NetBSD/sys/dev/sdmmc/sdmmc_mem.c

2275 lines
58 KiB
C

/* $NetBSD: sdmmc_mem.c,v 1.75 2023/04/29 13:21:31 jmcneill Exp $ */
/* $OpenBSD: sdmmc_mem.c,v 1.10 2009/01/09 10:55:22 jsg Exp $ */
/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Copyright (C) 2007, 2008, 2009, 2010 NONAKA Kimihiro <nonaka@netbsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Routines for SD/MMC memory cards. */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sdmmc_mem.c,v 1.75 2023/04/29 13:21:31 jmcneill Exp $");
#ifdef _KERNEL_OPT
#include "opt_sdmmc.h"
#endif
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/bitops.h>
#include <sys/evcnt.h>
#include <dev/sdmmc/sdmmcchip.h>
#include <dev/sdmmc/sdmmcreg.h>
#include <dev/sdmmc/sdmmcvar.h>
#ifdef SDMMC_DEBUG
#define DPRINTF(s) do { printf s; } while (/*CONSTCOND*/0)
#else
#define DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif
typedef struct { uint32_t _bits[512/32]; } __packed __aligned(4) sdmmc_bitfield512_t;
static int sdmmc_mem_sd_init(struct sdmmc_softc *, struct sdmmc_function *);
static int sdmmc_mem_mmc_init(struct sdmmc_softc *, struct sdmmc_function *);
static int sdmmc_mem_send_cid(struct sdmmc_softc *, sdmmc_response *);
static int sdmmc_mem_send_csd(struct sdmmc_softc *, struct sdmmc_function *,
sdmmc_response *);
static int sdmmc_mem_send_scr(struct sdmmc_softc *, struct sdmmc_function *,
uint32_t *scr);
static int sdmmc_mem_decode_scr(struct sdmmc_softc *, struct sdmmc_function *);
static int sdmmc_mem_send_ssr(struct sdmmc_softc *, struct sdmmc_function *,
sdmmc_bitfield512_t *);
static int sdmmc_mem_decode_ssr(struct sdmmc_softc *, struct sdmmc_function *,
sdmmc_bitfield512_t *);
static int sdmmc_mem_send_cxd_data(struct sdmmc_softc *, int, void *, size_t);
static int sdmmc_set_bus_width(struct sdmmc_function *, int);
static int sdmmc_mem_sd_switch(struct sdmmc_function *, int, int, int, sdmmc_bitfield512_t *);
static int sdmmc_mem_mmc_switch(struct sdmmc_function *, uint8_t, uint8_t,
uint8_t, bool);
static int sdmmc_mem_signal_voltage(struct sdmmc_softc *, int);
static int sdmmc_mem_spi_read_ocr(struct sdmmc_softc *, uint32_t, uint32_t *);
static int sdmmc_mem_single_read_block(struct sdmmc_function *, uint32_t,
u_char *, size_t);
static int sdmmc_mem_single_write_block(struct sdmmc_function *, uint32_t,
u_char *, size_t);
static int sdmmc_mem_single_segment_dma_read_block(struct sdmmc_function *,
uint32_t, u_char *, size_t);
static int sdmmc_mem_single_segment_dma_write_block(struct sdmmc_function *,
uint32_t, u_char *, size_t);
static int sdmmc_mem_read_block_subr(struct sdmmc_function *, bus_dmamap_t,
uint32_t, u_char *, size_t);
static int sdmmc_mem_write_block_subr(struct sdmmc_function *, bus_dmamap_t,
uint32_t, u_char *, size_t);
static const struct {
const char *name;
int v;
int freq;
} switch_group0_functions[] = {
/* Default/SDR12 */
{ "Default/SDR12", 0, 25000 },
/* High-Speed/SDR25 */
{ "High-Speed/SDR25", SMC_CAPS_SD_HIGHSPEED, 50000 },
/* SDR50 */
{ "SDR50", SMC_CAPS_UHS_SDR50, 100000 },
/* SDR104 */
{ "SDR104", SMC_CAPS_UHS_SDR104, 208000 },
/* DDR50 */
{ "DDR50", SMC_CAPS_UHS_DDR50, 50000 },
};
static const int sdmmc_mmc_timings[] = {
[EXT_CSD_HS_TIMING_LEGACY] = 26000,
[EXT_CSD_HS_TIMING_HIGHSPEED] = 52000,
[EXT_CSD_HS_TIMING_HS200] = 200000
};
/*
* Initialize SD/MMC memory cards and memory in SDIO "combo" cards.
*/
int
sdmmc_mem_enable(struct sdmmc_softc *sc)
{
uint32_t host_ocr;
uint32_t card_ocr;
uint32_t new_ocr;
uint32_t ocr = 0;
int error;
SDMMC_LOCK(sc);
/* Set host mode to SD "combo" card or SD memory-only. */
CLR(sc->sc_flags, SMF_UHS_MODE);
SET(sc->sc_flags, SMF_SD_MODE|SMF_MEM_MODE);
if (ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE))
sdmmc_spi_chip_initialize(sc->sc_spi_sct, sc->sc_sch);
/* Reset memory (*must* do that before CMD55 or CMD1). */
sdmmc_go_idle_state(sc);
if (ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
/* Check SD Ver.2 */
error = sdmmc_mem_send_if_cond(sc, 0x1aa, &card_ocr);
if (error == 0 && card_ocr == 0x1aa)
SET(ocr, MMC_OCR_HCS);
}
/*
* Read the SD/MMC memory OCR value by issuing CMD55 followed
* by ACMD41 to read the OCR value from memory-only SD cards.
* MMC cards will not respond to CMD55 or ACMD41 and this is
* how we distinguish them from SD cards.
*/
mmc_mode:
error = sdmmc_mem_send_op_cond(sc,
ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE) ? ocr : 0, &card_ocr);
if (error) {
if (ISSET(sc->sc_flags, SMF_SD_MODE) &&
!ISSET(sc->sc_flags, SMF_IO_MODE)) {
/* Not a SD card, switch to MMC mode. */
DPRINTF(("%s: switch to MMC mode\n", SDMMCDEVNAME(sc)));
CLR(sc->sc_flags, SMF_SD_MODE);
goto mmc_mode;
}
if (!ISSET(sc->sc_flags, SMF_SD_MODE)) {
DPRINTF(("%s: couldn't read memory OCR\n",
SDMMCDEVNAME(sc)));
goto out;
} else {
/* Not a "combo" card. */
CLR(sc->sc_flags, SMF_MEM_MODE);
error = 0;
goto out;
}
}
if (ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
/* get card OCR */
error = sdmmc_mem_spi_read_ocr(sc, ocr, &card_ocr);
if (error) {
DPRINTF(("%s: couldn't read SPI memory OCR\n",
SDMMCDEVNAME(sc)));
goto out;
}
}
/* Set the lowest voltage supported by the card and host. */
host_ocr = sdmmc_chip_host_ocr(sc->sc_sct, sc->sc_sch);
error = sdmmc_set_bus_power(sc, host_ocr, card_ocr);
if (error) {
DPRINTF(("%s: couldn't supply voltage requested by card\n",
SDMMCDEVNAME(sc)));
goto out;
}
DPRINTF(("%s: host_ocr 0x%08x\n", SDMMCDEVNAME(sc), host_ocr));
DPRINTF(("%s: card_ocr 0x%08x\n", SDMMCDEVNAME(sc), card_ocr));
host_ocr &= card_ocr; /* only allow the common voltages */
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
if (ISSET(sc->sc_flags, SMF_SD_MODE)) {
/* Tell the card(s) to enter the idle state (again). */
sdmmc_go_idle_state(sc);
/* Check SD Ver.2 */
error = sdmmc_mem_send_if_cond(sc, 0x1aa, &card_ocr);
if (error == 0 && card_ocr == 0x1aa)
SET(ocr, MMC_OCR_HCS);
if (sdmmc_chip_host_ocr(sc->sc_sct, sc->sc_sch) & MMC_OCR_S18A)
SET(ocr, MMC_OCR_S18A);
} else {
SET(ocr, MMC_OCR_ACCESS_MODE_SECTOR);
}
}
host_ocr |= ocr;
/* Send the new OCR value until all cards are ready. */
error = sdmmc_mem_send_op_cond(sc, host_ocr, &new_ocr);
if (error) {
DPRINTF(("%s: couldn't send memory OCR\n", SDMMCDEVNAME(sc)));
goto out;
}
if (ISSET(sc->sc_flags, SMF_SD_MODE) && ISSET(new_ocr, MMC_OCR_S18A)) {
/*
* Card and host support low voltage mode, begin switch
* sequence.
*/
struct sdmmc_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.c_arg = 0;
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1;
cmd.c_opcode = SD_VOLTAGE_SWITCH;
DPRINTF(("%s: switching card to 1.8V\n", SDMMCDEVNAME(sc)));
error = sdmmc_mmc_command(sc, &cmd);
if (error) {
DPRINTF(("%s: voltage switch command failed\n",
SDMMCDEVNAME(sc)));
goto out;
}
error = sdmmc_mem_signal_voltage(sc, SDMMC_SIGNAL_VOLTAGE_180);
if (error) {
DPRINTF(("%s: voltage change on host failed\n",
SDMMCDEVNAME(sc)));
goto out;
}
SET(sc->sc_flags, SMF_UHS_MODE);
}
out:
SDMMC_UNLOCK(sc);
return error;
}
static int
sdmmc_mem_signal_voltage(struct sdmmc_softc *sc, int signal_voltage)
{
int error;
/*
* Stop the clock
*/
error = sdmmc_chip_bus_clock(sc->sc_sct, sc->sc_sch,
SDMMC_SDCLK_OFF, false);
if (error)
goto out;
delay(1000);
/*
* Card switch command was successful, update host controller
* signal voltage setting.
