {
sc->chip |= URTWN_CHIP_UMC_A_CUT;
}
}
return 0;
}
#ifdef URTWN_DEBUG
static void
urtwn_dump_rom(struct urtwn_softc *sc, struct r92c_rom *rp)
{
aprint_normal_dev(sc->sc_dev,
"id 0x%04x, dbg_sel %#x, vid %#x, pid %#x\n",
rp->id, rp->dbg_sel, rp->vid, rp->pid);
aprint_normal_dev(sc->sc_dev,
"usb_opt %#x, ep_setting %#x, usb_phy %#x\n",
rp->usb_opt, rp->ep_setting, rp->usb_phy);
aprint_normal_dev(sc->sc_dev,
"macaddr %s\n",
ether_sprintf(rp->macaddr));
aprint_normal_dev(sc->sc_dev,
"string %s, subcustomer_id %#x\n",
rp->string, rp->subcustomer_id);
aprint_normal_dev(sc->sc_dev,
"cck_tx_pwr c0: %d %d %d, c1: %d %d %d\n",
rp->cck_tx_pwr[0][0], rp->cck_tx_pwr[0][1], rp->cck_tx_pwr[0][2],
rp->cck_tx_pwr[1][0], rp->cck_tx_pwr[1][1], rp->cck_tx_pwr[1][2]);
aprint_normal_dev(sc->sc_dev,
"ht40_1s_tx_pwr c0 %d %d %d, c1 %d %d %d\n",
rp->ht40_1s_tx_pwr[0][0], rp->ht40_1s_tx_pwr[0][1],
rp->ht40_1s_tx_pwr[0][2],
rp->ht40_1s_tx_pwr[1][0], rp->ht40_1s_tx_pwr[1][1],
rp->ht40_1s_tx_pwr[1][2]);
aprint_normal_dev(sc->sc_dev,
"ht40_2s_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
rp->ht40_2s_tx_pwr_diff[0] & 0xf, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
rp->ht40_2s_tx_pwr_diff[2] & 0xf,
rp->ht40_2s_tx_pwr_diff[0] >> 4, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
rp->ht40_2s_tx_pwr_diff[2] >> 4);
aprint_normal_dev(sc->sc_dev,
"ht20_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
rp->ht20_tx_pwr_diff[0] & 0xf, rp->ht20_tx_pwr_diff[1] & 0xf,
rp->ht20_tx_pwr_diff[2] & 0xf,
rp->ht20_tx_pwr_diff[0] >> 4, rp->ht20_tx_pwr_diff[1] >> 4,
rp->ht20_tx_pwr_diff[2] >> 4);
aprint_normal_dev(sc->sc_dev,
"ofdm_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
rp->ofdm_tx_pwr_diff[0] & 0xf, rp->ofdm_tx_pwr_diff[1] & 0xf,
rp->ofdm_tx_pwr_diff[2] & 0xf,
rp->ofdm_tx_pwr_diff[0] >> 4, rp->ofdm_tx_pwr_diff[1] >> 4,
rp->ofdm_tx_pwr_diff[2] >> 4);
aprint_normal_dev(sc->sc_dev,
"ht40_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
rp->ht40_max_pwr[0] & 0xf, rp->ht40_max_pwr[1] & 0xf,
rp->ht40_max_pwr[2] & 0xf,
rp->ht40_max_pwr[0] >> 4, rp->ht40_max_pwr[1] >> 4,
rp->ht40_max_pwr[2] >> 4);
aprint_normal_dev(sc->sc_dev,
"ht20_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
rp->ht20_max_pwr[0] & 0xf, rp->ht20_max_pwr[1] & 0xf,
rp->ht20_max_pwr[2] & 0xf,
rp->ht20_max_pwr[0] >> 4, rp->ht20_max_pwr[1] >> 4,
rp->ht20_max_pwr[2] >> 4);
aprint_normal_dev(sc->sc_dev,
"xtal_calib %d, tssi %d %d, thermal %d\n",
rp->xtal_calib, rp->tssi[0], rp->tssi[1], rp->thermal_meter);
aprint_normal_dev(sc->sc_dev,
"rf_opt1 %#x, rf_opt2 %#x, rf_opt3 %#x, rf_opt4 %#x\n",
rp->rf_opt1, rp->rf_opt2, rp->rf_opt3, rp->rf_opt4);
aprint_normal_dev(sc->sc_dev,
"channnel_plan %d, version %d customer_id %#x\n",
rp->channel_plan, rp->version, rp->curstomer_id);
}
#endif
static void
urtwn_read_rom(struct urtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct r92c_rom *rom = &sc->rom;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
mutex_enter(&sc->sc_write_mtx);
/* Read full ROM image. */
urtwn_efuse_read(sc);
#ifdef URTWN_DEBUG
if (urtwn_debug & DBG_REG)
urtwn_dump_rom(sc, rom);
#endif
/* XXX Weird but this is what the vendor driver does. */
sc->pa_setting = urtwn_efuse_read_1(sc, 0x1fa);
sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE);
sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY);
DPRINTFN(DBG_INIT,
"PA setting=%#jx, board=%#jx, regulatory=%jd",
sc->pa_setting, sc->board_type, sc->regulatory, 0);
IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr);
sc->sc_rf_write = urtwn_r92c_rf_write;
sc->sc_power_on = urtwn_r92c_power_on;
sc->sc_dma_init = urtwn_r92c_dma_init;
mutex_exit(&sc->sc_write_mtx);
}
static void
urtwn_r88e_read_rom(struct urtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t *rom = sc->r88e_rom;
uint32_t reg;
uint16_t addr = 0;
uint8_t off, msk, tmp;
int i;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
mutex_enter(&sc->sc_write_mtx);
off = 0;
urtwn_efuse_switch_power(sc);
/* Read full ROM image. */
memset(&sc->r88e_rom, 0xff, sizeof(sc->r88e_rom));
while (addr < 4096) {
reg = urtwn_efuse_read_1(sc, addr);
if (reg == 0xff)
break;
addr++;
if ((reg & 0x1f) == 0x0f) {
tmp = (reg & 0xe0) >> 5;
reg = urtwn_efuse_read_1(sc, addr);
if ((reg & 0x0f) != 0x0f)
off = ((reg & 0xf0) >> 1) | tmp;
addr++;
} else
off = reg >> 4;
msk = reg & 0xf;
for (i = 0; i < 4; i++) {
if (msk & (1 << i))
continue;
rom[off * 8 + i * 2 + 0] = urtwn_efuse_read_1(sc, addr);
addr++;
rom[off * 8 + i * 2 + 1] = urtwn_efuse_read_1(sc, addr);
addr++;
}
}
#ifdef URTWN_DEBUG
if (urtwn_debug & DBG_REG) {
}
#endif
addr = 0x10;
for (i = 0; i < 6; i++)
sc->cck_tx_pwr[i] = sc->r88e_rom[addr++];
for (i = 0; i < 5; i++)
sc->ht40_tx_pwr[i] = sc->r88e_rom[addr++];
sc->bw20_tx_pwr_diff = (sc->r88e_rom[addr] & 0xf0) >> 4;
if (sc->bw20_tx_pwr_diff & 0x08)
sc->bw20_tx_pwr_diff |= 0xf0;
sc->ofdm_tx_pwr_diff = (sc->r88e_rom[addr] & 0xf);
if (sc->ofdm_tx_pwr_diff & 0x08)
sc->ofdm_tx_pwr_diff |= 0xf0;
sc->regulatory = MS(sc->r88e_rom[0xc1], R92C_ROM_RF1_REGULATORY);
IEEE80211_ADDR_COPY(ic->ic_myaddr, &sc->r88e_rom[0xd7]);
if (ISSET(sc->chip, URTWN_CHIP_92EU)) {
sc->sc_power_on = urtwn_r92e_power_on;
sc->sc_rf_write = urtwn_r92e_rf_write;
} else {
sc->sc_power_on = urtwn_r88e_power_on;
sc->sc_rf_write = urtwn_r88e_rf_write;
}
sc->sc_dma_init = urtwn_r88e_dma_init;
mutex_exit(&sc->sc_write_mtx);
}
static int
urtwn_media_change(struct ifnet *ifp)
{
int error;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
if ((error = ieee80211_media_change(ifp)) != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
urtwn_init(ifp);
}
return 0;
}
/*
* Initialize rate adaptation in firmware.
*/
static int __noinline
urtwn_ra_init(struct urtwn_softc *sc)
{
static const uint8_t map[] = {
2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108
};
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct ieee80211_rateset *rs = &ni->ni_rates;
struct r92c_fw_cmd_macid_cfg cmd;
uint32_t rates, basicrates;
uint32_t rrsr_mask, rrsr_rate;
uint8_t mode;
size_t maxrate, maxbasicrate, i, j;
int error;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Get normal and basic rates mask. */
rates = basicrates = 1;
maxrate = maxbasicrate = 0;
for (i = 0; i < rs->rs_nrates; i++) {
/* Convert 802.11 rate to HW rate index. */
for (j = 0; j < __arraycount(map); j++) {
if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j]) {
break;
}
}
if (j == __arraycount(map)) {
/* Unknown rate, skip. */
continue;
}
rates |= 1U << j;
if (j > maxrate) {
maxrate = j;
}
if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) {
basicrates |= 1U << j;
if (j > maxbasicrate) {
maxbasicrate = j;
}
}
}
if (ic->ic_curmode == IEEE80211_MODE_11B) {
mode = R92C_RAID_11B;
} else {
mode = R92C_RAID_11BG;
}
DPRINTFN(DBG_INIT, "mode=%#jx", mode, 0, 0, 0);
DPRINTFN(DBG_INIT, "rates=%#jx, basicrates=%#jx, "
"maxrate=%jx, maxbasicrate=%jx",
rates, basicrates, maxrate, maxbasicrate);
if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) {
maxbasicrate |= R92C_RATE_SHORTGI;
maxrate |= R92C_RATE_SHORTGI;
}
/* Set rates mask for group addressed frames. */
cmd.macid = RTWN_MACID_BC | RTWN_MACID_VALID;
if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)
cmd.macid |= RTWN_MACID_SHORTGI;
cmd.mask = htole32((mode << 28) | basicrates);
error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not add broadcast station\n");
return error;
}
/* Set initial MRR rate. */
DPRINTFN(DBG_INIT, "maxbasicrate=%jd", maxbasicrate, 0, 0, 0);
urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(RTWN_MACID_BC), maxbasicrate);
/* Set rates mask for unicast frames. */
cmd.macid = RTWN_MACID_BSS | RTWN_MACID_VALID;
if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)
cmd.macid |= RTWN_MACID_SHORTGI;
cmd.mask = htole32((mode << 28) | rates);
error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not add BSS station\n");
return error;
}
/* Set initial MRR rate. */
DPRINTFN(DBG_INIT, "maxrate=%jd", maxrate, 0, 0, 0);
urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(RTWN_MACID_BSS), maxrate);
rrsr_rate = ic->ic_fixed_rate;
if (rrsr_rate == -1)
rrsr_rate = 11;
rrsr_mask = 0xffff >> (15 - rrsr_rate);
urtwn_write_2(sc, R92C_RRSR, rrsr_mask);
/* Indicate highest supported rate. */
ni->ni_txrate = rs->rs_nrates - 1;
return 0;
}
static int
urtwn_get_nettype(struct urtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int type;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
type = R92C_CR_NETTYPE_INFRA;
break;
case IEEE80211_M_IBSS:
type = R92C_CR_NETTYPE_ADHOC;
break;
default:
type = R92C_CR_NETTYPE_NOLINK;
break;
}
return type;
}
static void
urtwn_set_nettype0_msr(struct urtwn_softc *sc, uint8_t type)
{
uint8_t reg;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("type=%jd", type, 0, 0, 0);
KASSERT(mutex_owned(&sc->sc_write_mtx));
reg = urtwn_read_1(sc, R92C_CR + 2) & 0x0c;
urtwn_write_1(sc, R92C_CR + 2, reg | type);
}
static void
urtwn_tsf_sync_enable(struct urtwn_softc *sc)
{
struct ieee80211_node *ni = sc->sc_ic.ic_bss;
uint64_t tsf;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Enable TSF synchronization. */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0);
/* Correct TSF */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN);
/* Set initial TSF. */
tsf = ni->ni_tstamp.tsf;
tsf = le64toh(tsf);
tsf = tsf - (tsf % (ni->ni_intval * IEEE80211_DUR_TU));
tsf -= IEEE80211_DUR_TU;
urtwn_write_4(sc, R92C_TSFTR + 0, (uint32_t)tsf);
urtwn_write_4(sc, R92C_TSFTR + 4, (uint32_t)(tsf >> 32));
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN);
}
static void
urtwn_set_led(struct urtwn_softc *sc, int led, int on)
{
uint8_t reg;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("led=%jd, on=%jd", led, on, 0, 0);
KASSERT(mutex_owned(&sc->sc_write_mtx));
if (led == URTWN_LED_LINK) {
if (ISSET(sc->chip, URTWN_CHIP_92EU)) {
urtwn_write_1(sc, 0x64, urtwn_read_1(sc, 0x64) & 0xfe);
reg = urtwn_read_1(sc, R92C_LEDCFG1) & R92E_LEDSON;
urtwn_write_1(sc, R92C_LEDCFG1, reg |
(R92C_LEDCFG0_DIS << 1));
if (on) {
reg = urtwn_read_1(sc, R92C_LEDCFG1) &
R92E_LEDSON;
urtwn_write_1(sc, R92C_LEDCFG1, reg);
}
} else if (ISSET(sc->chip, URTWN_CHIP_88E)) {
reg = urtwn_read_1(sc, R92C_LEDCFG2) & 0xf0;
urtwn_write_1(sc, R92C_LEDCFG2, reg | 0x60);
if (!on) {
reg = urtwn_read_1(sc, R92C_LEDCFG2) & 0x90;
urtwn_write_1(sc, R92C_LEDCFG2,
reg | R92C_LEDCFG0_DIS);
reg = urtwn_read_1(sc, R92C_MAC_PINMUX_CFG);
urtwn_write_1(sc, R92C_MAC_PINMUX_CFG,
reg & 0xfe);
}
} else {
reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70;
if (!on) {
reg |= R92C_LEDCFG0_DIS;
}
urtwn_write_1(sc, R92C_LEDCFG0, reg);
}
sc->ledlink = on; /* Save LED state. */
}
}
static void
urtwn_calib_to(void *arg)
{
struct urtwn_softc *sc = arg;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
if (sc->sc_dying)
return;
/* Do it in a process context. */
urtwn_do_async(sc, urtwn_calib_to_cb, NULL, 0);
}
/* ARGSUSED */
static void
urtwn_calib_to_cb(struct urtwn_softc *sc, void *arg)
{
struct r92c_fw_cmd_rssi cmd;
struct r92e_fw_cmd_rssi cmde;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
if (sc->sc_ic.ic_state != IEEE80211_S_RUN)
goto restart_timer;
mutex_enter(&sc->sc_write_mtx);
if (sc->avg_pwdb != -1) {
/* Indicate Rx signal strength to FW for rate adaptation. */
memset(&cmd, 0, sizeof(cmd));
memset(&cmde, 0, sizeof(cmde));
cmd.macid = 0; /* BSS. */
cmde.macid = 0; /* BSS. */
cmd.pwdb = sc->avg_pwdb;
cmde.pwdb = sc->avg_pwdb;
DPRINTFN(DBG_RF, "sending RSSI command avg=%jd",
sc->avg_pwdb, 0, 0, 0);
if (!ISSET(sc->chip, URTWN_CHIP_92EU)) {
urtwn_fw_cmd(sc, R92C_CMD_RSSI_SETTING, &cmd,
sizeof(cmd));
} else {
urtwn_fw_cmd(sc, R92E_CMD_RSSI_REPORT, &cmde,
sizeof(cmde));
}
}
/* Do temperature compensation. */
urtwn_temp_calib(sc);
mutex_exit(&sc->sc_write_mtx);
restart_timer:
if (!sc->sc_dying) {
/* Restart calibration timer. */
callout_schedule(&sc->sc_calib_to, hz);
}
}
static void
urtwn_next_scan(void *arg)
{
