NetBSD/sys/dev/scsipi/if_dse.c

1399 lines
31 KiB
C

/* $NetBSD: if_dse.c,v 1.5 2024/01/01 22:29:48 gutteridge Exp $ */
/*
* Driver for DaynaPORT SCSI/Link SCSI-Ethernet
*
* Written by Hiroshi Noguchi <ngc@ff.iij4u.or.jp>
*
* Modified by Matt Sandstrom <mattias@beauty.se> for NetBSD 1.5.3
*
* This driver is written based on "if_se.c".
*/
/*
* Copyright (c) 1997 Ian W. Dall <ian.dall@dsto.defence.gov.au>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Ian W. Dall.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "opt_inet.h"
#include "opt_atalk.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/syslog.h>
#include <sys/kernel.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/workqueue.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#ifdef NETATALK
#include <netatalk/at.h>
#endif
#include <net/bpf.h>
/*
* debug flag
*/
#if 0
#define DSE_DEBUG
#endif
#define DSE_TIMEOUT 100000
#define DSE_OUTSTANDING 4
#define DSE_RETRIES 4
#define DSE_MINSIZE 60
#define DSE_HEADER_TX 4
#define DSE_TAIL_TX 4
#define DSE_EXTRAS_TX (DSE_HEADER_TX + DSE_TAIL_TX)
#define DSE_HEADER_RX 6
#define DSE_TAIL_RX 0
#define DSE_EXTRAS_RX (DSE_HEADER_RX + DSE_TAIL_RX)
#define MAX_BYTES_RX (ETHERMTU + sizeof(struct ether_header) + ETHER_CRC_LEN)
/* 10 full length packets appears to be the max ever returned. 16k is OK */
#define RBUF_LEN (16 * 1024)
/*
* Tuning parameters:
* We will attempt to adapt to polling fast enough to get RDATA_GOAL packets
* per read
*/
#define RDATA_MAX 10 /* maximum of returned packets (guessed) */
#define RDATA_GOAL 8
/*
* maximum of available multicast address entries (guessed)
*/
#define DSE_MCAST_MAX 10
/* dse_poll and dse_poll0 are the normal polling rate and the minimum
* polling rate respectively. dse_poll0 should be chosen so that at
* maximum ethernet speed, we will read nearly RDATA_MAX packets. dse_poll
* should be chosen for reasonable maximum latency.
* In practice, if we are being saturated with min length packets, we
* can't poll fast enough. Polling with zero delay actually
* worsens performance. dse_poll0 is enforced to be always at least 1
*/
#if MAC68K_DEBUG
#define DSE_POLL 50 /* default in milliseconds */
#define DSE_POLL0 30 /* default in milliseconds */
#else
#define DSE_POLL 80 /* default in milliseconds */
#define DSE_POLL0 40 /* default in milliseconds */
#endif
int dse_poll = 0; /* Delay in ticks set at attach time */
int dse_poll0 = 0;
int dse_max_received = 0; /* Instrumentation */
/*==========================================
data type defs
==========================================*/
typedef struct scsipi_inquiry_data dayna_ether_inquiry_data;
typedef struct {
uint8_t opcode[2];
uint8_t byte3;
uint8_t length[2];
uint8_t byte6;
} scsi_dayna_ether_generic;
#define DAYNA_CMD_SEND 0x0A /* same as generic "Write" */
#define DAYNA_CMD_RECV 0x08 /* same as generic "Read" */
#define DAYNA_CMD_GET_ADDR 0x09 /* ???: read MAC address ? */
#define REQ_LEN_GET_ADDR 0x12
#define DAYNA_CMD_SET_MULTI 0x0D /* set multicast address */
#define DAYNA_CMD_VENDOR1 0x0E /* ???: initialize signal ? */
#define IS_SEND(generic) ((generic)->opcode == DAYNA_CMD_SEND)
#define IS_RECV(generic) ((generic)->opcode == DAYNA_CMD_RECV)
struct dse_softc {
device_t sc_dev;