*/
DPRINTF(("%s: switching host to %s\n", SDMMCDEVNAME(sc),
signal_voltage == SDMMC_SIGNAL_VOLTAGE_180 ? "1.8V" : "3.3V"));
error = sdmmc_chip_signal_voltage(sc->sc_sct,
sc->sc_sch, signal_voltage);
if (error)
goto out;
delay(5000);
/*
* Switch to SDR12 timing
*/
error = sdmmc_chip_bus_clock(sc->sc_sct, sc->sc_sch, 25000,
false);
if (error)
goto out;
delay(1000);
out:
return error;
}
/*
* Read the CSD and CID from all cards and assign each card a unique
* relative card address (RCA). CMD2 is ignored by SDIO-only cards.
*/
void
sdmmc_mem_scan(struct sdmmc_softc *sc)
{
sdmmc_response resp;
struct sdmmc_function *sf;
uint16_t next_rca;
int error;
int retry;
SDMMC_LOCK(sc);
/*
* CMD2 is a broadcast command understood by SD cards and MMC
* cards. All cards begin to respond to the command, but back
* off if another card drives the CMD line to a different level.
* Only one card will get its entire response through. That
* card remains silent once it has been assigned a RCA.
*/
for (retry = 0; retry < 100; retry++) {
error = sdmmc_mem_send_cid(sc, &resp);
if (error) {
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE) &&
error == ETIMEDOUT) {
/* No more cards there. */
break;
}
DPRINTF(("%s: couldn't read CID\n", SDMMCDEVNAME(sc)));
break;
}
/* In MMC mode, find the next available RCA. */
next_rca = 1;
if (!ISSET(sc->sc_flags, SMF_SD_MODE)) {
SIMPLEQ_FOREACH(sf, &sc->sf_head, sf_list)
next_rca++;
}
/* Allocate a sdmmc_function structure. */
sf = sdmmc_function_alloc(sc);
sf->rca = next_rca;
/*
* Remember the CID returned in the CMD2 response for
* later decoding.
*/
memcpy(sf->raw_cid, resp, sizeof(sf->raw_cid));
/*
* Silence the card by assigning it a unique RCA, or
* querying it for its RCA in the case of SD.
*/
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
if (sdmmc_set_relative_addr(sc, sf) != 0) {
aprint_error_dev(sc->sc_dev,
"couldn't set mem RCA\n");
sdmmc_function_free(sf);
break;
}
}
/*
* If this is a memory-only card, the card responding
* first becomes an alias for SDIO function 0.
*/
if (sc->sc_fn0 == NULL)
sc->sc_fn0 = sf;
SIMPLEQ_INSERT_TAIL(&sc->sf_head, sf, sf_list);
/* only one function in SPI mode */
if (ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE))
break;
}
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE))
/* Go to Data Transfer Mode, if possible. */
sdmmc_chip_bus_rod(sc->sc_sct, sc->sc_sch, 0);
/*
* All cards are either inactive or awaiting further commands.
* Read the CSDs and decode the raw CID for each card.
*/
SIMPLEQ_FOREACH(sf, &sc->sf_head, sf_list) {
error = sdmmc_mem_send_csd(sc, sf, &resp);
if (error) {
SET(sf->flags, SFF_ERROR);
continue;
}
if (sdmmc_decode_csd(sc, resp, sf) != 0 ||
sdmmc_decode_cid(sc, sf->raw_cid, sf) != 0) {
SET(sf->flags, SFF_ERROR);
continue;
}
#ifdef SDMMC_DEBUG
printf("%s: CID: ", SDMMCDEVNAME(sc));
sdmmc_print_cid(&sf->cid);
#endif
}
SDMMC_UNLOCK(sc);
}
int
sdmmc_decode_csd(struct sdmmc_softc *sc, sdmmc_response resp,
struct sdmmc_function *sf)
{
/* TRAN_SPEED(2:0): transfer rate exponent */
static const int speed_exponent[8] = {
100 * 1, /* 100 Kbits/s */
1 * 1000, /* 1 Mbits/s */
10 * 1000, /* 10 Mbits/s */
100 * 1000, /* 100 Mbits/s */
0,
0,
0,
0,
};
/* TRAN_SPEED(6:3): time mantissa */
static const int speed_mantissa[16] = {
0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80,
};
struct sdmmc_csd *csd = &sf->csd;
int e, m;
if (ISSET(sc->sc_flags, SMF_SD_MODE)) {
/*
* CSD version 1.0 corresponds to SD system
* specification version 1.0 - 1.10. (SanDisk, 3.5.3)
*/
csd->csdver = SD_CSD_CSDVER(resp);
switch (csd->csdver) {
case SD_CSD_CSDVER_2_0:
DPRINTF(("%s: SD Ver.2.0\n", SDMMCDEVNAME(sc)));
SET(sf->flags, SFF_SDHC);
csd->capacity = SD_CSD_V2_CAPACITY(resp);
csd->read_bl_len = SD_CSD_V2_BL_LEN;
break;
case SD_CSD_CSDVER_1_0:
DPRINTF(("%s: SD Ver.1.0\n", SDMMCDEVNAME(sc)));
csd->capacity = SD_CSD_CAPACITY(resp);
csd->read_bl_len = SD_CSD_READ_BL_LEN(resp);
break;
default:
aprint_error_dev(sc->sc_dev,
"unknown SD CSD structure version 0x%x\n",
csd->csdver);
return 1;
}
csd->mmcver = SD_CSD_MMCVER(resp);
csd->write_bl_len = SD_CSD_WRITE_BL_LEN(resp);
csd->r2w_factor = SD_CSD_R2W_FACTOR(resp);
e = SD_CSD_SPEED_EXP(resp);
m = SD_CSD_SPEED_MANT(resp);
csd->tran_speed = speed_exponent[e] * speed_mantissa[m] / 10;
csd->ccc = SD_CSD_CCC(resp);
} else {
csd->csdver = MMC_CSD_CSDVER(resp);
if (csd->csdver == MMC_CSD_CSDVER_1_0) {
aprint_error_dev(sc->sc_dev,
"unknown MMC CSD structure version 0x%x\n",
csd->csdver);
return 1;
}
csd->mmcver = MMC_CSD_MMCVER(resp);
csd->capacity = MMC_CSD_CAPACITY(resp);
csd->read_bl_len = MMC_CSD_READ_BL_LEN(resp);
csd->write_bl_len = MMC_CSD_WRITE_BL_LEN(resp);
csd->r2w_factor = MMC_CSD_R2W_FACTOR(resp);
e = MMC_CSD_TRAN_SPEED_EXP(resp);
m = MMC_CSD_TRAN_SPEED_MANT(resp);
csd->tran_speed = speed_exponent[e] * speed_mantissa[m] / 10;
}
if ((1 << csd->read_bl_len) > SDMMC_SECTOR_SIZE)
csd->capacity *= (1 << csd->read_bl_len) / SDMMC_SECTOR_SIZE;
#ifdef SDMMC_DUMP_CSD
sdmmc_print_csd(resp, csd);
#endif
return 0;
}
int
sdmmc_decode_cid(struct sdmmc_softc *sc, sdmmc_response resp,
struct sdmmc_function *sf)
{
struct sdmmc_cid *cid = &sf->cid;
if (ISSET(sc->sc_flags, SMF_SD_MODE)) {
cid->mid = SD_CID_MID(resp);
cid->oid = SD_CID_OID(resp);
SD_CID_PNM_CPY(resp, cid->pnm);
cid->rev = SD_CID_REV(resp);
cid->psn = SD_CID_PSN(resp);
cid->mdt = SD_CID_MDT(resp);
} else {
switch(sf->csd.mmcver) {
case MMC_CSD_MMCVER_1_0:
case MMC_CSD_MMCVER_1_4:
cid->mid = MMC_CID_MID_V1(resp);
MMC_CID_PNM_V1_CPY(resp, cid->pnm);
cid->rev = MMC_CID_REV_V1(resp);
cid->psn = MMC_CID_PSN_V1(resp);
cid->mdt = MMC_CID_MDT_V1(resp);
break;
case MMC_CSD_MMCVER_2_0:
case MMC_CSD_MMCVER_3_1:
case MMC_CSD_MMCVER_4_0:
cid->mid = MMC_CID_MID_V2(resp);
cid->oid = MMC_CID_OID_V2(resp);
MMC_CID_PNM_V2_CPY(resp, cid->pnm);
cid->psn = MMC_CID_PSN_V2(resp);
break;
default:
aprint_error_dev(sc->sc_dev, "unknown MMC version %d\n",
sf->csd.mmcver);
return 1;
}
}
return 0;
}
void
sdmmc_print_cid(struct sdmmc_cid *cid)
{
printf("mid=0x%02x oid=0x%04x pnm=\"%s\" rev=0x%02x psn=0x%08x"
" mdt=%03x\n", cid->mid, cid->oid, cid->pnm, cid->rev, cid->psn,
cid->mdt);
}
#ifdef SDMMC_DUMP_CSD
void
sdmmc_print_csd(sdmmc_response resp, struct sdmmc_csd *csd)
{
printf("csdver = %d\n", csd->csdver);
printf("mmcver = %d\n", csd->mmcver);
printf("capacity = 0x%08x\n", csd->capacity);
printf("read_bl_len = %d\n", csd->read_bl_len);
printf("write_bl_len = %d\n", csd->write_bl_len);
printf("r2w_factor = %d\n", csd->r2w_factor);
printf("tran_speed = %d\n", csd->tran_speed);
printf("ccc = 0x%x\n", csd->ccc);
}
#endif
/*
* Initialize a SD/MMC memory card.