struct urtwn_softc *sc = arg;
int s;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
if (sc->sc_dying)
return;
s = splnet();
if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(&sc->sc_ic);
splx(s);
}
static void
urtwn_newassoc(struct ieee80211_node *ni, int isnew)
{
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("new node %06jx%06jx",
ni->ni_macaddr[0] << 2 |
ni->ni_macaddr[1] << 1 |
ni->ni_macaddr[2],
ni->ni_macaddr[3] << 2 |
ni->ni_macaddr[4] << 1 |
ni->ni_macaddr[5],
0, 0);
/* start with lowest Tx rate */
ni->ni_txrate = 0;
}
static int
urtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct urtwn_softc *sc = ic->ic_ifp->if_softc;
struct urtwn_cmd_newstate cmd;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("nstate=%jd, arg=%jd", nstate, arg, 0, 0);
callout_stop(&sc->sc_scan_to);
callout_stop(&sc->sc_calib_to);
/* Do it in a process context. */
cmd.state = nstate;
cmd.arg = arg;
urtwn_do_async(sc, urtwn_newstate_cb, &cmd, sizeof(cmd));
return 0;
}
static void
urtwn_newstate_cb(struct urtwn_softc *sc, void *arg)
{
struct urtwn_cmd_newstate *cmd = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
enum ieee80211_state ostate = ic->ic_state;
enum ieee80211_state nstate = cmd->state;
uint32_t reg;
uint8_t sifs_time, msr;
int s;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
DPRINTFN(DBG_STM, "%jd->%jd", ostate, nstate, 0, 0);
s = splnet();
mutex_enter(&sc->sc_write_mtx);
callout_stop(&sc->sc_scan_to);
callout_stop(&sc->sc_calib_to);
switch (ostate) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_SCAN:
if (nstate != IEEE80211_S_SCAN) {
/*
* End of scanning
*/
/* flush 4-AC Queue after site_survey */
urtwn_write_1(sc, R92C_TXPAUSE, 0x0);
/* Allow Rx from our BSSID only. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) |
R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
}
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_RUN:
/* Turn link LED off. */
urtwn_set_led(sc, URTWN_LED_LINK, 0);
/* Set media status to 'No Link'. */
urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
/* Stop Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
/* Reset TSF. */
urtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03);
/* Disable TSF synchronization. */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) |
R92C_BCN_CTRL_DIS_TSF_UDT0);
/* Back to 20MHz mode */
urtwn_set_chan(sc, ic->ic_curchan,
IEEE80211_HTINFO_2NDCHAN_NONE);
if (ic->ic_opmode == IEEE80211_M_IBSS ||
ic->ic_opmode == IEEE80211_M_HOSTAP) {
/* Stop BCN */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) &
~(R92C_BCN_CTRL_EN_BCN | R92C_BCN_CTRL_TXBCN_RPT));
}
/* Reset EDCA parameters. */
urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217);
urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317);
urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320);
urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444);
/* flush all cam entries */
urtwn_cam_init(sc);
break;
}
switch (nstate) {
case IEEE80211_S_INIT:
/* Turn link LED off. */
urtwn_set_led(sc, URTWN_LED_LINK, 0);
break;
case IEEE80211_S_SCAN:
if (ostate != IEEE80211_S_SCAN) {
/*
* Begin of scanning
*/
/* Set gain for scanning. */
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
if (!ISSET(sc->chip, URTWN_CHIP_88E)) {
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
}
/* Set media status to 'No Link'. */
urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
/* Allow Rx from any BSSID. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
/* Stop Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
/* Disable update TSF */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) |
R92C_BCN_CTRL_DIS_TSF_UDT0);
}
/* Make link LED blink during scan. */
urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink);
/* Pause AC Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE,
urtwn_read_1(sc, R92C_TXPAUSE) | 0x0f);
urtwn_set_chan(sc, ic->ic_curchan,
IEEE80211_HTINFO_2NDCHAN_NONE);
/* Start periodic scan. */
if (!sc->sc_dying)
callout_schedule(&sc->sc_scan_to, hz / 5);
break;
case IEEE80211_S_AUTH:
/* Set initial gain under link. */
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
if (!ISSET(sc->chip, URTWN_CHIP_88E)) {
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
}
/* Set media status to 'No Link'. */
urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
/* Allow Rx from any BSSID. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
urtwn_set_chan(sc, ic->ic_curchan,
IEEE80211_HTINFO_2NDCHAN_NONE);
break;
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_RUN:
ni = ic->ic_bss;
/* XXX: Set 20MHz mode */
urtwn_set_chan(sc, ic->ic_curchan,
IEEE80211_HTINFO_2NDCHAN_NONE);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* Back to 20MHz mode */
urtwn_set_chan(sc, ic->ic_curchan,
IEEE80211_HTINFO_2NDCHAN_NONE);
/* Set media status to 'No Link'. */
urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
/* Enable Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
/* Allow Rx from any BSSID. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
/* Accept Rx data/control/management frames */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) |
R92C_RCR_ADF | R92C_RCR_ACF | R92C_RCR_AMF);
/* Turn link LED on. */
urtwn_set_led(sc, URTWN_LED_LINK, 1);
break;
}
/* Set media status to 'Associated'. */
urtwn_set_nettype0_msr(sc, urtwn_get_nettype(sc));
/* Set BSSID. */
urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0]));
urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4]));
if (ic->ic_curmode == IEEE80211_MODE_11B) {
urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0);
} else {
/* 802.11b/g */
urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3);
}
/* Enable Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
/* Set beacon interval. */
urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval);
msr = urtwn_read_1(sc, R92C_MSR);
msr &= R92C_MSR_MASK;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
/* Allow Rx from our BSSID only. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) |
R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
/* Enable TSF synchronization. */
urtwn_tsf_sync_enable(sc);
msr |= R92C_MSR_INFRA;
break;
case IEEE80211_M_HOSTAP:
urtwn_write_2(sc, R92C_BCNTCFG, 0x000f);
/* Allow Rx from any BSSID. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
/* Reset TSF timer to zero. */
reg = urtwn_read_4(sc, R92C_TCR);
reg &= ~0x01;
urtwn_write_4(sc, R92C_TCR, reg);
reg |= 0x01;
urtwn_write_4(sc, R92C_TCR, reg);
msr |= R92C_MSR_AP;
break;
default:
msr |= R92C_MSR_ADHOC;
break;
}
urtwn_write_1(sc, R92C_MSR, msr);
sifs_time = 10;
urtwn_write_1(sc, R92C_SIFS_CCK + 1, sifs_time);
urtwn_write_1(sc, R92C_SIFS_OFDM + 1, sifs_time);
urtwn_write_1(sc, R92C_SPEC_SIFS + 1, sifs_time);
urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, sifs_time);
urtwn_write_1(sc, R92C_R2T_SIFS + 1, sifs_time);
urtwn_write_1(sc, R92C_T2T_SIFS + 1, sifs_time);
/* Initialize rate adaptation. */
if (ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU))
ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
else
urtwn_ra_init(sc);
/* Turn link LED on. */
urtwn_set_led(sc, URTWN_LED_LINK, 1);
/* Reset average RSSI. */
sc->avg_pwdb = -1;
/* Reset temperature calibration state machine. */
sc->thcal_state = 0;
sc->thcal_lctemp = 0;
/* Start periodic calibration. */
if (!sc->sc_dying)
callout_schedule(&sc->sc_calib_to, hz);
break;
}
(*sc->sc_newstate)(ic, nstate, cmd->arg);
mutex_exit(&sc->sc_write_mtx);
splx(s);
}
static int
urtwn_wme_update(struct ieee80211com *ic)
{
struct urtwn_softc *sc = ic->ic_ifp->if_softc;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
/* don't override default WME values if WME is not actually enabled */
if (!(ic->ic_flags & IEEE80211_F_WME))
return 0;
/* Do it in a process context. */
urtwn_do_async(sc, urtwn_wme_update_cb, NULL, 0);
return 0;
}
static void
urtwn_wme_update_cb(struct urtwn_softc *sc, void *arg)
{
static const uint16_t ac2reg[WME_NUM_AC] = {
R92C_EDCA_BE_PARAM,
R92C_EDCA_BK_PARAM,
R92C_EDCA_VI_PARAM,
R92C_EDCA_VO_PARAM
};
struct ieee80211com *ic = &sc->sc_ic;
const struct wmeParams *wmep;
int ac, aifs, slottime;
int s;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
DPRINTFN(DBG_STM, "called", 0, 0, 0, 0);
s = splnet();
mutex_enter(&sc->sc_write_mtx);
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
for (ac = 0; ac < WME_NUM_AC; ac++) {
wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
/* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */
aifs = wmep->wmep_aifsn * slottime + 10;
urtwn_write_4(sc, ac2reg[ac],
SM(R92C_EDCA_PARAM_TXOP, wmep->wmep_txopLimit) |
SM(R92C_EDCA_PARAM_ECWMIN, wmep->wmep_logcwmin) |
SM(R92C_EDCA_PARAM_ECWMAX, wmep->wmep_logcwmax) |
SM(R92C_EDCA_PARAM_AIFS, aifs));
}
mutex_exit(&sc->sc_write_mtx);
splx(s);
}
static void
urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi)
{
int pwdb;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("rate=%jd, rsst=%jd", rate, rssi, 0, 0);
/* Convert antenna signal to percentage. */
if (rssi <= -100 || rssi >= 20)
pwdb = 0;
else if (rssi >= 0)
pwdb = 100;
else
pwdb = 100 + rssi;
if (!ISSET(sc->chip, URTWN_CHIP_88E)) {
if (rate <= 3) {
/* CCK gain is smaller than OFDM/MCS gain. */
pwdb += 6;
if (pwdb > 100)
pwdb = 100;
if (pwdb <= 14)
pwdb -= 4;
else if (pwdb <= 26)
pwdb -= 8;
else if (pwdb <= 34)
pwdb -= 6;
else if (pwdb <= 42)
pwdb -= 2;
}
}
if (sc->avg_pwdb == -1) /* Init. */
sc->avg_pwdb = pwdb;
else if (sc->avg_pwdb < pwdb)
sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1;
else
sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20);
DPRINTFN(DBG_RF, "rate=%jd rssi=%jd PWDB=%jd EMA=%jd",
rate, rssi, pwdb, sc->avg_pwdb);
}
static int8_t
urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
{
static const int8_t cckoff[] = { 16, -12, -26, -46 };
struct r92c_rx_phystat *phy;
struct r92c_rx_cck *cck;
uint8_t rpt;
int8_t rssi;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("rate=%jd", rate, 0, 0, 0);
if (rate <= 3) {
cck = (struct r92c_rx_cck *)physt;
if (ISSET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR)) {
rpt = (cck->agc_rpt >> 5) & 0x3;
rssi = (cck->agc_rpt & 0x1f) << 1;
} else {
rpt = (cck->agc_rpt >> 6) & 0x3;
rssi = cck->agc_rpt & 0x3e;
}
rssi = cckoff[rpt] - rssi;
} else { /* OFDM/HT. */
phy = (struct r92c_rx_phystat *)physt;
rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
}
return rssi;
}
static int8_t
urtwn_r88e_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
{
struct r92c_rx_phystat *phy;
struct r88e_rx_cck *cck;
uint8_t cck_agc_rpt, lna_idx, vga_idx;
int8_t rssi;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("rate=%jd", rate, 0, 0, 0);
rssi = 0;
if (rate <= 3) {
cck = (struct r88e_rx_cck *)physt;
cck_agc_rpt = cck->agc_rpt;
lna_idx = (cck_agc_rpt & 0xe0) >> 5;
vga_idx = cck_agc_rpt & 0x1f;
switch (lna_idx) {
case 7:
if (vga_idx <= 27)
rssi = -100 + 2* (27 - vga_idx);
else
rssi = -100;
break;
case 6:
rssi = -48 + 2 * (2 - vga_idx);
break;
case 5:
rssi = -42 + 2 * (7 - vga_idx);
break;
case 4:
rssi = -36 + 2 * (7 - vga_idx);
break;
case 3:
rssi = -24 + 2 * (7 - vga_idx);
break;
case 2:
rssi = -12 + 2 * (5 - vga_idx);
break;
case 1:
rssi = 8 - (2 * vga_idx);
break;
case 0:
rssi = 14 - (2 * vga_idx);
break;
}
rssi += 6;
} else { /* OFDM/HT. */
phy = (struct r92c_rx_phystat *)physt;
rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
}
return rssi;
}
static void
urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct r92c_rx_desc_usb *stat;
uint32_t rxdw0, rxdw3;
struct mbuf *m;
uint8_t rate;
int8_t rssi = 0;
int s, infosz;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("buf=%jp, pktlen=%#jd", (uintptr_t)buf, pktlen, 0, 0);
stat = (struct r92c_rx_desc_usb *)buf;
rxdw0 = le32toh(stat->rxdw0);
rxdw3 = le32toh(stat->rxdw3);
if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) {
/*
* This should not happen since we setup our Rx filter
* to not receive these frames.
*/
DPRINTFN(DBG_RX, "CRC error", 0, 0, 0, 0);
if_statinc(ifp, if_ierrors);
return;
}
/*
* XXX: This will drop most control packets. Do we really
* want this in IEEE80211_M_MONITOR mode?
*/
// if (__predict_false(pktlen < (int)sizeof(*wh))) {
if (__predict_false(pktlen < (int)sizeof(struct ieee80211_frame_ack))) {
DPRINTFN(DBG_RX, "packet too short %jd", pktlen, 0, 0, 0);
ic->ic_stats.is_rx_tooshort++;
if_statinc(ifp, if_ierrors);
return;
}
if (__predict_false(pktlen > MCLBYTES)) {
DPRINTFN(DBG_RX, "packet too big %jd", pktlen, 0, 0, 0);
if_statinc(ifp, if_ierrors);
return;
}
rate = MS(rxdw3, R92C_RXDW3_RATE);
infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
/* Get RSSI from PHY status descriptor if present. */
if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) {
if (!ISSET(sc->chip, URTWN_CHIP_92C))
rssi = urtwn_r88e_get_rssi(sc, rate, &stat[1]);
else
rssi = urtwn_get_rssi(sc, rate, &stat[1]);
/* Update our average RSSI. */
urtwn_update_avgrssi(sc, rate, rssi);
}
DPRINTFN(DBG_RX, "Rx frame len=%jd rate=%jd infosz=%jd rssi=%jd",
pktlen, rate, infosz, rssi);
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (__predict_false(m == NULL)) {
aprint_error_dev(sc->sc_dev, "couldn't allocate rx mbuf\n");
ic->ic_stats.is_rx_nobuf++;
if_statinc(ifp, if_ierrors);
return;
}
if (pktlen > (int)MHLEN) {
MCLGET(m, M_DONTWAIT);
if (__predict_false(!(m->m_flags & M_EXT))) {
aprint_error_dev(sc->sc_dev,
"couldn't allocate rx mbuf cluster\n");
m_freem(m);
ic->ic_stats.is_rx_nobuf++;
if_statinc(ifp, if_ierrors);
return;
}
}
/* Finalize mbuf. */
m_set_rcvif(m, ifp);
wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz);
memcpy(mtod(m, uint8_t *), wh, pktlen);
m->m_pkthdr.len = m->m_len = pktlen;
s = splnet();
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
if (!(rxdw3 & R92C_RXDW3_HT)) {
switch (rate) {
/* CCK. */
case 0: tap->wr_rate = 2; break;
case 1: tap->wr_rate = 4; break;
case 2: tap->wr_rate = 11; break;
case 3: tap->wr_rate = 22; break;
/* OFDM. */
case 4: tap->wr_rate = 12; break;
case 5: tap->wr_rate = 18; break;
case 6: tap->wr_rate = 24; break;
case 7: tap->wr_rate = 36; break;
case 8: tap->wr_rate = 48; break;
case 9: tap->wr_rate = 72; break;
case 10: tap->wr_rate = 96; break;
case 11: tap->wr_rate = 108; break;
}
} else if (rate >= 12) { /* MCS0~15. */
/* Bit 7 set means HT MCS instead of rate. */
tap->wr_rate = 0x80 | (rate - 12);
}
tap->wr_dbm_antsignal = rssi;
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
}
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* push the frame up to the 802.11 stack */
ieee80211_input(ic, m, ni, rssi, 0);
/* Node is no longer needed. */
ieee80211_free_node(ni);
splx(s);
}
static void
urtwn_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct urtwn_rx_data *data = priv;
struct urtwn_softc *sc = data->sc;
struct r92c_rx_desc_usb *stat;
size_t pidx = data->pidx;
uint32_t rxdw0;
uint8_t *buf;
int len, totlen, pktlen, infosz, npkts;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
DPRINTFN(DBG_RX, "status=%jd", status, 0, 0, 0);
mutex_enter(&sc->sc_rx_mtx);
TAILQ_REMOVE(&sc->rx_free_list[pidx], data, next);
TAILQ_INSERT_TAIL(&sc->rx_free_list[pidx], data, next);
/* Put this Rx buffer back to our free list. */
mutex_exit(&sc->sc_rx_mtx);
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->rx_pipe[pidx]);
else if (status != USBD_CANCELLED)
goto resubmit;
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
if (__predict_false(len < (int)sizeof(*stat))) {
DPRINTFN(DBG_RX, "xfer too short %jd", len, 0, 0, 0);
goto resubmit;
}
buf = data->buf;
/* Get the number of encapsulated frames. */
stat = (struct r92c_rx_desc_usb *)buf;
if (ISSET(sc->chip, URTWN_CHIP_92EU))
npkts = MS(le32toh(stat->rxdw2), R92E_RXDW2_PKTCNT);
else
npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT);
DPRINTFN(DBG_RX, "Rx %jd frames in one chunk", npkts, 0, 0, 0);
if (npkts != 0)
rnd_add_uint32(&sc->rnd_source, npkts);
/* Process all of them. */
while (npkts-- > 0) {
if (__predict_false(len < (int)sizeof(*stat))) {
DPRINTFN(DBG_RX, "len(%jd) is short than header",
len, 0, 0, 0);
break;
}
stat = (struct r92c_rx_desc_usb *)buf;
rxdw0 = le32toh(stat->rxdw0);
pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
if (__predict_false(pktlen == 0)) {
DPRINTFN(DBG_RX, "pktlen is 0 byte", 0, 0, 0, 0);
break;
}
infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
/* Make sure everything fits in xfer. */
totlen = sizeof(*stat) + infosz + pktlen;
if (__predict_false(totlen > len)) {
DPRINTFN(DBG_RX, "pktlen (%jd+%jd+%jd) > %jd",
(int)sizeof(*stat), infosz, pktlen, len);
break;
}
/* Process 802.11 frame. */
urtwn_rx_frame(sc, buf, pktlen);
/* Next chunk is 128-byte aligned. */
totlen = roundup2(totlen, 128);
buf += totlen;
len -= totlen;
}
resubmit:
/* Setup a new transfer. */
usbd_setup_xfer(xfer, data, data->buf, URTWN_RXBUFSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, urtwn_rxeof);
(void)usbd_transfer(xfer);
}
static void
urtwn_put_tx_data(struct urtwn_softc *sc, struct urtwn_tx_data *data)
{
size_t pidx = data->pidx;
mutex_enter(&sc->sc_tx_mtx);
/* Put this Tx buffer back to our free list. */
TAILQ_INSERT_TAIL(&sc->tx_free_list[pidx], data, next);
mutex_exit(&sc->sc_tx_mtx);
}
static void
urtwn_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct urtwn_tx_data *data = priv;
struct urtwn_softc *sc = data->sc;
struct ifnet *ifp = &sc->sc_if;
size_t pidx = data->pidx;
int s;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
DPRINTFN(DBG_TX, "status=%jd", status, 0, 0, 0);
urtwn_put_tx_data(sc, data);
s = splnet();
sc->tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
if (status != USBD_NOT_STARTED && status != USBD_CANCELLED) {
if (status == USBD_STALLED) {
struct usbd_pipe *pipe = sc->tx_pipe[pidx];
usbd_clear_endpoint_stall_async(pipe);
}
device_printf(sc->sc_dev, "transmit failed, %s\n",
usbd_errstr(status));
if_statinc(ifp, if_oerrors);
}
splx(s);
return;
}
if_statinc(ifp, if_opackets);
urtwn_start(ifp);
splx(s);
}
static int
urtwn_tx(struct urtwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
struct urtwn_tx_data *data)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
struct r92c_tx_desc_usb *txd;
size_t i, padsize, xferlen, txd_len;
uint16_t seq, sum;
uint8_t raid, type, tid;
int s, hasqos, error;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
wh = mtod(m, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
txd_len = sizeof(*txd);
if (!ISSET(sc->chip, URTWN_CHIP_92EU))
txd_len = 32;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m);
if (k == NULL) {
urtwn_put_tx_data(sc, data);
m_free(m);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m, struct ieee80211_frame *);
}
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
/* XXX: set tap->wt_rate? */
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
}
/* non-qos data frames */
tid = R92C_TXDW1_QSEL_BE;
if ((hasqos = ieee80211_has_qos(wh))) {
/* data frames in 11n mode */
struct ieee80211_qosframe *qwh = (void *)wh;
tid = qwh->i_qos[0] & IEEE80211_QOS_TID;
} else if (type != IEEE80211_FC0_TYPE_DATA) {
tid = R92C_TXDW1_QSEL_MGNT;
}
if (((txd_len + m->m_pkthdr.len) % 64) == 0) /* XXX: 64 */
padsize = 8;
else
padsize = 0;
if (ISSET(sc->chip, URTWN_CHIP_92EU))
padsize = 0;
/* Fill Tx descriptor. */
txd = (struct r92c_tx_desc_usb *)data->buf;
memset(txd, 0, txd_len + padsize);
txd->txdw0 |= htole32(
SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) |
SM(R92C_TXDW0_OFFSET, txd_len));
if (!ISSET(sc->chip, URTWN_CHIP_92EU)) {
txd->txdw0 |= htole32(
R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
}
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
/* fix pad field */
if (padsize > 0) {
DPRINTFN(DBG_TX, "padding: size=%jd", padsize, 0, 0, 0);
txd->txdw1 |= htole32(SM(R92C_TXDW1_PKTOFF, (padsize / 8)));
}
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
type == IEEE80211_FC0_TYPE_DATA) {
if (ic->ic_curmode == IEEE80211_MODE_11B)
raid = R92C_RAID_11B;
else
raid = R92C_RAID_11BG;
DPRINTFN(DBG_TX, "data packet: tid=%jd, raid=%jd",
tid, raid, 0, 0);
if (!ISSET(sc->chip, URTWN_CHIP_92C)) {
txd->txdw1 |= htole32(
SM(R88E_TXDW1_MACID, RTWN_MACID_BSS) |
SM(R92C_TXDW1_QSEL, tid) |
SM(R92C_TXDW1_RAID, raid) |
R92C_TXDW1_AGGBK);
} else
txd->txdw1 |= htole32(
SM(R92C_TXDW1_MACID, RTWN_MACID_BSS) |
SM(R92C_TXDW1_QSEL, tid) |
SM(R92C_TXDW1_RAID, raid) |
R92C_TXDW1_AGGBK);
if (ISSET(sc->chip, URTWN_CHIP_88E))
txd->txdw2 |= htole32(R88E_TXDW2_AGGBK);
if (ISSET(sc->chip, URTWN_CHIP_92EU))
txd->txdw3 |= htole32(R92E_TXDW3_AGGBK);
if (hasqos) {
txd->txdw4 |= htole32(R92C_TXDW4_QOS);
}
if (ic->ic_flags & IEEE80211_F_USEPROT) {
/* for 11g */
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF |
R92C_TXDW4_HWRTSEN);
} else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
txd->txdw4 |= htole32(R92C_TXDW4_RTSEN |
R92C_TXDW4_HWRTSEN);
}
}
/* Send RTS at OFDM24. */
txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8));
txd->txdw5 |= htole32(0x0001ff00);
/* Send data at OFDM54. */
if (ISSET(sc->chip, URTWN_CHIP_88E))
txd->txdw5 |= htole32(0x13 & 0x3f);
else
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11));
} else if (type == IEEE80211_FC0_TYPE_MGT) {
DPRINTFN(DBG_TX, "mgmt packet", 0, 0, 0, 0);
txd->txdw1 |= htole32(
SM(R92C_TXDW1_MACID, RTWN_MACID_BSS) |
SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) |
SM(R92C_TXDW1_RAID, R92C_RAID_11B));
/* Force CCK1. */
txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
/* Use 1Mbps */
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
} else {
/* broadcast or multicast packets */
DPRINTFN(DBG_TX, "bc or mc packet", 0, 0, 0, 0);
txd->txdw1 |= htole32(
SM(R92C_TXDW1_MACID, RTWN_MACID_BC) |
SM(R92C_TXDW1_RAID, R92C_RAID_11B));
/* Force CCK1. */
txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
/* Use 1Mbps */
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
}
/* Set sequence number */
seq = LE_READ_2(&wh->i_seq[0]) >> IEEE80211_SEQ_SEQ_SHIFT;
if (!ISSET(sc->chip, URTWN_CHIP_92EU)) {
txd->txdseq |= htole16(seq);
if (!hasqos) {
/* Use HW sequence numbering for non-QoS frames. */
txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ);
txd->txdseq |= htole16(R92C_HWSEQ_EN);
}
} else {
txd->txdseq2 |= htole16((seq & R92E_HWSEQ_MASK) <<
R92E_HWSEQ_SHIFT);
if (!hasqos) {
/* Use HW sequence numbering for non-QoS frames. */
txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ);
txd->txdw7 |= htole16(R92C_HWSEQ_EN);
}
}
/* Compute Tx descriptor checksum. */
sum = 0;
for (i = 0; i < R92C_TXDESC_SUMSIZE / 2; i++)
sum ^= ((uint16_t *)txd)[i];
txd->txdsum = sum; /* NB: already little endian. */
xferlen = txd_len + m->m_pkthdr.len + padsize;
m_copydata(m, 0, m->m_pkthdr.len, (char *)&txd[0] + txd_len + padsize);
s = splnet();
usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
USBD_FORCE_SHORT_XFER, URTWN_TX_TIMEOUT,
urtwn_txeof);
error = usbd_transfer(data->xfer);
if (__predict_false(error != USBD_NORMAL_COMPLETION &&
error != USBD_IN_PROGRESS)) {
splx(s);
DPRINTFN(DBG_TX, "transfer failed %jd", error, 0, 0, 0);