*/
int
sdmmc_mem_init(struct sdmmc_softc *sc, struct sdmmc_function *sf)
{
int error = 0;
SDMMC_LOCK(sc);
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
error = sdmmc_select_card(sc, sf);
if (error)
goto out;
}
error = sdmmc_mem_set_blocklen(sc, sf, SDMMC_SECTOR_SIZE);
if (error)
goto out;
if (ISSET(sc->sc_flags, SMF_SD_MODE))
error = sdmmc_mem_sd_init(sc, sf);
else
error = sdmmc_mem_mmc_init(sc, sf);
if (error != 0)
SET(sf->flags, SFF_ERROR);
out:
SDMMC_UNLOCK(sc);
return error;
}
/*
* Get or set the card's memory OCR value (SD or MMC).
*/
int
sdmmc_mem_send_op_cond(struct sdmmc_softc *sc, uint32_t ocr, uint32_t *ocrp)
{
struct sdmmc_command cmd;
int error;
int retry;
/* Don't lock */
DPRINTF(("%s: sdmmc_mem_send_op_cond: ocr=%#x\n",
SDMMCDEVNAME(sc), ocr));
/*
* If we change the OCR value, retry the command until the OCR
* we receive in response has the "CARD BUSY" bit set, meaning
* that all cards are ready for identification.
*/
for (retry = 0; retry < 100; retry++) {
memset(&cmd, 0, sizeof(cmd));
cmd.c_arg = !ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE) ?
ocr : (ocr & MMC_OCR_HCS);
cmd.c_flags = SCF_CMD_BCR | SCF_RSP_R3 | SCF_RSP_SPI_R1
| SCF_TOUT_OK;
if (ISSET(sc->sc_flags, SMF_SD_MODE)) {
cmd.c_opcode = SD_APP_OP_COND;
error = sdmmc_app_command(sc, NULL, &cmd);
} else {
cmd.c_opcode = MMC_SEND_OP_COND;
error = sdmmc_mmc_command(sc, &cmd);
}
if (error)
break;
if (ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
if (!ISSET(MMC_SPI_R1(cmd.c_resp), R1_SPI_IDLE))
break;
} else {
if (ISSET(MMC_R3(cmd.c_resp), MMC_OCR_MEM_READY) ||
ocr == 0)
break;
}
error = ETIMEDOUT;
sdmmc_pause(10000, NULL);
}
if (ocrp != NULL) {
if (error == 0 &&
!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
*ocrp = MMC_R3(cmd.c_resp);
} else {
*ocrp = ocr;
}
}
DPRINTF(("%s: sdmmc_mem_send_op_cond: error=%d, ocr=%#x\n",
SDMMCDEVNAME(sc), error, MMC_R3(cmd.c_resp)));
return error;
}
int
sdmmc_mem_send_if_cond(struct sdmmc_softc *sc, uint32_t ocr, uint32_t *ocrp)
{
struct sdmmc_command cmd;
int error;
/* Don't lock */
memset(&cmd, 0, sizeof(cmd));
cmd.c_arg = ocr;
cmd.c_flags = SCF_CMD_BCR | SCF_RSP_R7 | SCF_RSP_SPI_R7 | SCF_TOUT_OK;
cmd.c_opcode = SD_SEND_IF_COND;
error = sdmmc_mmc_command(sc, &cmd);
if (error == 0 && ocrp != NULL) {
if (ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
*ocrp = MMC_SPI_R7(cmd.c_resp);
} else {
*ocrp = MMC_R7(cmd.c_resp);
}
DPRINTF(("%s: sdmmc_mem_send_if_cond: error=%d, ocr=%#x\n",
SDMMCDEVNAME(sc), error, *ocrp));
}
return error;
}
/*
* Set the read block length appropriately for this card, according to
* the card CSD register value.
*/
int
sdmmc_mem_set_blocklen(struct sdmmc_softc *sc, struct sdmmc_function *sf,
int block_len)
{
struct sdmmc_command cmd;
int error;
/* Don't lock */
memset(&cmd, 0, sizeof(cmd));
cmd.c_opcode = MMC_SET_BLOCKLEN;
cmd.c_arg = block_len;
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1 | SCF_RSP_SPI_R1;
error = sdmmc_mmc_command(sc, &cmd);
DPRINTF(("%s: sdmmc_mem_set_blocklen: read_bl_len=%d sector_size=%d\n",
SDMMCDEVNAME(sc), 1 << sf->csd.read_bl_len, block_len));
return error;
}
/* make 512-bit BE quantity __bitfield()-compatible */
static void
sdmmc_be512_to_bitfield512(sdmmc_bitfield512_t *buf) {
size_t i;
uint32_t tmp0, tmp1;
const size_t bitswords = __arraycount(buf->_bits);
for (i = 0; i < bitswords/2; i++) {
tmp0 = buf->_bits[i];
tmp1 = buf->_bits[bitswords - 1 - i];
buf->_bits[i] = be32toh(tmp1);
buf->_bits[bitswords - 1 - i] = be32toh(tmp0);
}
}
static int
sdmmc_mem_select_transfer_mode(struct sdmmc_softc *sc, int support_func)
{
if (ISSET(sc->sc_flags, SMF_UHS_MODE)) {
if (ISSET(sc->sc_caps, SMC_CAPS_UHS_SDR104) &&
ISSET(support_func, 1 << SD_ACCESS_MODE_SDR104)) {
return SD_ACCESS_MODE_SDR104;
}
if (ISSET(sc->sc_caps, SMC_CAPS_UHS_DDR50) &&
ISSET(support_func, 1 << SD_ACCESS_MODE_DDR50)) {
return SD_ACCESS_MODE_DDR50;
}
if (ISSET(sc->sc_caps, SMC_CAPS_UHS_SDR50) &&
ISSET(support_func, 1 << SD_ACCESS_MODE_SDR50)) {
return SD_ACCESS_MODE_SDR50;
}
}
if (ISSET(sc->sc_caps, SMC_CAPS_SD_HIGHSPEED) &&
ISSET(support_func, 1 << SD_ACCESS_MODE_SDR25)) {
return SD_ACCESS_MODE_SDR25;
}
return SD_ACCESS_MODE_SDR12;
}
static int
sdmmc_mem_execute_tuning(struct sdmmc_softc *sc, struct sdmmc_function *sf)
{
int timing = -1;
if (ISSET(sc->sc_flags, SMF_SD_MODE)) {
if (!ISSET(sc->sc_flags, SMF_UHS_MODE))
return 0;
switch (sf->csd.tran_speed) {
case 100000:
timing = SDMMC_TIMING_UHS_SDR50;
break;
case 208000:
timing = SDMMC_TIMING_UHS_SDR104;
break;
default:
return 0;
}
} else {
switch (sf->csd.tran_speed) {
case 200000:
timing = SDMMC_TIMING_MMC_HS200;
break;
default:
return 0;
}
}
DPRINTF(("%s: execute tuning for timing %d\n", SDMMCDEVNAME(sc),
timing));
return sdmmc_chip_execute_tuning(sc->sc_sct, sc->sc_sch, timing);
}
static int
sdmmc_mem_sd_init(struct sdmmc_softc *sc, struct sdmmc_function *sf)
{
int support_func, best_func, bus_clock, error, i;
sdmmc_bitfield512_t status;
bool ddr = false;
/* change bus clock */
bus_clock = uimin(sc->sc_busclk, sf->csd.tran_speed);
error = sdmmc_chip_bus_clock(sc->sc_sct, sc->sc_sch, bus_clock, false);
if (error) {
aprint_error_dev(sc->sc_dev, "can't change bus clock\n");
return error;
}
error = sdmmc_mem_send_scr(sc, sf, sf->raw_scr);
if (error) {
aprint_error_dev(sc->sc_dev, "SD_SEND_SCR send failed.\n");
return error;
}
error = sdmmc_mem_decode_scr(sc, sf);
if (error)
return error;
if (ISSET(sc->sc_caps, SMC_CAPS_4BIT_MODE) &&
ISSET(sf->scr.bus_width, SCR_SD_BUS_WIDTHS_4BIT)) {
DPRINTF(("%s: change bus width\n", SDMMCDEVNAME(sc)));
error = sdmmc_set_bus_width(sf, 4);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't change bus width (%d bit)\n", 4);
return error;
}
sf->width = 4;
}
best_func = 0;
if (sf->scr.sd_spec >= SCR_SD_SPEC_VER_1_10 &&
ISSET(sf->csd.ccc, SD_CSD_CCC_SWITCH)) {
DPRINTF(("%s: switch func mode 0\n", SDMMCDEVNAME(sc)));
error = sdmmc_mem_sd_switch(sf, 0, 1, 0, &status);
if (error) {
if (error == ENOTSUP) {
/* Not supported by controller */
goto skipswitchfuncs;
} else {
aprint_error_dev(sc->sc_dev,
"switch func mode 0 failed\n");
return error;
}
}
support_func = SFUNC_STATUS_GROUP(&status, 1);
if (!ISSET(sc->sc_flags, SMF_UHS_MODE) && support_func & 0x1c) {
/* XXX UHS-I card started in 1.8V mode, switch now */
error = sdmmc_mem_signal_voltage(sc,
SDMMC_SIGNAL_VOLTAGE_180);
if (error) {
aprint_error_dev(sc->sc_dev,
"failed to recover UHS card\n");
return error;
}
SET(sc->sc_flags, SMF_UHS_MODE);
}
for (i = 0; i < __arraycount(switch_group0_functions); i++) {
if (!(support_func & (1 << i)))
continue;
DPRINTF(("%s: card supports mode %s\n",
SDMMCDEVNAME(sc),
switch_group0_functions[i].name));
}
best_func = sdmmc_mem_select_transfer_mode(sc, support_func);
DPRINTF(("%s: using mode %s\n", SDMMCDEVNAME(sc),