return error;
}
splx(s);
return 0;
}
struct urtwn_tx_data *
urtwn_get_tx_data(struct urtwn_softc *sc, size_t pidx)
{
struct urtwn_tx_data *data = NULL;
mutex_enter(&sc->sc_tx_mtx);
if (!TAILQ_EMPTY(&sc->tx_free_list[pidx])) {
data = TAILQ_FIRST(&sc->tx_free_list[pidx]);
TAILQ_REMOVE(&sc->tx_free_list[pidx], data, next);
}
mutex_exit(&sc->sc_tx_mtx);
return data;
}
static void
urtwn_start(struct ifnet *ifp)
{
struct urtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct urtwn_tx_data *data;
struct ether_header *eh;
struct ieee80211_node *ni;
struct mbuf *m;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
data = NULL;
for (;;) {
/* Send pending management frames first. */
IF_POLL(&ic->ic_mgtq, m);
if (m != NULL) {
/* Use AC_VO for management frames. */
data = urtwn_get_tx_data(sc, sc->ac2idx[WME_AC_VO]);
if (data == NULL) {
ifp->if_flags |= IFF_OACTIVE;
DPRINTFN(DBG_TX, "empty tx_free_list",
0, 0, 0, 0);
return;
}
IF_DEQUEUE(&ic->ic_mgtq, m);
ni = M_GETCTX(m, struct ieee80211_node *);
M_CLEARCTX(m);
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* Encapsulate and send data frames. */
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL)
break;
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
uint8_t type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
uint8_t qid = WME_AC_BE;
if (ieee80211_has_qos(wh)) {
/* data frames in 11n mode */
struct ieee80211_qosframe *qwh = (void *)wh;
uint8_t tid = qwh->i_qos[0] & IEEE80211_QOS_TID;
qid = TID_TO_WME_AC(tid);
} else if (type != IEEE80211_FC0_TYPE_DATA) {
qid = WME_AC_VO;
}
data = urtwn_get_tx_data(sc, sc->ac2idx[qid]);
if (data == NULL) {
ifp->if_flags |= IFF_OACTIVE;
DPRINTFN(DBG_TX, "empty tx_free_list", 0, 0, 0, 0);
return;
}
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m->m_len < (int)sizeof(*eh) &&
(m = m_pullup(m, sizeof(*eh))) == NULL) {
device_printf(sc->sc_dev, "m_pullup failed\n");
if_statinc(ifp, if_oerrors);
urtwn_put_tx_data(sc, data);
m_freem(m);
continue;
}
eh = mtod(m, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
device_printf(sc->sc_dev,
"unable to find transmit node\n");
if_statinc(ifp, if_oerrors);
urtwn_put_tx_data(sc, data);
m_freem(m);
continue;
}
bpf_mtap(ifp, m, BPF_D_OUT);
if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
ieee80211_free_node(ni);
device_printf(sc->sc_dev,
"unable to encapsulate packet\n");
if_statinc(ifp, if_oerrors);
urtwn_put_tx_data(sc, data);
m_freem(m);
continue;
}
sendit:
bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
if (urtwn_tx(sc, m, ni, data) != 0) {
m_freem(m);
ieee80211_free_node(ni);
device_printf(sc->sc_dev,
"unable to transmit packet\n");
if_statinc(ifp, if_oerrors);
continue;
}
m_freem(m);
ieee80211_free_node(ni);
sc->tx_timer = 5;
ifp->if_timer = 1;
}
}
static void
urtwn_watchdog(struct ifnet *ifp)
{
struct urtwn_softc *sc = ifp->if_softc;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
ifp->if_timer = 0;
if (sc->tx_timer > 0) {
if (--sc->tx_timer == 0) {
device_printf(sc->sc_dev, "device timeout\n");
/* urtwn_init(ifp); XXX needs a process context! */
if_statinc(ifp, if_oerrors);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
static int
urtwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct urtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("cmd=0x%08jx, data=%#jx", cmd, (uintptr_t)data,
0, 0);
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
case IFF_UP | IFF_RUNNING:
break;
case IFF_UP:
urtwn_init(ifp);
break;
case IFF_RUNNING:
urtwn_stop(ifp, 1);
break;
case 0:
break;
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
/* setup multicast filter, etc */
error = 0;
}
break;
case SIOCS80211CHANNEL:
/*
* This allows for fast channel switching in monitor mode
* (used by kismet). In IBSS mode, we must explicitly reset
* the interface to generate a new beacon frame.
*/
error = ieee80211_ioctl(ic, cmd, data);
if (error == ENETRESET &&
ic->ic_opmode == IEEE80211_M_MONITOR) {
urtwn_set_chan(sc, ic->ic_curchan,
IEEE80211_HTINFO_2NDCHAN_NONE);
error = 0;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
break;
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING) &&
ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
urtwn_init(ifp);
}
error = 0;
}
splx(s);
return error;
}
static __inline int
urtwn_power_on(struct urtwn_softc *sc)
{
return sc->sc_power_on(sc);
}
static int
urtwn_r92c_power_on(struct urtwn_softc *sc)
{
uint32_t reg;
int ntries;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Wait for autoload done bit. */
for (ntries = 0; ntries < 1000; ntries++) {
if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN)
break;
DELAY(5);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for chip autoload\n");
return ETIMEDOUT;
}
/* Unlock ISO/CLK/Power control register. */
urtwn_write_1(sc, R92C_RSV_CTRL, 0);
DELAY(5);
/* Move SPS into PWM mode. */
urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b);
DELAY(5);
reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL);
if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) {
urtwn_write_1(sc, R92C_LDOV12D_CTRL,
reg | R92C_LDOV12D_CTRL_LDV12_EN);
DELAY(100);
urtwn_write_1(sc, R92C_SYS_ISO_CTRL,
urtwn_read_1(sc, R92C_SYS_ISO_CTRL) &
~R92C_SYS_ISO_CTRL_MD2PP);
}
/* Auto enable WLAN. */
urtwn_write_2(sc, R92C_APS_FSMCO,
urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
for (ntries = 0; ntries < 1000; ntries++) {
if (!(urtwn_read_2(sc, R92C_APS_FSMCO) &
R92C_APS_FSMCO_APFM_ONMAC))
break;
DELAY(100);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for MAC auto ON\n");
return ETIMEDOUT;
}
/* Enable radio, GPIO and LED functions. */
KASSERT((R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN |
R92C_APS_FSMCO_PFM_ALDN) == 0x0812);
urtwn_write_2(sc, R92C_APS_FSMCO,
R92C_APS_FSMCO_AFSM_HSUS |
R92C_APS_FSMCO_PDN_EN |
R92C_APS_FSMCO_PFM_ALDN);
/* Release RF digital isolation. */
urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR);
/* Initialize MAC. */
urtwn_write_1(sc, R92C_APSD_CTRL,
urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF);
for (ntries = 0; ntries < 200; ntries++) {
if (!(urtwn_read_1(sc, R92C_APSD_CTRL) &
R92C_APSD_CTRL_OFF_STATUS))
break;
DELAY(5);
}
if (ntries == 200) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for MAC initialization\n");
return ETIMEDOUT;
}
/* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
reg = urtwn_read_2(sc, R92C_CR);
reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
R92C_CR_ENSEC;
urtwn_write_2(sc, R92C_CR, reg);
urtwn_write_1(sc, 0xfe10, 0x19);
urtwn_delay_ms(sc, 1);
return 0;
}
static int
urtwn_r92e_power_on(struct urtwn_softc *sc)
{
uint32_t reg;
uint32_t val;
int ntries;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Enable radio, GPIO and LED functions. */
KASSERT((R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN |
R92C_APS_FSMCO_PFM_ALDN) == 0x0812);
urtwn_write_2(sc, R92C_APS_FSMCO,
R92C_APS_FSMCO_AFSM_HSUS |
R92C_APS_FSMCO_PDN_EN |
R92C_APS_FSMCO_PFM_ALDN);
if (urtwn_read_4(sc, R92E_SYS_CFG1_8192E) & R92E_SPSLDO_SEL){
/* LDO. */
urtwn_write_1(sc, R92E_LDO_SWR_CTRL, 0xc3);
}
else {
urtwn_write_2(sc, R92C_SYS_SWR_CTRL2, urtwn_read_2(sc,
R92C_SYS_SWR_CTRL2) & 0xffff);
urtwn_write_1(sc, R92E_LDO_SWR_CTRL, 0x83);
}
for (ntries = 0; ntries < 2; ntries++) {
urtwn_write_1(sc, R92C_AFE_PLL_CTRL,
urtwn_read_1(sc, R92C_AFE_PLL_CTRL));
urtwn_write_2(sc, R92C_AFE_CTRL4, urtwn_read_2(sc,
R92C_AFE_CTRL4));
}
/* Reset BB. */
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
urtwn_read_1(sc, R92C_SYS_FUNC_EN) & ~(R92C_SYS_FUNC_EN_BBRSTB |
R92C_SYS_FUNC_EN_BB_GLB_RST));
urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 2, urtwn_read_1(sc,
R92C_AFE_XTAL_CTRL + 2) | 0x80);
/* Disable HWPDN. */
urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc,
R92C_APS_FSMCO) & ~R92C_APS_FSMCO_APDM_HPDN);
/* Disable WL suspend. */
urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc,
R92C_APS_FSMCO) & ~(R92C_APS_FSMCO_AFSM_PCIE |
R92C_APS_FSMCO_AFSM_HSUS));
urtwn_write_4(sc, R92C_APS_FSMCO, urtwn_read_4(sc,
R92C_APS_FSMCO) | R92C_APS_FSMCO_RDY_MACON);
urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc,
R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
for (ntries = 0; ntries < 10000; ntries++) {
val = urtwn_read_2(sc, R92C_APS_FSMCO) &
R92C_APS_FSMCO_APFM_ONMAC;
if (val == 0x0)
break;
DELAY(10);
}
if (ntries == 10000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for chip power up\n");
return ETIMEDOUT;
}
urtwn_write_2(sc, R92C_CR, 0x00);
reg = urtwn_read_2(sc, R92C_CR);
reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
R92C_CR_SCHEDULE_EN | R92C_CR_ENSEC;
urtwn_write_2(sc, R92C_CR, reg);
return 0;
}
static int
urtwn_r88e_power_on(struct urtwn_softc *sc)
{
uint32_t reg;
uint8_t val;
int ntries;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Wait for power ready bit. */
for (ntries = 0; ntries < 5000; ntries++) {
val = urtwn_read_1(sc, 0x6) & 0x2;
if (val == 0x2)
break;
DELAY(10);
}
if (ntries == 5000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for chip power up\n");
return ETIMEDOUT;
}
/* Reset BB. */
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
urtwn_read_1(sc, R92C_SYS_FUNC_EN) & ~(R92C_SYS_FUNC_EN_BBRSTB |
R92C_SYS_FUNC_EN_BB_GLB_RST));
urtwn_write_1(sc, 0x26, urtwn_read_1(sc, 0x26) | 0x80);
/* Disable HWPDN. */
urtwn_write_1(sc, 0x5, urtwn_read_1(sc, 0x5) & ~0x80);
/* Disable WL suspend. */
urtwn_write_1(sc, 0x5, urtwn_read_1(sc, 0x5) & ~0x18);
urtwn_write_1(sc, 0x5, urtwn_read_1(sc, 0x5) | 0x1);
for (ntries = 0; ntries < 5000; ntries++) {
if (!(urtwn_read_1(sc, 0x5) & 0x1))
break;
DELAY(10);
}
if (ntries == 5000)
return ETIMEDOUT;
/* Enable LDO normal mode. */
urtwn_write_1(sc, 0x23, urtwn_read_1(sc, 0x23) & ~0x10);
/* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
urtwn_write_2(sc, R92C_CR, 0);
reg = urtwn_read_2(sc, R92C_CR);
reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
R92C_CR_SCHEDULE_EN | R92C_CR_ENSEC | R92C_CR_CALTMR_EN;
urtwn_write_2(sc, R92C_CR, reg);
return 0;
}
static int __noinline
urtwn_llt_init(struct urtwn_softc *sc)
{
size_t i, page_count, pktbuf_count;
uint32_t val;
int error;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
if (sc->chip & URTWN_CHIP_88E)
page_count = R88E_TX_PAGE_COUNT;
else if (sc->chip & URTWN_CHIP_92EU)
page_count = R92E_TX_PAGE_COUNT;
else
page_count = R92C_TX_PAGE_COUNT;
if (sc->chip & URTWN_CHIP_88E)
pktbuf_count = R88E_TXPKTBUF_COUNT;
else if (sc->chip & URTWN_CHIP_92EU)
pktbuf_count = R88E_TXPKTBUF_COUNT;
else
pktbuf_count = R92C_TXPKTBUF_COUNT;
if (sc->chip & URTWN_CHIP_92EU) {
val = urtwn_read_4(sc, R92E_AUTO_LLT) | R92E_AUTO_LLT_EN;
urtwn_write_4(sc, R92E_AUTO_LLT, val);
DELAY(100);
val = urtwn_read_4(sc, R92E_AUTO_LLT);
if (val & R92E_AUTO_LLT_EN)
return EIO;
return 0;
}
/* Reserve pages [0; page_count]. */
for (i = 0; i < page_count; i++) {
if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
return error;
}
/* NB: 0xff indicates end-of-list. */
if ((error = urtwn_llt_write(sc, i, 0xff)) != 0)
return error;
/*
* Use pages [page_count + 1; pktbuf_count - 1]
* as ring buffer.
*/
for (++i; i < pktbuf_count - 1; i++) {
if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
return error;
}
/* Make the last page point to the beginning of the ring buffer. */
error = urtwn_llt_write(sc, i, pktbuf_count + 1);
return error;
}
static void
urtwn_fw_reset(struct urtwn_softc *sc)
{
uint16_t reg;
int ntries;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Tell 8051 to reset itself. */
mutex_enter(&sc->sc_fwcmd_mtx);
urtwn_write_1(sc, R92C_HMETFR + 3, 0x20);
sc->fwcur = 0;
mutex_exit(&sc->sc_fwcmd_mtx);
/* Wait until 8051 resets by itself. */
for (ntries = 0; ntries < 100; ntries++) {
reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
if (!(reg & R92C_SYS_FUNC_EN_CPUEN))
return;
DELAY(50);
}
/* Force 8051 reset. */
urtwn_write_2(sc, R92C_SYS_FUNC_EN,
urtwn_read_2(sc, R92C_SYS_FUNC_EN) & ~R92C_SYS_FUNC_EN_CPUEN);
}
static void
urtwn_r88e_fw_reset(struct urtwn_softc *sc)
{
uint16_t reg;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
if (ISSET(sc->chip, URTWN_CHIP_92EU)) {
reg = urtwn_read_2(sc, R92C_RSV_CTRL) & ~R92E_RSV_MIO_EN;
urtwn_write_2(sc,R92C_RSV_CTRL, reg);
}
DELAY(50);
reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
DELAY(50);
urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg | R92C_SYS_FUNC_EN_CPUEN);
DELAY(50);
if (ISSET(sc->chip, URTWN_CHIP_92EU)) {
reg = urtwn_read_2(sc, R92C_RSV_CTRL) | R92E_RSV_MIO_EN;
urtwn_write_2(sc,R92C_RSV_CTRL, reg);
}
DELAY(50);
mutex_enter(&sc->sc_fwcmd_mtx);
/* Init firmware commands ring. */
sc->fwcur = 0;
mutex_exit(&sc->sc_fwcmd_mtx);
}
static int
urtwn_fw_loadpage(struct urtwn_softc *sc, int page, uint8_t *buf, int len)
{
uint32_t reg;
int off, mlen, error = 0;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("page=%jd, buf=%#jx, len=%jd",
page, (uintptr_t)buf, len, 0);
reg = urtwn_read_4(sc, R92C_MCUFWDL);
reg = RW(reg, R92C_MCUFWDL_PAGE, page);
urtwn_write_4(sc, R92C_MCUFWDL, reg);
off = R92C_FW_START_ADDR;
while (len > 0) {
if (len > 196)
mlen = 196;
else if (len > 4)
mlen = 4;
else
mlen = 1;
error = urtwn_write_region(sc, off, buf, mlen);
if (error != 0)
break;
off += mlen;
buf += mlen;
len -= mlen;
}
return error;
}
static int __noinline
urtwn_load_firmware(struct urtwn_softc *sc)
{
firmware_handle_t fwh;
const struct r92c_fw_hdr *hdr;
const char *name;
u_char *fw, *ptr;
size_t len;
uint32_t reg;
int mlen, ntries, page, error;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Read firmware image from the filesystem. */
if (ISSET(sc->chip, URTWN_CHIP_88E))
name = "rtl8188eufw.bin";
else if (ISSET(sc->chip, URTWN_CHIP_92EU))
name = "rtl8192eefw.bin";
else if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
URTWN_CHIP_UMC_A_CUT)
name = "rtl8192cfwU.bin";
else
name = "rtl8192cfw.bin";
if ((error = firmware_open("if_urtwn", name, &fwh)) != 0) {
aprint_error_dev(sc->sc_dev,
"failed load firmware of file %s (error %d)\n", name,
error);
return error;
}
const size_t fwlen = len = firmware_get_size(fwh);
fw = firmware_malloc(len);
if (fw == NULL) {
aprint_error_dev(sc->sc_dev,
"failed to allocate firmware memory\n");
firmware_close(fwh);
return ENOMEM;
}
error = firmware_read(fwh, 0, fw, len);
firmware_close(fwh);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"failed to read firmware (error %d)\n", error);
firmware_free(fw, fwlen);
return error;
}
len = fwlen;
ptr = fw;
hdr = (const struct r92c_fw_hdr *)ptr;
/* Check if there is a valid FW header and skip it. */
if ((le16toh(hdr->signature) >> 4) == 0x88c ||
(le16toh(hdr->signature) >> 4) == 0x88e ||
(le16toh(hdr->signature) >> 4) == 0x92e ||
(le16toh(hdr->signature) >> 4) == 0x92c) {
DPRINTFN(DBG_INIT, "FW V%jd.%jd",
le16toh(hdr->version), le16toh(hdr->subversion), 0, 0);
DPRINTFN(DBG_INIT, "%02jd-%02jd %02jd:%02jd",
hdr->month, hdr->date, hdr->hour, hdr->minute);
ptr += sizeof(*hdr);
len -= sizeof(*hdr);
}
if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RAM_DL_SEL) {
/* Reset MCU ready status */
urtwn_write_1(sc, R92C_MCUFWDL, 0);
if (ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU))
urtwn_r88e_fw_reset(sc);
else
urtwn_fw_reset(sc);
}
if (!ISSET(sc->chip, URTWN_CHIP_88E) &&
!ISSET(sc->chip, URTWN_CHIP_92EU)) {
urtwn_write_2(sc, R92C_SYS_FUNC_EN,
urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
R92C_SYS_FUNC_EN_CPUEN);
}
/* download enabled */
urtwn_write_1(sc, R92C_MCUFWDL,
urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN);
urtwn_write_1(sc, R92C_MCUFWDL + 2,
urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08);
/* Reset the FWDL checksum. */
urtwn_write_1(sc, R92C_MCUFWDL,
urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_CHKSUM_RPT);
DELAY(50);
/* download firmware */
for (page = 0; len > 0; page++) {
mlen = MIN(len, R92C_FW_PAGE_SIZE);
error = urtwn_fw_loadpage(sc, page, ptr, mlen);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load firmware page %d\n", page);
goto fail;
}
ptr += mlen;
len -= mlen;
}
/* download disable */
urtwn_write_1(sc, R92C_MCUFWDL,
urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN);
urtwn_write_1(sc, R92C_MCUFWDL + 1, 0);
/* Wait for checksum report. */
for (ntries = 0; ntries < 1000; ntries++) {
if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT)
break;
DELAY(5);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for checksum report\n");
error = ETIMEDOUT;
goto fail;
}
/* Wait for firmware readiness. */
reg = urtwn_read_4(sc, R92C_MCUFWDL);
reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY;
urtwn_write_4(sc, R92C_MCUFWDL, reg);
if (ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU))
urtwn_r88e_fw_reset(sc);
for (ntries = 0; ntries < 6000; ntries++) {
if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY)
break;
DELAY(5);
}
if (ntries == 6000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for firmware readiness\n");
error = ETIMEDOUT;
goto fail;
}
fail:
firmware_free(fw, fwlen);
return error;
}
static __inline int
urtwn_dma_init(struct urtwn_softc *sc)
{
return sc->sc_dma_init(sc);
}
static int
urtwn_r92c_dma_init(struct urtwn_softc *sc)
{
int hashq, hasnq, haslq, nqueues, nqpages, nrempages;
uint32_t reg;
int error;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Initialize LLT table. */
error = urtwn_llt_init(sc);
if (error != 0)
return error;
/* Get Tx queues to USB endpoints mapping. */
hashq = hasnq = haslq = 0;
reg = urtwn_read_2(sc, R92C_USB_EP + 1);
DPRINTFN(DBG_INIT, "USB endpoints mapping %#jx", reg, 0, 0, 0);
if (MS(reg, R92C_USB_EP_HQ) != 0)
hashq = 1;
if (MS(reg, R92C_USB_EP_NQ) != 0)
hasnq = 1;
if (MS(reg, R92C_USB_EP_LQ) != 0)
haslq = 1;
nqueues = hashq + hasnq + haslq;
if (nqueues == 0)
return EIO;
/* Get the number of pages for each queue. */
nqpages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) / nqueues;
/* The remaining pages are assigned to the high priority queue. */
nrempages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) % nqueues;
/* Set number of pages for normal priority queue. */
urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0);
urtwn_write_4(sc, R92C_RQPN,
/* Set number of pages for public queue. */
SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) |
/* Set number of pages for high priority queue. */
SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) |
/* Set number of pages for low priority queue. */
SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) |
/* Load values. */
R92C_RQPN_LD);
urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY);
/* Set queue to USB pipe mapping. */
reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
if (nqueues == 1) {
if (hashq) {
reg |= R92C_TRXDMA_CTRL_QMAP_HQ;
} else if (hasnq) {
reg |= R92C_TRXDMA_CTRL_QMAP_NQ;
} else {
reg |= R92C_TRXDMA_CTRL_QMAP_LQ;
}
} else if (nqueues == 2) {
/* All 2-endpoints configs have a high priority queue. */
if (!hashq) {
return EIO;
}
if (hasnq) {
reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
} else {
reg |= R92C_TRXDMA_CTRL_QMAP_HQ_LQ;
}
} else {
reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
}
urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
/* Set Tx/Rx transfer page boundary. */
urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff);
/* Set Tx/Rx transfer page size. */
urtwn_write_1(sc, R92C_PBP,
SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128));
return 0;
}
static int
urtwn_r88e_dma_init(struct urtwn_softc *sc)
{
usb_interface_descriptor_t *id;
uint32_t reg;
int nqueues;
int error;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Initialize LLT table. */
error = urtwn_llt_init(sc);
if (error != 0)
return error;
/* Get Tx queues to USB endpoints mapping. */
id = usbd_get_interface_descriptor(sc->sc_iface);
nqueues = id->bNumEndpoints - 1;
if (nqueues == 0)
return EIO;
/* Set number of pages for normal priority queue. */
urtwn_write_2(sc, R92C_RQPN_NPQ, 0);
urtwn_write_2(sc, R92C_RQPN_NPQ, 0x000d);
urtwn_write_4(sc, R92C_RQPN, 0x808e000d);
urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R88E_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R88E_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R88E_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TRXFF_BNDY, R88E_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TDECTRL + 1, R88E_TX_PAGE_BOUNDARY);
/* Set queue to USB pipe mapping. */
reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
if (nqueues == 1)
reg |= R92C_TRXDMA_CTRL_QMAP_LQ;
else if (nqueues == 2)
reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
else
reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
/* Set Tx/Rx transfer page boundary. */
urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x23ff);
/* Set Tx/Rx transfer page size. */
urtwn_write_1(sc, R92C_PBP,
SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128));
return 0;
}
static void __noinline
urtwn_mac_init(struct urtwn_softc *sc)
{
size_t i;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Write MAC initialization values. */
if (ISSET(sc->chip, URTWN_CHIP_88E)) {
for (i = 0; i < __arraycount(rtl8188eu_mac); i++)
urtwn_write_1(sc, rtl8188eu_mac[i].reg,
rtl8188eu_mac[i].val);
} else if (ISSET(sc->chip, URTWN_CHIP_92EU)) {
for (i = 0; i < __arraycount(rtl8192eu_mac); i++)
urtwn_write_1(sc, rtl8192eu_mac[i].reg,
rtl8192eu_mac[i].val);
} else {
for (i = 0; i < __arraycount(rtl8192cu_mac); i++)
urtwn_write_1(sc, rtl8192cu_mac[i].reg,
rtl8192cu_mac[i].val);
}
}
static void __noinline
urtwn_bb_init(struct urtwn_softc *sc)
{
const struct rtwn_bb_prog *prog;
uint32_t reg;
uint8_t crystalcap;
size_t i;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Enable BB and RF. */
urtwn_write_2(sc, R92C_SYS_FUNC_EN,
urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST |
R92C_SYS_FUNC_EN_DIO_RF);
if (!ISSET(sc->chip, URTWN_CHIP_88E) &&
!ISSET(sc->chip, URTWN_CHIP_92EU)) {
urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x83);
urtwn_write_1(sc, R92C_AFE_PLL_CTRL + 1, 0xdb);
}
urtwn_write_1(sc, R92C_RF_CTRL,
R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB);
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD |
R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB);
if (!ISSET(sc->chip, URTWN_CHIP_88E) &&
!ISSET(sc->chip, URTWN_CHIP_92EU)) {
urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f);
urtwn_write_1(sc, 0x15, 0xe9);
urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80);
}
/* Select BB programming based on board type. */
if (ISSET(sc->chip, URTWN_CHIP_88E))
prog = &rtl8188eu_bb_prog;
else if (ISSET(sc->chip, URTWN_CHIP_92EU))
prog = &rtl8192eu_bb_prog;
else if (!(sc->chip & URTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
prog = &rtl8188ce_bb_prog;
} else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
prog = &rtl8188ru_bb_prog;
} else {
prog = &rtl8188cu_bb_prog;
}
} else {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
prog = &rtl8192ce_bb_prog;
} else {
prog = &rtl8192cu_bb_prog;
}
}
/* Write BB initialization values. */
for (i = 0; i < prog->count; i++) {
/* additional delay depend on registers */
switch (prog->regs[i]) {
case 0xfe:
urtwn_delay_ms(sc, 50);
break;
case 0xfd:
urtwn_delay_ms(sc, 5);
break;
case 0xfc:
urtwn_delay_ms(sc, 1);
break;
case 0xfb:
DELAY(50);
break;
case 0xfa:
DELAY(5);
break;
case 0xf9:
DELAY(1);
break;
}
urtwn_bb_write(sc, prog->regs[i], prog->vals[i]);
DELAY(1);
}
if (sc->chip & URTWN_CHIP_92C_1T2R) {
/* 8192C 1T only configuration. */
reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO);
reg = (reg & ~0x00000003) | 0x2;
urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg);
reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO);
reg = (reg & ~0x00300033) | 0x00200022;
urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg);
reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING);
reg = (reg & ~0xff000000) | (0x45 << 24);
urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg);
reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
reg = (reg & ~0x000000ff) | 0x23;
urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg);
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1);
reg = (reg & ~0x00000030) | (1 << 4);
urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg);
reg = urtwn_bb_read(sc, 0xe74);
reg = (reg & ~0x0c000000) | (2 << 26);
urtwn_bb_write(sc, 0xe74, reg);
reg = urtwn_bb_read(sc, 0xe78);
reg = (reg & ~0x0c000000) | (2 << 26);
urtwn_bb_write(sc, 0xe78, reg);
reg = urtwn_bb_read(sc, 0xe7c);
reg = (reg & ~0x0c000000) | (2 << 26);
urtwn_bb_write(sc, 0xe7c, reg);
reg = urtwn_bb_read(sc, 0xe80);
reg = (reg & ~0x0c000000) | (2 << 26);
urtwn_bb_write(sc, 0xe80, reg);
reg = urtwn_bb_read(sc, 0xe88);
reg = (reg & ~0x0c000000) | (2 << 26);
urtwn_bb_write(sc, 0xe88, reg);
}
/* Write AGC values. */
for (i = 0; i < prog->agccount; i++) {
urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]);
DELAY(1);
}
if (ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU)) {
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553422);
DELAY(1);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553420);
DELAY(1);
}
if (ISSET(sc->chip, URTWN_CHIP_92EU)) {
crystalcap = sc->r88e_rom[0xb9];
if (crystalcap == 0x00)
crystalcap = 0x20;
crystalcap &= 0x3f;
reg = urtwn_bb_read(sc, R92C_AFE_CTRL3);
urtwn_bb_write(sc, R92C_AFE_CTRL3,
RW(reg, R92C_AFE_XTAL_CTRL_ADDR,
crystalcap | crystalcap << 6));
urtwn_write_4(sc, R92C_AFE_XTAL_CTRL, 0xf81fb);
} else if (ISSET(sc->chip, URTWN_CHIP_88E)) {
crystalcap = sc->r88e_rom[0xb9];
if (crystalcap == 0xff)
crystalcap = 0x20;
crystalcap &= 0x3f;
reg = urtwn_bb_read(sc, R92C_AFE_XTAL_CTRL);
urtwn_bb_write(sc, R92C_AFE_XTAL_CTRL,
RW(reg, R92C_AFE_XTAL_CTRL_ADDR,
crystalcap | crystalcap << 6));
} else {
if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) &
R92C_HSSI_PARAM2_CCK_HIPWR) {
SET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR);
}
}
}
static void __noinline
urtwn_rf_init(struct urtwn_softc *sc)
{
const struct rtwn_rf_prog *prog;
uint32_t reg, mask, saved;
size_t i, j, idx;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