switch_group0_functions[best_func].name));
if (best_func != 0) {
DPRINTF(("%s: switch func mode 1(func=%d)\n",
SDMMCDEVNAME(sc), best_func));
error =
sdmmc_mem_sd_switch(sf, 1, 1, best_func, &status);
if (error) {
aprint_error_dev(sc->sc_dev,
"switch func mode 1 failed:"
" group 1 function %d(0x%2x)\n",
best_func, support_func);
return error;
}
sf->csd.tran_speed =
switch_group0_functions[best_func].freq;
if (best_func == SD_ACCESS_MODE_DDR50)
ddr = true;
/* Wait 400KHz x 8 clock (2.5us * 8 + slop) */
delay(25);
}
}
skipswitchfuncs:
/* update bus clock */
if (sc->sc_busclk > sf->csd.tran_speed)
sc->sc_busclk = sf->csd.tran_speed;
if (sc->sc_busclk == bus_clock && sc->sc_busddr == ddr)
return 0;
/* change bus clock */
error = sdmmc_chip_bus_clock(sc->sc_sct, sc->sc_sch, sc->sc_busclk,
ddr);
if (error) {
aprint_error_dev(sc->sc_dev, "can't change bus clock\n");
return error;
}
sc->sc_transfer_mode = switch_group0_functions[best_func].name;
sc->sc_busddr = ddr;
/* get card status */
error = sdmmc_mem_send_ssr(sc, sf, &status);
if (error) {
aprint_error_dev(sc->sc_dev, "can't get SD status: %d\n",
error);
return error;
}
sdmmc_mem_decode_ssr(sc, sf, &status);
/* execute tuning (UHS) */
error = sdmmc_mem_execute_tuning(sc, sf);
if (error) {
aprint_error_dev(sc->sc_dev, "can't execute SD tuning\n");
return error;
}
return 0;
}
static int
sdmmc_mem_mmc_init(struct sdmmc_softc *sc, struct sdmmc_function *sf)
{
int width, value, hs_timing, bus_clock, error;
uint8_t ext_csd[512];
uint32_t sectors = 0;
bool ddr = false;
sc->sc_transfer_mode = NULL;
/* change bus clock */
bus_clock = uimin(sc->sc_busclk, sf->csd.tran_speed);
error = sdmmc_chip_bus_clock(sc->sc_sct, sc->sc_sch, bus_clock, false);
if (error) {
aprint_error_dev(sc->sc_dev, "can't change bus clock\n");
return error;
}
if (sf->csd.mmcver >= MMC_CSD_MMCVER_4_0) {
error = sdmmc_mem_send_cxd_data(sc,
MMC_SEND_EXT_CSD, ext_csd, sizeof(ext_csd));
if (error) {
aprint_error_dev(sc->sc_dev,
"can't read EXT_CSD (error=%d)\n", error);
return error;
}
if ((sf->csd.csdver == MMC_CSD_CSDVER_EXT_CSD) &&
(ext_csd[EXT_CSD_STRUCTURE] > EXT_CSD_STRUCTURE_VER_1_2)) {
aprint_error_dev(sc->sc_dev,
"unrecognised future version (%d)\n",
ext_csd[EXT_CSD_STRUCTURE]);
return ENOTSUP;
}
sf->ext_csd.rev = ext_csd[EXT_CSD_REV];
if (ISSET(sc->sc_caps, SMC_CAPS_MMC_HS200) &&
ext_csd[EXT_CSD_CARD_TYPE] & EXT_CSD_CARD_TYPE_F_HS200_1_8V) {
hs_timing = EXT_CSD_HS_TIMING_HS200;
} else if (ISSET(sc->sc_caps, SMC_CAPS_MMC_DDR52) &&
ext_csd[EXT_CSD_CARD_TYPE] & EXT_CSD_CARD_TYPE_F_DDR52_1_8V) {
hs_timing = EXT_CSD_HS_TIMING_HIGHSPEED;
ddr = true;
} else if (ext_csd[EXT_CSD_CARD_TYPE] & EXT_CSD_CARD_TYPE_F_52M) {
hs_timing = EXT_CSD_HS_TIMING_HIGHSPEED;
} else if (ext_csd[EXT_CSD_CARD_TYPE] & EXT_CSD_CARD_TYPE_F_26M) {
hs_timing = EXT_CSD_HS_TIMING_LEGACY;
} else {
aprint_error_dev(sc->sc_dev,
"unknown CARD_TYPE: 0x%x\n",
ext_csd[EXT_CSD_CARD_TYPE]);
return ENOTSUP;
}
if (ISSET(sc->sc_caps, SMC_CAPS_8BIT_MODE)) {
width = 8;
value = EXT_CSD_BUS_WIDTH_8;
} else if (ISSET(sc->sc_caps, SMC_CAPS_4BIT_MODE)) {
width = 4;
value = EXT_CSD_BUS_WIDTH_4;
} else {
width = 1;
value = EXT_CSD_BUS_WIDTH_1;
}
if (width != 1) {
error = sdmmc_mem_mmc_switch(sf, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH, value, false);
if (error == 0)
error = sdmmc_chip_bus_width(sc->sc_sct,
sc->sc_sch, width);
else {
DPRINTF(("%s: can't change bus width"
" (%d bit)\n", SDMMCDEVNAME(sc), width));
return error;
}
/* XXXX: need bus test? (using by CMD14 & CMD19) */
delay(10000);
}
sf->width = width;
if (hs_timing == EXT_CSD_HS_TIMING_HIGHSPEED &&
!ISSET(sc->sc_caps, SMC_CAPS_MMC_HIGHSPEED)) {
hs_timing = EXT_CSD_HS_TIMING_LEGACY;
}
const int target_timing = hs_timing;
if (hs_timing != EXT_CSD_HS_TIMING_LEGACY) {
while (hs_timing >= EXT_CSD_HS_TIMING_LEGACY) {
error = sdmmc_mem_mmc_switch(sf, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, hs_timing, false);
if (error == 0 || hs_timing == EXT_CSD_HS_TIMING_LEGACY)
break;
hs_timing--;
}
}
if (hs_timing != target_timing) {
aprint_debug_dev(sc->sc_dev,
"card failed to switch to timing mode %d, using %d\n",
target_timing, hs_timing);
}
KASSERT(hs_timing < __arraycount(sdmmc_mmc_timings));
sf->csd.tran_speed = sdmmc_mmc_timings[hs_timing];
if (sc->sc_busclk > sf->csd.tran_speed)
sc->sc_busclk = sf->csd.tran_speed;
if (sc->sc_busclk != bus_clock) {
error = sdmmc_chip_bus_clock(sc->sc_sct, sc->sc_sch,
sc->sc_busclk, false);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't change bus clock\n");
return error;
}
}
if (hs_timing != EXT_CSD_HS_TIMING_LEGACY) {
error = sdmmc_mem_send_cxd_data(sc,
MMC_SEND_EXT_CSD, ext_csd, sizeof(ext_csd));
if (error) {
aprint_error_dev(sc->sc_dev,
"can't re-read EXT_CSD\n");
return error;
}
if (ext_csd[EXT_CSD_HS_TIMING] != hs_timing) {
aprint_error_dev(sc->sc_dev,
"HS_TIMING set failed\n");
return EINVAL;
}
}
/*
* HS_TIMING must be set to 0x1 before setting BUS_WIDTH
* for dual data rate operation
*/
if (ddr &&
hs_timing == EXT_CSD_HS_TIMING_HIGHSPEED &&
width > 1) {
error = sdmmc_mem_mmc_switch(sf,
EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
(width == 8) ? EXT_CSD_BUS_WIDTH_8_DDR :
EXT_CSD_BUS_WIDTH_4_DDR, false);
if (error) {
DPRINTF(("%s: can't switch to DDR"
" (%d bit)\n", SDMMCDEVNAME(sc), width));
return error;
}
delay(10000);
error = sdmmc_mem_signal_voltage(sc,
SDMMC_SIGNAL_VOLTAGE_180);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't switch signaling voltage\n");
return error;
}
error = sdmmc_chip_bus_clock(sc->sc_sct, sc->sc_sch,
sc->sc_busclk, ddr);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't change bus clock\n");
return error;
}
delay(10000);
sc->sc_transfer_mode = "DDR52";
sc->sc_busddr = ddr;
}
sectors = ext_csd[EXT_CSD_SEC_COUNT + 0] << 0 |
ext_csd[EXT_CSD_SEC_COUNT + 1] << 8 |
ext_csd[EXT_CSD_SEC_COUNT + 2] << 16 |
ext_csd[EXT_CSD_SEC_COUNT + 3] << 24;
if (sectors > (2u * 1024 * 1024 * 1024) / 512) {
SET(sf->flags, SFF_SDHC);
sf->csd.capacity = sectors;
}
if (hs_timing == EXT_CSD_HS_TIMING_HS200) {
sc->sc_transfer_mode = "HS200";
/* execute tuning (HS200) */
error = sdmmc_mem_execute_tuning(sc, sf);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't execute MMC tuning\n");
return error;
}
}
if (sf->ext_csd.rev >= 5) {
sf->ext_csd.rst_n_function =
ext_csd[EXT_CSD_RST_N_FUNCTION];
}
if (sf->ext_csd.rev >= 6) {
sf->ext_csd.cache_size =
le32dec(&ext_csd[EXT_CSD_CACHE_SIZE]) * 1024;
}
if (sf->ext_csd.cache_size > 0) {
/* eMMC cache present, enable it */
error = sdmmc_mem_mmc_switch(sf,
EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CACHE_CTRL,
EXT_CSD_CACHE_CTRL_CACHE_EN, false);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't enable cache: %d\n", error);
} else {
SET(sf->flags, SFF_CACHE_ENABLED);
}
}