/* Select RF programming based on board type. */
if (ISSET(sc->chip, URTWN_CHIP_88E))
prog = rtl8188eu_rf_prog;
else if (ISSET(sc->chip, URTWN_CHIP_92EU))
prog = rtl8192eu_rf_prog;
else if (!(sc->chip & URTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
prog = rtl8188ce_rf_prog;
} else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
prog = rtl8188ru_rf_prog;
} else {
prog = rtl8188cu_rf_prog;
}
} else {
prog = rtl8192ce_rf_prog;
}
for (i = 0; i < sc->nrxchains; i++) {
/* Save RF_ENV control type. */
idx = i / 2;
mask = 0xffffU << ((i % 2) * 16);
saved = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & mask;
/* Set RF_ENV enable. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
reg |= 0x100000;
urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
DELAY(50);
/* Set RF_ENV output high. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
reg |= 0x10;
urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
DELAY(50);
/* Set address and data lengths of RF registers. */
reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH;
urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
DELAY(50);
reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH;
urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
DELAY(50);
/* Write RF initialization values for this chain. */
for (j = 0; j < prog[i].count; j++) {
if (prog[i].regs[j] >= 0xf9 &&
prog[i].regs[j] <= 0xfe) {
/*
* These are fake RF registers offsets that
* indicate a delay is required.
*/
urtwn_delay_ms(sc, 50);
continue;
}
urtwn_rf_write(sc, i, prog[i].regs[j], prog[i].vals[j]);
DELAY(5);
}
/* Restore RF_ENV control type. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & ~mask;
urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg | saved);
}
if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
URTWN_CHIP_UMC_A_CUT) {
urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255);
urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00);
}
/* Cache RF register CHNLBW. */
for (i = 0; i < 2; i++) {
sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW);
}
}
static void __noinline
urtwn_cam_init(struct urtwn_softc *sc)
{
uint32_t content, command;
uint8_t idx;
size_t i;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
if (ISSET(sc->chip, URTWN_CHIP_92EU))
return;
for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
content = (idx & 3)
| (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
| R92C_CAM_VALID;
command = R92C_CAMCMD_POLLING
| R92C_CAMCMD_WRITE
| R92C_CAM_CTL0(idx);
urtwn_write_4(sc, R92C_CAMWRITE, content);
urtwn_write_4(sc, R92C_CAMCMD, command);
}
for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
for (i = 0; i < /* CAM_CONTENT_COUNT */ 8; i++) {
if (i == 0) {
content = (idx & 3)
| (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
| R92C_CAM_VALID;
} else {
content = 0;
}
command = R92C_CAMCMD_POLLING
| R92C_CAMCMD_WRITE
| R92C_CAM_CTL0(idx)
| i;
urtwn_write_4(sc, R92C_CAMWRITE, content);
urtwn_write_4(sc, R92C_CAMCMD, command);
}
}
/* Invalidate all CAM entries. */
urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR);
}
static void __noinline
urtwn_pa_bias_init(struct urtwn_softc *sc)
{
uint8_t reg;
size_t i;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
for (i = 0; i < sc->nrxchains; i++) {
if (sc->pa_setting & (1U << i))
continue;
urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406);
urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406);
urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406);
urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406);
}
if (!(sc->pa_setting & 0x10)) {
reg = urtwn_read_1(sc, 0x16);
reg = (reg & ~0xf0) | 0x90;
urtwn_write_1(sc, 0x16, reg);
}
}
static void __noinline
urtwn_rxfilter_init(struct urtwn_softc *sc)
{
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Initialize Rx filter. */
/* TODO: use better filter for monitor mode. */
urtwn_write_4(sc, R92C_RCR,
R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB |
R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL |
R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS);
/* Accept all multicast frames. */
urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff);
urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff);
/* Accept all management frames. */
urtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff);
/* Reject all control frames. */
urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000);
/* Accept all data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
}
static void __noinline
urtwn_edca_init(struct urtwn_softc *sc)
{
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* set spec SIFS (used in NAV) */
urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a);
urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a);
/* set SIFS CCK/OFDM */
urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a);
urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a);
/* TXOP */
urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b);
urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f);
urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324);
urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226);
}
static void
urtwn_write_txpower(struct urtwn_softc *sc, int chain,
uint16_t power[URTWN_RIDX_COUNT])
{
uint32_t reg;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("chain=%jd", chain, 0, 0, 0);
/* Write per-CCK rate Tx power. */
if (chain == 0) {
reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32);
reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]);
urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg);
reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]);
reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]);
reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]);
urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
} else {
reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32);
reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]);
reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]);
reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]);
urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg);
reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]);
urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
}
/* Write per-OFDM rate Tx power. */
urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain),
SM(R92C_TXAGC_RATE06, power[ 4]) |
SM(R92C_TXAGC_RATE09, power[ 5]) |
SM(R92C_TXAGC_RATE12, power[ 6]) |
SM(R92C_TXAGC_RATE18, power[ 7]));
urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain),
SM(R92C_TXAGC_RATE24, power[ 8]) |
SM(R92C_TXAGC_RATE36, power[ 9]) |
SM(R92C_TXAGC_RATE48, power[10]) |
SM(R92C_TXAGC_RATE54, power[11]));
/* Write per-MCS Tx power. */
urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain),
SM(R92C_TXAGC_MCS00, power[12]) |
SM(R92C_TXAGC_MCS01, power[13]) |
SM(R92C_TXAGC_MCS02, power[14]) |
SM(R92C_TXAGC_MCS03, power[15]));
urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain),
SM(R92C_TXAGC_MCS04, power[16]) |
SM(R92C_TXAGC_MCS05, power[17]) |
SM(R92C_TXAGC_MCS06, power[18]) |
SM(R92C_TXAGC_MCS07, power[19]));
urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain),
SM(R92C_TXAGC_MCS08, power[20]) |
SM(R92C_TXAGC_MCS09, power[21]) |
SM(R92C_TXAGC_MCS10, power[22]) |
SM(R92C_TXAGC_MCS11, power[23]));
urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain),
SM(R92C_TXAGC_MCS12, power[24]) |
SM(R92C_TXAGC_MCS13, power[25]) |
SM(R92C_TXAGC_MCS14, power[26]) |
SM(R92C_TXAGC_MCS15, power[27]));
}
static void
urtwn_get_txpower(struct urtwn_softc *sc, size_t chain, u_int chan, u_int ht40m,
uint16_t power[URTWN_RIDX_COUNT])
{
struct r92c_rom *rom = &sc->rom;
uint16_t cckpow, ofdmpow, htpow, diff, maxpow;
const struct rtwn_txpwr *base;
int ridx, group;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("chain=%jd, chan=%jd", chain, chan, 0, 0);
/* Determine channel group. */
if (chan <= 3) {
group = 0;
} else if (chan <= 9) {
group = 1;
} else {
group = 2;
}
/* Get original Tx power based on board type and RF chain. */
if (!(sc->chip & URTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
base = &rtl8188ru_txagc[chain];
} else {
base = &rtl8192cu_txagc[chain];
}
} else {
base = &rtl8192cu_txagc[chain];
}
memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
if (sc->regulatory == 0) {
for (ridx = 0; ridx <= 3; ridx++) {
power[ridx] = base->pwr[0][ridx];
}
}
for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) {
if (sc->regulatory == 3) {
power[ridx] = base->pwr[0][ridx];
/* Apply vendor limits. */
if (ht40m != IEEE80211_HTINFO_2NDCHAN_NONE) {
maxpow = rom->ht40_max_pwr[group];
} else {
maxpow = rom->ht20_max_pwr[group];
}
maxpow = (maxpow >> (chain * 4)) & 0xf;
if (power[ridx] > maxpow) {
power[ridx] = maxpow;
}
} else if (sc->regulatory == 1) {
if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
power[ridx] = base->pwr[group][ridx];
}
} else if (sc->regulatory != 2) {
power[ridx] = base->pwr[0][ridx];
}
}
/* Compute per-CCK rate Tx power. */
cckpow = rom->cck_tx_pwr[chain][group];
for (ridx = 0; ridx <= 3; ridx++) {
power[ridx] += cckpow;
if (power[ridx] > R92C_MAX_TX_PWR) {
power[ridx] = R92C_MAX_TX_PWR;
}
}
htpow = rom->ht40_1s_tx_pwr[chain][group];
if (sc->ntxchains > 1) {
/* Apply reduction for 2 spatial streams. */
diff = rom->ht40_2s_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
htpow = (htpow > diff) ? htpow - diff : 0;
}
/* Compute per-OFDM rate Tx power. */
diff = rom->ofdm_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
ofdmpow = htpow + diff; /* HT->OFDM correction. */
for (ridx = 4; ridx <= 11; ridx++) {
power[ridx] += ofdmpow;
if (power[ridx] > R92C_MAX_TX_PWR) {
power[ridx] = R92C_MAX_TX_PWR;
}
}
/* Compute per-MCS Tx power. */
if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
diff = rom->ht20_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
htpow += diff; /* HT40->HT20 correction. */
}
for (ridx = 12; ridx < URTWN_RIDX_COUNT; ridx++) {
power[ridx] += htpow;
if (power[ridx] > R92C_MAX_TX_PWR) {
power[ridx] = R92C_MAX_TX_PWR;
}
}
#ifdef URTWN_DEBUG
if (urtwn_debug & DBG_RF) {
/* Dump per-rate Tx power values. */
DPRINTFN(DBG_RF, "Tx power for chain %jd:", chain, 0, 0, 0);
for (ridx = 0; ridx < URTWN_RIDX_COUNT; ridx++)
DPRINTFN(DBG_RF, "Rate %jd = %ju", ridx, power[ridx], 0, 0);
}
#endif
}
void
urtwn_r88e_get_txpower(struct urtwn_softc *sc, size_t chain, u_int chan,
u_int ht40m, uint16_t power[URTWN_RIDX_COUNT])
{
uint16_t cckpow, ofdmpow, bw20pow, htpow;
const struct rtwn_r88e_txpwr *base;
int ridx, group;
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("chain=%jd, chan=%jd", chain, chan, 0, 0);
/* Determine channel group. */
if (chan <= 2)
group = 0;
else if (chan <= 5)
group = 1;
else if (chan <= 8)
group = 2;
else if (chan <= 11)
group = 3;
else if (chan <= 13)
group = 4;
else
group = 5;
/* Get original Tx power based on board type and RF chain. */
base = &rtl8188eu_txagc[chain];
memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
if (sc->regulatory == 0) {
for (ridx = 0; ridx <= 3; ridx++)
power[ridx] = base->pwr[0][ridx];
}
for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) {
if (sc->regulatory == 3)
power[ridx] = base->pwr[0][ridx];
else if (sc->regulatory == 1) {
if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE)
power[ridx] = base->pwr[group][ridx];
} else if (sc->regulatory != 2)
power[ridx] = base->pwr[0][ridx];
}
/* Compute per-CCK rate Tx power. */
cckpow = sc->cck_tx_pwr[group];
for (ridx = 0; ridx <= 3; ridx++) {
power[ridx] += cckpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
htpow = sc->ht40_tx_pwr[group];
/* Compute per-OFDM rate Tx power. */
ofdmpow = htpow + sc->ofdm_tx_pwr_diff;
for (ridx = 4; ridx <= 11; ridx++) {
power[ridx] += ofdmpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
bw20pow = htpow + sc->bw20_tx_pwr_diff;
for (ridx = 12; ridx <= 27; ridx++) {
power[ridx] += bw20pow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
}
static void
urtwn_set_txpower(struct urtwn_softc *sc, u_int chan, u_int ht40m)
{
uint16_t power[URTWN_RIDX_COUNT];
size_t i;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
for (i = 0; i < sc->ntxchains; i++) {
/* Compute per-rate Tx power values. */
if (ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU))
urtwn_r88e_get_txpower(sc, i, chan, ht40m, power);
else
urtwn_get_txpower(sc, i, chan, ht40m, power);
/* Write per-rate Tx power values to hardware. */
urtwn_write_txpower(sc, i, power);
}
}
static void __noinline
urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c, u_int ht40m)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int chan;
size_t i;
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("chan=%jd", chan, 0, 0, 0);
KASSERT(mutex_owned(&sc->sc_write_mtx));
if (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE) {
chan += 2;
} else if (ht40m == IEEE80211_HTINFO_2NDCHAN_BELOW){
chan -= 2;
}
/* Set Tx power for this new channel. */
urtwn_set_txpower(sc, chan, ht40m);
for (i = 0; i < sc->nrxchains; i++) {
urtwn_rf_write(sc, i, R92C_RF_CHNLBW,
RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan));
}
if (ht40m) {
/* Is secondary channel below or above primary? */
int prichlo = (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE);
uint32_t reg;
urtwn_write_1(sc, R92C_BWOPMODE,
urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ);
reg = urtwn_read_1(sc, R92C_RRSR + 2);
reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5;
urtwn_write_1(sc, R92C_RRSR + 2, (uint8_t)reg);
urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ);
urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ);
/* Set CCK side band. */
reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM);
reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4;
urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg);
reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF);
reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10;
urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg);
urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) &
~R92C_FPGA0_ANAPARAM2_CBW20);
reg = urtwn_bb_read(sc, 0x818);
reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26;
urtwn_bb_write(sc, 0x818, reg);
/* Select 40MHz bandwidth. */
urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
(sc->rf_chnlbw[0] & ~0xfff) | chan);
} else {
urtwn_write_1(sc, R92C_BWOPMODE,
urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ);
urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ);
urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ);
if (!ISSET(sc->chip, URTWN_CHIP_88E) &&
!ISSET(sc->chip, URTWN_CHIP_92EU)) {
urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) |
R92C_FPGA0_ANAPARAM2_CBW20);
}
/* Select 20MHz bandwidth. */
urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
(sc->rf_chnlbw[0] & ~0xfff) | chan |
(ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU) ?
R88E_RF_CHNLBW_BW20 : R92C_RF_CHNLBW_BW20));
}
}
static void __noinline
urtwn_iq_calib(struct urtwn_softc *sc, bool inited)
{
URTWNHIST_FUNC();
URTWNHIST_CALLARGS("inited=%jd", inited, 0, 0, 0);
uint32_t addaBackup[16], iqkBackup[4], piMode;
#ifdef notyet
uint32_t odfm0_agccore_regs[3];
uint32_t ant_regs[3];
uint32_t rf_regs[8];
#endif
uint32_t reg0, reg1, reg2;
int i, attempt;
#ifdef notyet
urtwn_write_1(sc, R92E_STBC_SETTING + 2, urtwn_read_1(sc,
R92E_STBC_SETTING + 2));
urtwn_write_1(sc, R92C_ACLK_MON, 0);
/* Save AGCCORE regs. */
for (i = 0; i < sc->nrxchains; i++) {
odfm0_agccore_regs[i] = urtwn_read_4(sc,
R92C_OFDM0_AGCCORE1(i));
}
#endif
/* Save BB regs. */
reg0 = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
reg1 = urtwn_bb_read(sc, R92C_OFDM0_TRMUXPAR);
reg2 = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(1));
/* Save adda regs to be restored when finished. */
for (i = 0; i < __arraycount(addaReg); i++)
addaBackup[i] = urtwn_bb_read(sc, addaReg[i]);
/* Save mac regs. */
iqkBackup[0] = urtwn_read_1(sc, R92C_TXPAUSE);
iqkBackup[1] = urtwn_read_1(sc, R92C_BCN_CTRL);
iqkBackup[2] = urtwn_read_1(sc, R92C_BCN_CTRL1);
iqkBackup[3] = urtwn_read_4(sc, R92C_GPIO_MUXCFG);
#ifdef notyet
ant_regs[0] = urtwn_read_4(sc, R92C_CONFIG_ANT_A);
ant_regs[1] = urtwn_read_4(sc, R92C_CONFIG_ANT_B);
rf_regs[0] = urtwn_read_4(sc, R92C_FPGA0_RFIFACESW(0));
for (i = 0; i < sc->nrxchains; i++)
rf_regs[i+1] = urtwn_read_4(sc, R92C_FPGA0_RFIFACEOE(i));
reg4 = urtwn_read_4(sc, R92C_CCK0_AFESETTING);
#endif
piMode = (urtwn_bb_read(sc, R92C_HSSI_PARAM1(0)) &
R92C_HSSI_PARAM1_PI);
if (piMode == 0) {
urtwn_bb_write(sc, R92C_HSSI_PARAM1(0),
urtwn_bb_read(sc, R92C_HSSI_PARAM1(0))|
R92C_HSSI_PARAM1_PI);
urtwn_bb_write(sc, R92C_HSSI_PARAM1(1),
urtwn_bb_read(sc, R92C_HSSI_PARAM1(1))|
R92C_HSSI_PARAM1_PI);
}
attempt = 1;
next_attempt:
/* Set mac regs for calibration. */
for (i = 0; i < __arraycount(addaReg); i++) {
urtwn_bb_write(sc, addaReg[i],
addaReg[__arraycount(addaReg) - 1]);
}
urtwn_write_2(sc, R92C_CCK0_AFESETTING, urtwn_read_2(sc,
R92C_CCK0_AFESETTING));
urtwn_write_2(sc, R92C_OFDM0_TRXPATHENA, R92C_IQK_TRXPATHENA);
urtwn_write_2(sc, R92C_OFDM0_TRMUXPAR, R92C_IQK_TRMUXPAR);
urtwn_write_2(sc, R92C_FPGA0_RFIFACESW(1), R92C_IQK_RFIFACESW1);
urtwn_write_4(sc, R92C_LSSI_PARAM(0), R92C_IQK_LSSI_PARAM);
if (sc->ntxchains > 1)
urtwn_bb_write(sc, R92C_LSSI_PARAM(1), R92C_IQK_LSSI_PARAM);
urtwn_write_1(sc, R92C_TXPAUSE, (~R92C_TXPAUSE_BCN) & R92C_TXPAUSE_ALL);
urtwn_write_1(sc, R92C_BCN_CTRL, (iqkBackup[1] &
~R92C_BCN_CTRL_EN_BCN));
urtwn_write_1(sc, R92C_BCN_CTRL1, (iqkBackup[2] &
~R92C_BCN_CTRL_EN_BCN));
urtwn_write_1(sc, R92C_GPIO_MUXCFG, (iqkBackup[3] &
~R92C_GPIO_MUXCFG_ENBT));
urtwn_bb_write(sc, R92C_CONFIG_ANT_A, R92C_IQK_CONFIG_ANT);
if (sc->ntxchains > 1)
urtwn_bb_write(sc, R92C_CONFIG_ANT_B, R92C_IQK_CONFIG_ANT);
urtwn_bb_write(sc, R92C_FPGA0_IQK, R92C_FPGA0_IQK_SETTING);
urtwn_bb_write(sc, R92C_TX_IQK, R92C_TX_IQK_SETTING);
urtwn_bb_write(sc, R92C_RX_IQK, R92C_RX_IQK_SETTING);
/* Restore BB regs. */
urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg0);
urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(1), reg2);
urtwn_bb_write(sc, R92C_OFDM0_TRMUXPAR, reg1);
urtwn_bb_write(sc, R92C_FPGA0_IQK, 0x0);
urtwn_bb_write(sc, R92C_LSSI_PARAM(0), R92C_IQK_LSSI_RESTORE);
if (sc->nrxchains > 1)
urtwn_bb_write(sc, R92C_LSSI_PARAM(1), R92C_IQK_LSSI_RESTORE);
if (attempt-- > 0)
goto next_attempt;
/* Restore mode. */
if (piMode == 0) {
urtwn_bb_write(sc, R92C_HSSI_PARAM1(0),
urtwn_bb_read(sc, R92C_HSSI_PARAM1(0)) &
~R92C_HSSI_PARAM1_PI);
urtwn_bb_write(sc, R92C_HSSI_PARAM1(1),
urtwn_bb_read(sc, R92C_HSSI_PARAM1(1)) &
~R92C_HSSI_PARAM1_PI);
}
#ifdef notyet
for (i = 0; i < sc->nrxchains; i++) {
urtwn_write_4(sc, R92C_OFDM0_AGCCORE1(i),
odfm0_agccore_regs[i]);
}
#endif
/* Restore adda regs. */
for (i = 0; i < __arraycount(addaReg); i++)
urtwn_bb_write(sc, addaReg[i], addaBackup[i]);
/* Restore mac regs. */
urtwn_write_1(sc, R92C_TXPAUSE, iqkBackup[0]);
urtwn_write_1(sc, R92C_BCN_CTRL, iqkBackup[1]);
urtwn_write_1(sc, R92C_USTIME_TSF, iqkBackup[2]);
urtwn_write_4(sc, R92C_GPIO_MUXCFG, iqkBackup[3]);
#ifdef notyet
urtwn_write_4(sc, R92C_CONFIG_ANT_A, ant_regs[0]);
urtwn_write_4(sc, R92C_CONFIG_ANT_B, ant_regs[1]);
urtwn_write_4(sc, R92C_FPGA0_RFIFACESW(0), rf_regs[0]);
for (i = 0; i < sc->nrxchains; i++)
urtwn_write_4(sc, R92C_FPGA0_RFIFACEOE(i), rf_regs[i+1]);
urtwn_write_4(sc, R92C_CCK0_AFESETTING, reg4);
#endif
}
static void
urtwn_lc_calib(struct urtwn_softc *sc)
{
uint32_t rf_ac[2];
uint8_t txmode;
size_t i;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3);
if ((txmode & 0x70) != 0) {
/* Disable all continuous Tx. */
urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70);
/* Set RF mode to standby mode. */
for (i = 0; i < sc->nrxchains; i++) {
rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC);
urtwn_rf_write(sc, i, R92C_RF_AC,
RW(rf_ac[i], R92C_RF_AC_MODE,
R92C_RF_AC_MODE_STANDBY));
}
} else {
/* Block all Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE, 0xff);
}
/* Start calibration. */
urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART);
/* Give calibration the time to complete. */
urtwn_delay_ms(sc, 100);
/* Restore configuration. */
if ((txmode & 0x70) != 0) {
/* Restore Tx mode. */
urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode);
/* Restore RF mode. */
for (i = 0; i < sc->nrxchains; i++) {
urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]);
}
} else {
/* Unblock all Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE, 0x00);
}
}
static void
urtwn_temp_calib(struct urtwn_softc *sc)
{
int temp, t_meter_reg;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_write_mtx));
if (!ISSET(sc->chip, URTWN_CHIP_92EU))
t_meter_reg = R92C_RF_T_METER;
else
t_meter_reg = R92E_RF_T_METER;
if (sc->thcal_state == 0) {
/* Start measuring temperature. */
DPRINTFN(DBG_RF, "start measuring temperature", 0, 0, 0, 0);
urtwn_rf_write(sc, 0, t_meter_reg, 0x60);
sc->thcal_state = 1;
return;
}
sc->thcal_state = 0;
/* Read measured temperature. */
temp = urtwn_rf_read(sc, 0, R92C_RF_T_METER) & 0x1f;
DPRINTFN(DBG_RF, "temperature=%jd", temp, 0, 0, 0);
if (temp == 0) /* Read failed, skip. */
return;
/*
* Redo LC calibration if temperature changed significantly since
* last calibration.