} else {
if (sc->sc_busclk > sf->csd.tran_speed)
sc->sc_busclk = sf->csd.tran_speed;
if (sc->sc_busclk != bus_clock) {
error = sdmmc_chip_bus_clock(sc->sc_sct, sc->sc_sch,
sc->sc_busclk, false);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't change bus clock\n");
return error;
}
}
}
return 0;
}
static int
sdmmc_mem_send_cid(struct sdmmc_softc *sc, sdmmc_response *resp)
{
struct sdmmc_command cmd;
int error;
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
memset(&cmd, 0, sizeof cmd);
cmd.c_opcode = MMC_ALL_SEND_CID;
cmd.c_flags = SCF_CMD_BCR | SCF_RSP_R2 | SCF_TOUT_OK;
error = sdmmc_mmc_command(sc, &cmd);
} else {
error = sdmmc_mem_send_cxd_data(sc, MMC_SEND_CID, &cmd.c_resp,
sizeof(cmd.c_resp));
}
#ifdef SDMMC_DEBUG
if (error == 0)
sdmmc_dump_data("CID", cmd.c_resp, sizeof(cmd.c_resp));
#endif
if (error == 0 && resp != NULL)
memcpy(resp, &cmd.c_resp, sizeof(*resp));
return error;
}
static int
sdmmc_mem_send_csd(struct sdmmc_softc *sc, struct sdmmc_function *sf,
sdmmc_response *resp)
{
struct sdmmc_command cmd;
int error;
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
memset(&cmd, 0, sizeof cmd);
cmd.c_opcode = MMC_SEND_CSD;
cmd.c_arg = MMC_ARG_RCA(sf->rca);
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R2;
error = sdmmc_mmc_command(sc, &cmd);
} else {
error = sdmmc_mem_send_cxd_data(sc, MMC_SEND_CSD, &cmd.c_resp,
sizeof(cmd.c_resp));
}
#ifdef SDMMC_DEBUG
if (error == 0)
sdmmc_dump_data("CSD", cmd.c_resp, sizeof(cmd.c_resp));
#endif
if (error == 0 && resp != NULL)
memcpy(resp, &cmd.c_resp, sizeof(*resp));
return error;
}
static int
sdmmc_mem_send_scr(struct sdmmc_softc *sc, struct sdmmc_function *sf,
uint32_t *scr)
{
struct sdmmc_command cmd;
bus_dma_segment_t ds[1];
void *ptr = NULL;
int datalen = 8;
int rseg;
int error = 0;
/* Don't lock */
if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
error = bus_dmamem_alloc(sc->sc_dmat, datalen, PAGE_SIZE, 0,
ds, 1, &rseg, BUS_DMA_NOWAIT);
if (error)
goto out;
error = bus_dmamem_map(sc->sc_dmat, ds, 1, datalen, &ptr,
BUS_DMA_NOWAIT);
if (error)
goto dmamem_free;
error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmap, ptr, datalen,
NULL, BUS_DMA_NOWAIT|BUS_DMA_STREAMING|BUS_DMA_READ);
if (error)
goto dmamem_unmap;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen,
BUS_DMASYNC_PREREAD);
} else {
ptr = malloc(datalen, M_DEVBUF, M_NOWAIT | M_ZERO);
if (ptr == NULL)
goto out;
}
memset(&cmd, 0, sizeof(cmd));
cmd.c_data = ptr;
cmd.c_datalen = datalen;
cmd.c_blklen = datalen;
cmd.c_arg = 0;
cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1 | SCF_RSP_SPI_R1;
cmd.c_opcode = SD_APP_SEND_SCR;
if (ISSET(sc->sc_caps, SMC_CAPS_DMA))
cmd.c_dmamap = sc->sc_dmap;
error = sdmmc_app_command(sc, sf, &cmd);
if (error == 0) {
if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen,
BUS_DMASYNC_POSTREAD);
}
memcpy(scr, ptr, datalen);
}
out:
if (ptr != NULL) {
if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap);
dmamem_unmap:
bus_dmamem_unmap(sc->sc_dmat, ptr, datalen);
dmamem_free:
bus_dmamem_free(sc->sc_dmat, ds, rseg);
} else {
free(ptr, M_DEVBUF);
}
}
DPRINTF(("%s: sdmem_mem_send_scr: error = %d\n", SDMMCDEVNAME(sc),
error));
#ifdef SDMMC_DEBUG
if (error == 0)
sdmmc_dump_data("SCR", scr, datalen);
#endif
return error;
}
static int
sdmmc_mem_decode_scr(struct sdmmc_softc *sc, struct sdmmc_function *sf)
{
sdmmc_response resp;
int ver;
memset(resp, 0, sizeof(resp));
/*
* Change the raw-scr received from the DMA stream to resp.
*/
resp[0] = be32toh(sf->raw_scr[1]) >> 8; // LSW
resp[1] = be32toh(sf->raw_scr[0]); // MSW
resp[0] |= (resp[1] & 0xff) << 24;
resp[1] >>= 8;
ver = SCR_STRUCTURE(resp);
sf->scr.sd_spec = SCR_SD_SPEC(resp);
sf->scr.bus_width = SCR_SD_BUS_WIDTHS(resp);
DPRINTF(("%s: sdmmc_mem_decode_scr: %08x%08x ver=%d, spec=%d, bus width=%d\n",
SDMMCDEVNAME(sc), resp[1], resp[0],
ver, sf->scr.sd_spec, sf->scr.bus_width));
if (ver != 0 && ver != 1) {
DPRINTF(("%s: unknown structure version: %d\n",
SDMMCDEVNAME(sc), ver));
return EINVAL;
}
return 0;
}
static int
sdmmc_mem_send_ssr(struct sdmmc_softc *sc, struct sdmmc_function *sf,
sdmmc_bitfield512_t *ssr)
{
struct sdmmc_command cmd;
bus_dma_segment_t ds[1];
void *ptr = NULL;
int datalen = 64;
int rseg;
int error = 0;
/* Don't lock */
if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
error = bus_dmamem_alloc(sc->sc_dmat, datalen, PAGE_SIZE, 0,
ds, 1, &rseg, BUS_DMA_NOWAIT);
if (error)
goto out;
error = bus_dmamem_map(sc->sc_dmat, ds, 1, datalen, &ptr,
BUS_DMA_NOWAIT);
if (error)
goto dmamem_free;
error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmap, ptr, datalen,
NULL, BUS_DMA_NOWAIT|BUS_DMA_STREAMING|BUS_DMA_READ);
if (error)
goto dmamem_unmap;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen,
BUS_DMASYNC_PREREAD);
} else {
ptr = malloc(datalen, M_DEVBUF, M_NOWAIT | M_ZERO);
if (ptr == NULL)
goto out;
}
memset(&cmd, 0, sizeof(cmd));
cmd.c_data = ptr;
cmd.c_datalen = datalen;
cmd.c_blklen = datalen;
cmd.c_arg = 0;
cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1 | SCF_RSP_SPI_R1;
cmd.c_opcode = SD_APP_SD_STATUS;
if (ISSET(sc->sc_caps, SMC_CAPS_DMA))
cmd.c_dmamap = sc->sc_dmap;
error = sdmmc_app_command(sc, sf, &cmd);
if (error == 0) {
if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen,
BUS_DMASYNC_POSTREAD);
}
memcpy(ssr, ptr, datalen);
}
out:
if (ptr != NULL) {
if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap);
dmamem_unmap:
bus_dmamem_unmap(sc->sc_dmat, ptr, datalen);
dmamem_free:
bus_dmamem_free(sc->sc_dmat, ds, rseg);
} else {
free(ptr, M_DEVBUF);
}
}
DPRINTF(("%s: sdmem_mem_send_ssr: error = %d\n", SDMMCDEVNAME(sc),
error));
if (error == 0)
sdmmc_be512_to_bitfield512(ssr);
#ifdef SDMMC_DEBUG
if (error == 0)
sdmmc_dump_data("SSR", ssr, datalen);
#endif
return error;
}
static int
sdmmc_mem_decode_ssr(struct sdmmc_softc *sc, struct sdmmc_function *sf,
sdmmc_bitfield512_t *ssr_bitfield)
{
uint32_t *ssr = (uint32_t *)ssr_bitfield;
int speed_class_val, bus_width_val;
const int bus_width = SSR_DAT_BUS_WIDTH(ssr);
const int speed_class = SSR_SPEED_CLASS(ssr);
const int uhs_speed_grade = SSR_UHS_SPEED_GRADE(ssr);
const int video_speed_class = SSR_VIDEO_SPEED_CLASS(ssr);
const int app_perf_class = SSR_APP_PERF_CLASS(ssr);
switch (speed_class) {
case SSR_SPEED_CLASS_0: speed_class_val = 0; break;
case SSR_SPEED_CLASS_2: speed_class_val = 2; break;
case SSR_SPEED_CLASS_4: speed_class_val = 4; break;
case SSR_SPEED_CLASS_6: speed_class_val = 6; break;
case SSR_SPEED_CLASS_10: speed_class_val = 10; break;
default: speed_class_val = -1; break;
}
switch (bus_width) {
case SSR_DAT_BUS_WIDTH_1: bus_width_val = 1; break;
case SSR_DAT_BUS_WIDTH_4: bus_width_val = 4; break;
default: bus_width_val = -1;
}
/*
* Log card status
*/
device_printf(sc->sc_dev, "SD card status:");
if (bus_width_val != -1)
printf(" %d-bit", bus_width_val);
else
printf(" unknown bus width");
if (speed_class_val != -1)
printf(", C%d", speed_class_val);
if (uhs_speed_grade)
printf(", U%d", uhs_speed_grade);
if (video_speed_class)
printf(", V%d", video_speed_class);
if (app_perf_class)
printf(", A%d", app_perf_class);
printf("\n");
return 0;
}
static int
sdmmc_mem_send_cxd_data(struct sdmmc_softc *sc, int opcode, void *data,
size_t datalen)
{
struct sdmmc_command cmd;
bus_dma_segment_t ds[1];
void *ptr = NULL;
int rseg;
int error = 0;
if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
error = bus_dmamem_alloc(sc->sc_dmat, datalen, PAGE_SIZE, 0, ds,
1, &rseg, BUS_DMA_NOWAIT);
if (error)
goto out;
error = bus_dmamem_map(sc->sc_dmat, ds, 1, datalen, &ptr,
BUS_DMA_NOWAIT);
if (error)
goto dmamem_free;
error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmap, ptr, datalen,
NULL, BUS_DMA_NOWAIT|BUS_DMA_STREAMING|BUS_DMA_READ);
if (error)
goto dmamem_unmap;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen,
BUS_DMASYNC_PREREAD);
} else {
ptr = malloc(datalen, M_DEVBUF, M_NOWAIT | M_ZERO);
if (ptr == NULL)
goto out;
}
memset(&cmd, 0, sizeof(cmd));
cmd.c_data = ptr;
cmd.c_datalen = datalen;
cmd.c_blklen = datalen;
cmd.c_opcode = opcode;
cmd.c_arg = 0;
cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_SPI_R1;
if (opcode == MMC_SEND_EXT_CSD)
SET(cmd.c_flags, SCF_RSP_R1);
else
SET(cmd.c_flags, SCF_RSP_R2);
if (ISSET(sc->sc_caps, SMC_CAPS_DMA))
cmd.c_dmamap = sc->sc_dmap;
error = sdmmc_mmc_command(sc, &cmd);
if (error == 0) {
if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen,
BUS_DMASYNC_POSTREAD);
}
memcpy(data, ptr, datalen);
#ifdef SDMMC_DEBUG
sdmmc_dump_data("CXD", data, datalen);
#endif
}
out:
if (ptr != NULL) {
if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap);
dmamem_unmap:
bus_dmamem_unmap(sc->sc_dmat, ptr, datalen);
dmamem_free:
bus_dmamem_free(sc->sc_dmat, ds, rseg);
} else {
free(ptr, M_DEVBUF);
}
}
return error;
}
static int
sdmmc_set_bus_width(struct sdmmc_function *sf, int width)
{
struct sdmmc_softc *sc = sf->sc;
struct sdmmc_command cmd;
int error;
if (ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE))
return ENODEV;
memset(&cmd, 0, sizeof(cmd));
cmd.c_opcode = SD_APP_SET_BUS_WIDTH;
cmd.c_flags = SCF_RSP_R1 | SCF_CMD_AC;
switch (width) {
case 1:
cmd.c_arg = SD_ARG_BUS_WIDTH_1;
break;
case 4:
cmd.c_arg = SD_ARG_BUS_WIDTH_4;
break;
default:
return EINVAL;
}
error = sdmmc_app_command(sc, sf, &cmd);
if (error == 0)
error = sdmmc_chip_bus_width(sc->sc_sct, sc->sc_sch, width);
return error;
}
static int
sdmmc_mem_sd_switch(struct sdmmc_function *sf, int mode, int group,
int function, sdmmc_bitfield512_t *status)
{
struct sdmmc_softc *sc = sf->sc;
struct sdmmc_command cmd;
bus_dma_segment_t ds[1];
void *ptr = NULL;
int gsft, rseg, error = 0;
const int statlen = 64;
if (sf->scr.sd_spec >= SCR_SD_SPEC_VER_1_10 &&
!ISSET(sf->csd.ccc, SD_CSD_CCC_SWITCH))
return EINVAL;
if (group <= 0 || group > 6 ||
function < 0 || function > 15)
return EINVAL;
gsft = (group - 1) << 2;
if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
error = bus_dmamem_alloc(sc->sc_dmat, statlen, PAGE_SIZE, 0, ds,
1, &rseg, BUS_DMA_NOWAIT);
if (error)
goto out;
error = bus_dmamem_map(sc->sc_dmat, ds, 1, statlen, &ptr,
BUS_DMA_NOWAIT);
if (error)
goto dmamem_free;
error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmap, ptr, statlen,
NULL, BUS_DMA_NOWAIT|BUS_DMA_STREAMING|BUS_DMA_READ);
if (error)
goto dmamem_unmap;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, statlen,
BUS_DMASYNC_PREREAD);
} else {
ptr = malloc(statlen, M_DEVBUF, M_NOWAIT | M_ZERO);
if (ptr == NULL)
goto out;
}
memset(&cmd, 0, sizeof(cmd));
cmd.c_data = ptr;
cmd.c_datalen = statlen;
cmd.c_blklen = statlen;
cmd.c_opcode = SD_SEND_SWITCH_FUNC;
cmd.c_arg = ((uint32_t)!!mode << 31) |
(function << gsft) | (0x00ffffff & ~(0xf << gsft));
cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1 | SCF_RSP_SPI_R1;
if (ISSET(sc->sc_caps, SMC_CAPS_DMA))
cmd.c_dmamap = sc->sc_dmap;
error = sdmmc_mmc_command(sc, &cmd);
if (error == 0) {
if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, statlen,
BUS_DMASYNC_POSTREAD);
}
memcpy(status, ptr, statlen);
}
out:
if (ptr != NULL) {
if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap);
dmamem_unmap:
bus_dmamem_unmap(sc->sc_dmat, ptr, statlen);
dmamem_free:
bus_dmamem_free(sc->sc_dmat, ds, rseg);
} else {
free(ptr, M_DEVBUF);
}
}
if (error == 0)
sdmmc_be512_to_bitfield512(status);
return error;
}
static int
sdmmc_mem_mmc_switch(struct sdmmc_function *sf, uint8_t set, uint8_t index,
uint8_t value, bool poll)
{
struct sdmmc_softc *sc = sf->sc;
struct sdmmc_command cmd;
int error;
memset(&cmd, 0, sizeof(cmd));
cmd.c_opcode = MMC_SWITCH;
cmd.c_arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) | (value << 8) | set;
cmd.c_flags = SCF_RSP_SPI_R1B | SCF_RSP_R1B | SCF_CMD_AC;
if (poll)
cmd.c_flags |= SCF_POLL;
error = sdmmc_mmc_command(sc, &cmd);
if (error)
return error;
if (index == EXT_CSD_FLUSH_CACHE || (index == EXT_CSD_HS_TIMING && value >= 2)) {
do {
memset(&cmd, 0, sizeof(cmd));
cmd.c_opcode = MMC_SEND_STATUS;
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE))
cmd.c_arg = MMC_ARG_RCA(sf->rca);
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1 | SCF_RSP_SPI_R2;
if (poll)
cmd.c_flags |= SCF_POLL;
error = sdmmc_mmc_command(sc, &cmd);
if (error)
break;
if (ISSET(MMC_R1(cmd.c_resp), MMC_R1_SWITCH_ERROR)) {
aprint_error_dev(sc->sc_dev, "switch error\n");
return EINVAL;
}
/* XXX time out */
} while (!ISSET(MMC_R1(cmd.c_resp), MMC_R1_READY_FOR_DATA));
if (error) {
aprint_error_dev(sc->sc_dev,
"error waiting for data ready after switch command: %d\n",
error);
return error;
}
}
return 0;
}
/*
* SPI mode function
*/
static int
sdmmc_mem_spi_read_ocr(struct sdmmc_softc *sc, uint32_t hcs, uint32_t *card_ocr)
{
struct sdmmc_command cmd;
int error;
memset(&cmd, 0, sizeof(cmd));
cmd.c_opcode = MMC_READ_OCR;
cmd.c_arg = hcs ? MMC_OCR_HCS : 0;
cmd.c_flags = SCF_RSP_SPI_R3;
error = sdmmc_mmc_command(sc, &cmd);
if (error == 0 && card_ocr != NULL)
*card_ocr = cmd.c_resp[1];
DPRINTF(("%s: sdmmc_mem_spi_read_ocr: error=%d, ocr=%#x\n",
SDMMCDEVNAME(sc), error, cmd.c_resp[1]));
return error;
}
/*
* read/write function
*/
/* read */
static int
sdmmc_mem_single_read_block(struct sdmmc_function *sf, uint32_t blkno,
u_char *data, size_t datalen)
{
struct sdmmc_softc *sc = sf->sc;
int error = 0;
int i;
KASSERT((datalen % SDMMC_SECTOR_SIZE) == 0);
KASSERT(!ISSET(sc->sc_caps, SMC_CAPS_DMA));
for (i = 0; i < datalen / SDMMC_SECTOR_SIZE; i++) {
error = sdmmc_mem_read_block_subr(sf, sc->sc_dmap, blkno + i,
data + i * SDMMC_SECTOR_SIZE, SDMMC_SECTOR_SIZE);
if (error)
break;
}
return error;
}
/*
* Simulate multi-segment dma transfer.