*/
if (sc->thcal_lctemp == 0) {
/* First LC calibration is performed in urtwn_init(). */
sc->thcal_lctemp = temp;
} else if (abs(temp - sc->thcal_lctemp) > 1) {
DPRINTFN(DBG_RF, "LC calib triggered by temp: %jd -> %jd",
sc->thcal_lctemp, temp, 0, 0);
urtwn_lc_calib(sc);
/* Record temperature of last LC calibration. */
sc->thcal_lctemp = temp;
}
}
static int
urtwn_init(struct ifnet *ifp)
{
struct urtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct urtwn_rx_data *data;
uint32_t reg;
size_t i;
int error;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
urtwn_stop(ifp, 0);
mutex_enter(&sc->sc_write_mtx);
mutex_enter(&sc->sc_task_mtx);
/* Init host async commands ring. */
sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
mutex_exit(&sc->sc_task_mtx);
mutex_enter(&sc->sc_fwcmd_mtx);
/* Init firmware commands ring. */
sc->fwcur = 0;
mutex_exit(&sc->sc_fwcmd_mtx);
/* Allocate Tx/Rx buffers. */
error = urtwn_alloc_rx_list(sc);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate Rx buffers\n");
goto fail;
}
error = urtwn_alloc_tx_list(sc);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate Tx buffers\n");
goto fail;
}
/* Power on adapter. */
error = urtwn_power_on(sc);
if (error != 0)
goto fail;
/* Initialize DMA. */
error = urtwn_dma_init(sc);
if (error != 0)
goto fail;
/* Set info size in Rx descriptors (in 64-bit words). */
urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4);
/* Init interrupts. */
if (ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU)) {
urtwn_write_4(sc, R88E_HISR, 0xffffffff);
urtwn_write_4(sc, R88E_HIMR, R88E_HIMR_CPWM | R88E_HIMR_CPWM2 |
R88E_HIMR_TBDER | R88E_HIMR_PSTIMEOUT);
urtwn_write_4(sc, R88E_HIMRE, R88E_HIMRE_RXFOVW |
R88E_HIMRE_TXFOVW | R88E_HIMRE_RXERR | R88E_HIMRE_TXERR);
if (ISSET(sc->chip, URTWN_CHIP_88E)) {
urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) |
R92C_USB_SPECIAL_OPTION_INT_BULK_SEL);
}
if (ISSET(sc->chip, URTWN_CHIP_92EU))
urtwn_write_1(sc, R92C_USB_HRPWM, 0);
} else {
urtwn_write_4(sc, R92C_HISR, 0xffffffff);
urtwn_write_4(sc, R92C_HIMR, 0xffffffff);
}
/* Set MAC address. */
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
urtwn_write_region(sc, R92C_MACID, ic->ic_myaddr, IEEE80211_ADDR_LEN);
/* Set initial network type. */
reg = urtwn_read_4(sc, R92C_CR);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
default:
reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA);
break;
case IEEE80211_M_IBSS:
reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_ADHOC);
break;
}
urtwn_write_4(sc, R92C_CR, reg);
/* Set response rate */
reg = urtwn_read_4(sc, R92C_RRSR);
reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M);
urtwn_write_4(sc, R92C_RRSR, reg);
/* SIFS (used in NAV) */
urtwn_write_2(sc, R92C_SPEC_SIFS,
SM(R92C_SPEC_SIFS_CCK, 0x10) | SM(R92C_SPEC_SIFS_OFDM, 0x10));
/* Set short/long retry limits. */
urtwn_write_2(sc, R92C_RL,
SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30));
/* Initialize EDCA parameters. */
urtwn_edca_init(sc);
/* Setup rate fallback. */
if (!ISSET(sc->chip, URTWN_CHIP_88E) &&
!ISSET(sc->chip, URTWN_CHIP_92EU)) {
urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000);
urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404);
urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201);
urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605);
}
urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL,
urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) |
R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW);
/* Set ACK timeout. */
urtwn_write_1(sc, R92C_ACKTO, 0x40);
/* Setup USB aggregation. */
/* Tx */
reg = urtwn_read_4(sc, R92C_TDECTRL);
reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6);
urtwn_write_4(sc, R92C_TDECTRL, reg);
/* Rx */
urtwn_write_1(sc, R92C_TRXDMA_CTRL,
urtwn_read_1(sc, R92C_TRXDMA_CTRL) |
R92C_TRXDMA_CTRL_RXDMA_AGG_EN);
urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) &
~R92C_USB_SPECIAL_OPTION_AGG_EN);
urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48);
if (ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU))
urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH + 1, 4);
else
urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4);
/* Initialize beacon parameters. */
urtwn_write_2(sc, R92C_BCN_CTRL, 0x1010);
urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404);
urtwn_write_1(sc, R92C_DRVERLYINT, R92C_DRVERLYINT_INIT_TIME);
urtwn_write_1(sc, R92C_BCNDMATIM, R92C_BCNDMATIM_INIT_TIME);
urtwn_write_2(sc, R92C_BCNTCFG, 0x660f);
if (!ISSET(sc->chip, URTWN_CHIP_88E) &&
!ISSET(sc->chip, URTWN_CHIP_92EU)) {
/* Setup AMPDU aggregation. */
urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */
urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16);
urtwn_write_2(sc, 0x4ca, 0x0708);
urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff);
urtwn_write_1(sc, R92C_BCN_CTRL, R92C_BCN_CTRL_DIS_TSF_UDT0);
}
/* Load 8051 microcode. */
error = urtwn_load_firmware(sc);
if (error != 0)
goto fail;
SET(sc->sc_flags, URTWN_FLAG_FWREADY);
/* Initialize MAC/BB/RF blocks. */
/*
* XXX: urtwn_mac_init() sets R92C_RCR[0:15] = R92C_RCR_APM |
* R92C_RCR_AM | R92C_RCR_AB | R92C_RCR_AICV | R92C_RCR_AMF.
* XXX: This setting should be removed from rtl8192cu_mac[].
*/
urtwn_mac_init(sc); // sets R92C_RCR[0:15]
urtwn_rxfilter_init(sc); // reset R92C_RCR
urtwn_bb_init(sc);
urtwn_rf_init(sc);
if (ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU)) {
urtwn_write_2(sc, R92C_CR,
urtwn_read_2(sc, R92C_CR) | R92C_CR_MACTXEN |
R92C_CR_MACRXEN);
}
/* Turn CCK and OFDM blocks on. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg |= R92C_RFMOD_CCK_EN;
urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg |= R92C_RFMOD_OFDM_EN;
urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
/* Clear per-station keys table. */
urtwn_cam_init(sc);
/* Enable hardware sequence numbering. */
urtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff);
/* Perform LO and IQ calibrations. */
urtwn_iq_calib(sc, sc->iqk_inited);
sc->iqk_inited = true;
/* Perform LC calibration. */
urtwn_lc_calib(sc);
if (!ISSET(sc->chip, URTWN_CHIP_88E) &&
!ISSET(sc->chip, URTWN_CHIP_92EU)) {
/* Fix USB interference issue. */
urtwn_write_1(sc, 0xfe40, 0xe0);
urtwn_write_1(sc, 0xfe41, 0x8d);
urtwn_write_1(sc, 0xfe42, 0x80);
urtwn_write_4(sc, 0x20c, 0xfd0320);
urtwn_pa_bias_init(sc);
}
if (!(sc->chip & (URTWN_CHIP_92C | URTWN_CHIP_92C_1T2R)) ||
!(sc->chip & URTWN_CHIP_92EU)) {
/* 1T1R */
urtwn_bb_write(sc, R92C_FPGA0_RFPARAM(0),
urtwn_bb_read(sc, R92C_FPGA0_RFPARAM(0)) | __BIT(13));
}
/* Initialize GPIO setting. */
urtwn_write_1(sc, R92C_GPIO_MUXCFG,
urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT);
/* Fix for lower temperature. */
if (!ISSET(sc->chip, URTWN_CHIP_88E) &&
!ISSET(sc->chip, URTWN_CHIP_92EU))
urtwn_write_1(sc, 0x15, 0xe9);
/* Set default channel. */
urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE);
/* Queue Rx xfers. */
for (size_t j = 0; j < sc->rx_npipe; j++) {
for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
data = &sc->rx_data[j][i];
usbd_setup_xfer(data->xfer, data, data->buf,
URTWN_RXBUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT,
urtwn_rxeof);
error = usbd_transfer(data->xfer);
if (__predict_false(error != USBD_NORMAL_COMPLETION &&
error != USBD_IN_PROGRESS))
goto fail;
}
}
/* We're ready to go. */
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
sc->sc_running = true;
mutex_exit(&sc->sc_write_mtx);
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
urtwn_wait_async(sc);
return 0;
fail:
mutex_exit(&sc->sc_write_mtx);
urtwn_stop(ifp, 1);
return error;
}
static void __noinline
urtwn_stop(struct ifnet *ifp, int disable)
{
struct urtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
size_t i;
int s;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
s = splusb();
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
urtwn_wait_async(sc);
splx(s);
sc->tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
callout_stop(&sc->sc_scan_to);
callout_stop(&sc->sc_calib_to);
/* Abort Tx. */
for (i = 0; i < sc->tx_npipe; i++) {
if (sc->tx_pipe[i] != NULL)
usbd_abort_pipe(sc->tx_pipe[i]);
}
/* Stop Rx pipe. */
for (i = 0; i < sc->rx_npipe; i++) {
if (sc->rx_pipe[i] != NULL)
usbd_abort_pipe(sc->rx_pipe[i]);
}
/* Free Tx/Rx buffers. */
urtwn_free_tx_list(sc);
urtwn_free_rx_list(sc);
sc->sc_running = false;
if (disable)
urtwn_chip_stop(sc);
}
static int
urtwn_reset(struct ifnet *ifp)
{
struct urtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
return ENETRESET;
urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE);
return 0;
}
static void
urtwn_chip_stop(struct urtwn_softc *sc)
{
uint32_t reg;
bool disabled = true;
URTWNHIST_FUNC(); URTWNHIST_CALLED();
if (ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU))
return;
mutex_enter(&sc->sc_write_mtx);
/*
* RF Off Sequence
*/
/* Pause MAC TX queue */
urtwn_write_1(sc, R92C_TXPAUSE, 0xFF);
/* Disable RF */
urtwn_rf_write(sc, 0, 0, 0);
urtwn_write_1(sc, R92C_APSD_CTRL, R92C_APSD_CTRL_OFF);
/* Reset BB state machine */
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
R92C_SYS_FUNC_EN_USBD |
R92C_SYS_FUNC_EN_USBA |
R92C_SYS_FUNC_EN_BB_GLB_RST);
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_USBA);
/*
* Reset digital sequence
*/
if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RDY) {
/* Reset MCU ready status */
urtwn_write_1(sc, R92C_MCUFWDL, 0);
/* If firmware in ram code, do reset */
if (ISSET(sc->sc_flags, URTWN_FLAG_FWREADY)) {
if (ISSET(sc->chip, URTWN_CHIP_88E) ||
ISSET(sc->chip, URTWN_CHIP_92EU))
urtwn_r88e_fw_reset(sc);
else
urtwn_fw_reset(sc);
CLR(sc->sc_flags, URTWN_FLAG_FWREADY);
}
}
/* Reset MAC and Enable 8051 */
urtwn_write_1(sc, R92C_SYS_FUNC_EN + 1, 0x54);
/* Reset MCU ready status */
urtwn_write_1(sc, R92C_MCUFWDL, 0);
if (disabled) {
/* Disable MAC clock */
urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
/* Disable AFE PLL */
urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x80);
/* Gated AFE DIG_CLOCK */
urtwn_write_2(sc, R92C_AFE_XTAL_CTRL, 0x880F);
/* Isolated digital to PON */
urtwn_write_1(sc, R92C_SYS_ISO_CTRL, 0xF9);
}
/*
* Pull GPIO PIN to balance level and LED control
*/
/* 1. Disable GPIO[7:0] */
urtwn_write_2(sc, R92C_GPIO_PIN_CTRL + 2, 0x0000);
reg = urtwn_read_4(sc, R92C_GPIO_PIN_CTRL) & ~0x0000ff00;
reg |= ((reg << 8) & 0x0000ff00) | 0x00ff0000;
urtwn_write_4(sc, R92C_GPIO_PIN_CTRL, reg);
/* Disable GPIO[10:8] */
urtwn_write_1(sc, R92C_GPIO_MUXCFG + 3, 0x00);
reg = urtwn_read_2(sc, R92C_GPIO_MUXCFG + 2) & ~0x00f0;
reg |= (((reg & 0x000f) << 4) | 0x0780);
urtwn_write_2(sc, R92C_GPIO_MUXCFG + 2, reg);
/* Disable LED0 & 1 */
urtwn_write_2(sc, R92C_LEDCFG0, 0x8080);
/*
* Reset digital sequence
*/
if (disabled) {
/* Disable ELDR clock */
urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
/* Isolated ELDR to PON */
urtwn_write_1(sc, R92C_SYS_ISO_CTRL + 1, 0x82);
}
/*
* Disable analog sequence
*/
if (disabled) {
/* Disable A15 power */
urtwn_write_1(sc, R92C_LDOA15_CTRL, 0x04);
/* Disable digital core power */
urtwn_write_1(sc, R92C_LDOV12D_CTRL,
urtwn_read_1(sc, R92C_LDOV12D_CTRL) &
~R92C_LDOV12D_CTRL_LDV12_EN);
}
/* Enter PFM mode */
urtwn_write_1(sc, R92C_SPS0_CTRL, 0x23);
/* Set USB suspend */
urtwn_write_2(sc, R92C_APS_FSMCO,
R92C_APS_FSMCO_APDM_HOST |
R92C_APS_FSMCO_AFSM_HSUS |
R92C_APS_FSMCO_PFM_ALDN);
urtwn_write_1(sc, R92C_RSV_CTRL, 0x0E);
mutex_exit(&sc->sc_write_mtx);
}
static void
urtwn_delay_ms(struct urtwn_softc *sc, int ms)
{
if (sc->sc_running == false)
DELAY(ms * 1000);
else
usbd_delay_ms(sc->sc_udev, ms);
}
MODULE(MODULE_CLASS_DRIVER, if_urtwn, NULL);
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
if_urtwn_modcmd(modcmd_t cmd, void *aux)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = config_init_component(cfdriver_ioconf_urtwn,
cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
#endif
return error;
case MODULE_CMD_FINI:
#ifdef _MODULE
error = config_fini_component(cfdriver_ioconf_urtwn,
cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
#endif
return error;
default:
return ENOTTY;
}
}