*/
static int
sdmmc_mem_single_segment_dma_read_block(struct sdmmc_function *sf,
uint32_t blkno, u_char *data, size_t datalen)
{
struct sdmmc_softc *sc = sf->sc;
bool use_bbuf = false;
int error = 0;
int i;
for (i = 0; i < sc->sc_dmap->dm_nsegs; i++) {
size_t len = sc->sc_dmap->dm_segs[i].ds_len;
if ((len % SDMMC_SECTOR_SIZE) != 0) {
use_bbuf = true;
break;
}
}
if (use_bbuf) {
bus_dmamap_sync(sc->sc_dmat, sf->bbuf_dmap, 0, datalen,
BUS_DMASYNC_PREREAD);
error = sdmmc_mem_read_block_subr(sf, sf->bbuf_dmap,
blkno, data, datalen);
if (error) {
bus_dmamap_unload(sc->sc_dmat, sf->bbuf_dmap);
return error;
}
bus_dmamap_sync(sc->sc_dmat, sf->bbuf_dmap, 0, datalen,
BUS_DMASYNC_POSTREAD);
/* Copy from bounce buffer */
memcpy(data, sf->bbuf, datalen);
return 0;
}
for (i = 0; i < sc->sc_dmap->dm_nsegs; i++) {
size_t len = sc->sc_dmap->dm_segs[i].ds_len;
error = bus_dmamap_load(sc->sc_dmat, sf->sseg_dmap,
data, len, NULL, BUS_DMA_NOWAIT|BUS_DMA_READ);
if (error)
return error;
bus_dmamap_sync(sc->sc_dmat, sf->sseg_dmap, 0, len,
BUS_DMASYNC_PREREAD);
error = sdmmc_mem_read_block_subr(sf, sf->sseg_dmap,
blkno, data, len);
if (error) {
bus_dmamap_unload(sc->sc_dmat, sf->sseg_dmap);
return error;
}
bus_dmamap_sync(sc->sc_dmat, sf->sseg_dmap, 0, len,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, sf->sseg_dmap);
blkno += len / SDMMC_SECTOR_SIZE;
data += len;
}
return 0;
}
static int
sdmmc_mem_read_block_subr(struct sdmmc_function *sf, bus_dmamap_t dmap,
uint32_t blkno, u_char *data, size_t datalen)
{
struct sdmmc_softc *sc = sf->sc;
struct sdmmc_command cmd;
int error;
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
error = sdmmc_select_card(sc, sf);
if (error)
goto out;
}
memset(&cmd, 0, sizeof(cmd));
cmd.c_data = data;
cmd.c_datalen = datalen;
cmd.c_blklen = SDMMC_SECTOR_SIZE;
cmd.c_opcode = (cmd.c_datalen / cmd.c_blklen) > 1 ?
MMC_READ_BLOCK_MULTIPLE : MMC_READ_BLOCK_SINGLE;
cmd.c_arg = blkno;
if (!ISSET(sf->flags, SFF_SDHC))
cmd.c_arg <<= SDMMC_SECTOR_SIZE_SB;
cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1 | SCF_RSP_SPI_R1;
if (ISSET(sf->flags, SFF_SDHC))
cmd.c_flags |= SCF_XFER_SDHC;
if (ISSET(sc->sc_caps, SMC_CAPS_DMA))
cmd.c_dmamap = dmap;
sc->sc_ev_xfer.ev_count++;
error = sdmmc_mmc_command(sc, &cmd);
if (error) {
sc->sc_ev_xfer_error.ev_count++;
goto out;
}
const u_int counter = __builtin_ctz(cmd.c_datalen);
if (counter >= 9 && counter <= 16) {
sc->sc_ev_xfer_aligned[counter - 9].ev_count++;
} else {
sc->sc_ev_xfer_unaligned.ev_count++;
}
if (!ISSET(sc->sc_caps, SMC_CAPS_AUTO_STOP)) {
if (cmd.c_opcode == MMC_READ_BLOCK_MULTIPLE) {
memset(&cmd, 0, sizeof cmd);
cmd.c_opcode = MMC_STOP_TRANSMISSION;
cmd.c_arg = MMC_ARG_RCA(sf->rca);
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1B | SCF_RSP_SPI_R1B;
error = sdmmc_mmc_command(sc, &cmd);
if (error)
goto out;
}
}
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
do {
memset(&cmd, 0, sizeof(cmd));
cmd.c_opcode = MMC_SEND_STATUS;
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE))
cmd.c_arg = MMC_ARG_RCA(sf->rca);
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1 | SCF_RSP_SPI_R2;
error = sdmmc_mmc_command(sc, &cmd);
if (error)
break;
/* XXX time out */
} while (!ISSET(MMC_R1(cmd.c_resp), MMC_R1_READY_FOR_DATA));
}
out:
return error;
}
int
sdmmc_mem_read_block(struct sdmmc_function *sf, uint32_t blkno, u_char *data,
size_t datalen)
{
struct sdmmc_softc *sc = sf->sc;
int error;
SDMMC_LOCK(sc);
mutex_enter(&sc->sc_mtx);
if (ISSET(sc->sc_caps, SMC_CAPS_SINGLE_ONLY)) {
error = sdmmc_mem_single_read_block(sf, blkno, data, datalen);
goto out;
}
if (!ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
error = sdmmc_mem_read_block_subr(sf, sc->sc_dmap, blkno, data,
datalen);
goto out;
}
/* DMA transfer */
error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmap, data, datalen, NULL,
BUS_DMA_NOWAIT|BUS_DMA_READ);
if (error)
goto out;
#ifdef SDMMC_DEBUG
printf("data=%p, datalen=%zu\n", data, datalen);
for (int i = 0; i < sc->sc_dmap->dm_nsegs; i++) {
printf("seg#%d: addr=%#lx, size=%#lx\n", i,
(u_long)sc->sc_dmap->dm_segs[i].ds_addr,
(u_long)sc->sc_dmap->dm_segs[i].ds_len);
}
#endif
if (sc->sc_dmap->dm_nsegs > 1
&& !ISSET(sc->sc_caps, SMC_CAPS_MULTI_SEG_DMA)) {
error = sdmmc_mem_single_segment_dma_read_block(sf, blkno,
data, datalen);
goto unload;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen,
BUS_DMASYNC_PREREAD);
error = sdmmc_mem_read_block_subr(sf, sc->sc_dmap, blkno, data,
datalen);
if (error)
goto unload;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen,
BUS_DMASYNC_POSTREAD);
unload:
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap);
out:
mutex_exit(&sc->sc_mtx);
SDMMC_UNLOCK(sc);
return error;
}
/* write */
static int
sdmmc_mem_single_write_block(struct sdmmc_function *sf, uint32_t blkno,
u_char *data, size_t datalen)
{
struct sdmmc_softc *sc = sf->sc;
int error = 0;
int i;
KASSERT((datalen % SDMMC_SECTOR_SIZE) == 0);
KASSERT(!ISSET(sc->sc_caps, SMC_CAPS_DMA));
for (i = 0; i < datalen / SDMMC_SECTOR_SIZE; i++) {
error = sdmmc_mem_write_block_subr(sf, sc->sc_dmap, blkno + i,
data + i * SDMMC_SECTOR_SIZE, SDMMC_SECTOR_SIZE);
if (error)
break;
}
return error;
}
/*
* Simulate multi-segment dma transfer.
*/
static int
sdmmc_mem_single_segment_dma_write_block(struct sdmmc_function *sf,
uint32_t blkno, u_char *data, size_t datalen)
{
struct sdmmc_softc *sc = sf->sc;
bool use_bbuf = false;
int error = 0;
int i;
for (i = 0; i < sc->sc_dmap->dm_nsegs; i++) {
size_t len = sc->sc_dmap->dm_segs[i].ds_len;
if ((len % SDMMC_SECTOR_SIZE) != 0) {
use_bbuf = true;
break;
}
}
if (use_bbuf) {
/* Copy to bounce buffer */
memcpy(sf->bbuf, data, datalen);
bus_dmamap_sync(sc->sc_dmat, sf->bbuf_dmap, 0, datalen,
BUS_DMASYNC_PREWRITE);
error = sdmmc_mem_write_block_subr(sf, sf->bbuf_dmap,
blkno, data, datalen);
if (error) {
bus_dmamap_unload(sc->sc_dmat, sf->bbuf_dmap);
return error;
}
bus_dmamap_sync(sc->sc_dmat, sf->bbuf_dmap, 0, datalen,
BUS_DMASYNC_POSTWRITE);
return 0;
}
for (i = 0; i < sc->sc_dmap->dm_nsegs; i++) {
size_t len = sc->sc_dmap->dm_segs[i].ds_len;
error = bus_dmamap_load(sc->sc_dmat, sf->sseg_dmap,
data, len, NULL, BUS_DMA_NOWAIT|BUS_DMA_WRITE);
if (error)
return error;
bus_dmamap_sync(sc->sc_dmat, sf->sseg_dmap, 0, len,
BUS_DMASYNC_PREWRITE);
error = sdmmc_mem_write_block_subr(sf, sf->sseg_dmap,
blkno, data, len);
if (error) {
bus_dmamap_unload(sc->sc_dmat, sf->sseg_dmap);
return error;
}
bus_dmamap_sync(sc->sc_dmat, sf->sseg_dmap, 0, len,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, sf->sseg_dmap);
blkno += len / SDMMC_SECTOR_SIZE;
data += len;
}
return error;
}
static int
sdmmc_mem_write_block_subr(struct sdmmc_function *sf, bus_dmamap_t dmap,
uint32_t blkno, u_char *data, size_t datalen)
{
struct sdmmc_softc *sc = sf->sc;
struct sdmmc_command cmd;
int error;
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
error = sdmmc_select_card(sc, sf);
if (error)
goto out;
}
const int nblk = howmany(datalen, SDMMC_SECTOR_SIZE);
if (ISSET(sc->sc_flags, SMF_SD_MODE) && nblk > 1) {
/* Set the number of write blocks to be pre-erased */
memset(&cmd, 0, sizeof(cmd));
cmd.c_opcode = SD_APP_SET_WR_BLK_ERASE_COUNT;
cmd.c_flags = SCF_RSP_R1 | SCF_RSP_SPI_R1 | SCF_CMD_AC;
cmd.c_arg = nblk;
error = sdmmc_app_command(sc, sf, &cmd);
if (error)
goto out;
}
memset(&cmd, 0, sizeof(cmd));
cmd.c_data = data;
cmd.c_datalen = datalen;
cmd.c_blklen = SDMMC_SECTOR_SIZE;
cmd.c_opcode = (cmd.c_datalen / cmd.c_blklen) > 1 ?
MMC_WRITE_BLOCK_MULTIPLE : MMC_WRITE_BLOCK_SINGLE;
cmd.c_arg = blkno;
if (!ISSET(sf->flags, SFF_SDHC))
cmd.c_arg <<= SDMMC_SECTOR_SIZE_SB;
cmd.c_flags = SCF_CMD_ADTC | SCF_RSP_R1;
if (ISSET(sf->flags, SFF_SDHC))
cmd.c_flags |= SCF_XFER_SDHC;
if (ISSET(sc->sc_caps, SMC_CAPS_DMA))
cmd.c_dmamap = dmap;
sc->sc_ev_xfer.ev_count++;
error = sdmmc_mmc_command(sc, &cmd);
if (error) {
sc->sc_ev_xfer_error.ev_count++;
goto out;
}
const u_int counter = __builtin_ctz(cmd.c_datalen);
if (counter >= 9 && counter <= 16) {
sc->sc_ev_xfer_aligned[counter - 9].ev_count++;
} else {
sc->sc_ev_xfer_unaligned.ev_count++;
}
if (!ISSET(sc->sc_caps, SMC_CAPS_AUTO_STOP)) {
if (cmd.c_opcode == MMC_WRITE_BLOCK_MULTIPLE) {
memset(&cmd, 0, sizeof(cmd));
cmd.c_opcode = MMC_STOP_TRANSMISSION;
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1B | SCF_RSP_SPI_R1B;
error = sdmmc_mmc_command(sc, &cmd);
if (error)
goto out;
}
}
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE)) {
do {
memset(&cmd, 0, sizeof(cmd));
cmd.c_opcode = MMC_SEND_STATUS;
if (!ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE))
cmd.c_arg = MMC_ARG_RCA(sf->rca);
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1 | SCF_RSP_SPI_R2;
error = sdmmc_mmc_command(sc, &cmd);
if (error)
break;
/* XXX time out */
} while (!ISSET(MMC_R1(cmd.c_resp), MMC_R1_READY_FOR_DATA));
}
out:
return error;
}
int
sdmmc_mem_write_block(struct sdmmc_function *sf, uint32_t blkno, u_char *data,
size_t datalen)
{
struct sdmmc_softc *sc = sf->sc;
int error;
SDMMC_LOCK(sc);
mutex_enter(&sc->sc_mtx);
if (ISSET(sc->sc_flags, SMF_SD_MODE) &&
sdmmc_chip_write_protect(sc->sc_sct, sc->sc_sch)) {
aprint_normal_dev(sc->sc_dev, "write-protected\n");
error = EIO;
goto out;
}
if (ISSET(sc->sc_caps, SMC_CAPS_SINGLE_ONLY)) {
error = sdmmc_mem_single_write_block(sf, blkno, data, datalen);
goto out;
}
if (!ISSET(sc->sc_caps, SMC_CAPS_DMA)) {
error = sdmmc_mem_write_block_subr(sf, sc->sc_dmap, blkno, data,
datalen);
goto out;
}
/* DMA transfer */
error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmap, data, datalen, NULL,
BUS_DMA_NOWAIT|BUS_DMA_WRITE);
if (error)
goto out;
#ifdef SDMMC_DEBUG
aprint_normal_dev(sc->sc_dev, "%s: data=%p, datalen=%zu\n",
__func__, data, datalen);
for (int i = 0; i < sc->sc_dmap->dm_nsegs; i++) {
aprint_normal_dev(sc->sc_dev,
"%s: seg#%d: addr=%#lx, size=%#lx\n", __func__, i,
(u_long)sc->sc_dmap->dm_segs[i].ds_addr,
(u_long)sc->sc_dmap->dm_segs[i].ds_len);
}
#endif
if (sc->sc_dmap->dm_nsegs > 1
&& !ISSET(sc->sc_caps, SMC_CAPS_MULTI_SEG_DMA)) {
error = sdmmc_mem_single_segment_dma_write_block(sf, blkno,
data, datalen);
goto unload;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen,
BUS_DMASYNC_PREWRITE);
error = sdmmc_mem_write_block_subr(sf, sc->sc_dmap, blkno, data,
datalen);
if (error)
goto unload;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen,
BUS_DMASYNC_POSTWRITE);
unload:
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap);
out:
mutex_exit(&sc->sc_mtx);
SDMMC_UNLOCK(sc);
return error;
}
int
sdmmc_mem_discard(struct sdmmc_function *sf, uint32_t sblkno, uint32_t eblkno)
{
struct sdmmc_softc *sc = sf->sc;
struct sdmmc_command cmd;
int error;
if (ISSET(sc->sc_caps, SMC_CAPS_SPI_MODE))
return ENODEV; /* XXX not tested */
if (eblkno < sblkno)
return EINVAL;
SDMMC_LOCK(sc);
mutex_enter(&sc->sc_mtx);
/* Set the address of the first write block to be erased */
memset(&cmd, 0, sizeof(cmd));
cmd.c_opcode = ISSET(sc->sc_flags, SMF_SD_MODE) ?
SD_ERASE_WR_BLK_START : MMC_TAG_ERASE_GROUP_START;
cmd.c_arg = sblkno;
if (!ISSET(sf->flags, SFF_SDHC))
cmd.c_arg <<= SDMMC_SECTOR_SIZE_SB;
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1;
error = sdmmc_mmc_command(sc, &cmd);
if (error)
goto out;
/* Set the address of the last write block to be erased */
memset(&cmd, 0, sizeof(cmd));
cmd.c_opcode = ISSET(sc->sc_flags, SMF_SD_MODE) ?
SD_ERASE_WR_BLK_END : MMC_TAG_ERASE_GROUP_END;
cmd.c_arg = eblkno;
if (!ISSET(sf->flags, SFF_SDHC))
cmd.c_arg <<= SDMMC_SECTOR_SIZE_SB;
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1;
error = sdmmc_mmc_command(sc, &cmd);
if (error)
goto out;
/* Start the erase operation */
memset(&cmd, 0, sizeof(cmd));
cmd.c_opcode = MMC_ERASE;
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1B;
error = sdmmc_mmc_command(sc, &cmd);
if (error)
goto out;
out:
mutex_exit(&sc->sc_mtx);
SDMMC_UNLOCK(sc);
#ifdef SDMMC_DEBUG
device_printf(sc->sc_dev, "discard blk %u-%u error %d\n",
sblkno, eblkno, error);
#endif
return error;
}
int
sdmmc_mem_flush_cache(struct sdmmc_function *sf, bool poll)
{
struct sdmmc_softc *sc = sf->sc;
int error;
if (!ISSET(sf->flags, SFF_CACHE_ENABLED))
return 0;
SDMMC_LOCK(sc);
mutex_enter(&sc->sc_mtx);
error = sdmmc_mem_mmc_switch(sf,
EXT_CSD_CMD_SET_NORMAL, EXT_CSD_FLUSH_CACHE,
EXT_CSD_FLUSH_CACHE_FLUSH, poll);
mutex_exit(&sc->sc_mtx);
SDMMC_UNLOCK(sc);
#ifdef SDMMC_DEBUG
device_printf(sc->sc_dev, "mmc flush cache error %d\n", error);
#endif
return error;
}