struct ethercom sc_ethercom; /* Ethernet common part */
struct scsipi_periph *sc_periph;/* contains our targ, lun, etc. */
struct callout sc_recv_ch;
struct kmutex sc_iflock;
struct if_percpuq *sc_ipq;
struct workqueue *sc_recv_wq, *sc_send_wq;
struct work sc_recv_work, sc_send_work;
int sc_recv_work_pending, sc_send_work_pending;
char *sc_tbuf;
char *sc_rbuf;
int sc_debug;
int sc_flags;
int sc_last_timeout;
int sc_enabled;
int sc_attach_state;
};
/* bit defs of "sc_flags" */
#define DSE_NEED_RECV 0x1
static int dsematch(device_t, cfdata_t, void *);
static void dseattach(device_t, device_t, void *);
static int dsedetach(device_t, int);
static void dse_ifstart(struct ifnet *);
static void dse_send_worker(struct work *wk, void *cookie);
static void dsedone(struct scsipi_xfer *, int);
static int dse_ioctl(struct ifnet *, u_long, void *);
static void dsewatchdog(struct ifnet *);
static void dse_recv_callout(void *);
static void dse_recv_worker(struct work *wk, void *cookie);
static void dse_recv(struct dse_softc *);
static struct mbuf* dse_get(struct dse_softc *, uint8_t *, int);
static int dse_read(struct dse_softc *, uint8_t *, int);
static int dse_init_adaptor(struct dse_softc *);
static int dse_get_addr(struct dse_softc *, uint8_t *);
static int dse_set_multi(struct dse_softc *);
static int dse_reset(struct dse_softc *);
#if 0 /* 07/16/2000 comment-out */
static int dse_set_mode(struct dse_softc *, int, int);
#endif
static int dse_init(struct dse_softc *);
static void dse_stop(struct dse_softc *);
#if 0
static __inline uint16_t ether_cmp(void *, void *);
#endif
static inline int dse_scsipi_cmd(struct scsipi_periph *periph,
struct scsipi_generic *scsipi_cmd,
int cmdlen, u_char *data_addr, int datalen,
int retries, int timeout, struct buf *bp,
int flags);
int dse_enable(struct dse_softc *);
void dse_disable(struct dse_softc *);
CFATTACH_DECL_NEW(dse, sizeof(struct dse_softc),
dsematch, dseattach, dsedetach, NULL);
extern struct cfdriver dse_cd;
dev_type_open(dseopen);
dev_type_close(dseclose);
dev_type_ioctl(dseioctl);
const struct cdevsw dse_cdevsw = {
.d_open = dseopen,
.d_close = dseclose,
.d_read = noread,
.d_write = nowrite,
.d_ioctl = dseioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER | D_MPSAFE
};
const struct scsipi_periphsw dse_switch = {
NULL, /* Use default error handler */
NULL, /* have no queue */
NULL, /* have no async handler */
dsedone, /* deal with stats at interrupt time */
};
struct scsipi_inquiry_pattern dse_patterns[] = {
{ T_PROCESSOR, T_FIXED,
"Dayna", "SCSI/Link", "" },
};
/*====================================================
definitions for SCSI commands
====================================================*/
/*
* command templates
*/
/* unknown commands */
/* Vendor #1 */
static const scsi_dayna_ether_generic sonic_ether_vendor1 = {
{ DAYNA_CMD_VENDOR1, 0x00 },
0x00,
{ 0x00, 0x00 },
0x80
};
#if 0
/*
* Compare two Ether/802 addresses for equality, inlined and
* unrolled for speed.
* Note: use this like memcmp()
*/
static __inline uint16_t
ether_cmp(void *one, void *two)
{
uint16_t* a;
uint16_t* b;
uint16_t diff;
a = (uint16_t *) one;
b = (uint16_t *) two;
diff = (a[0] - b[0]) | (a[1] - b[1]) | (a[2] - b[2]);
return (diff);
}
#define ETHER_CMP ether_cmp
#endif
/*
* check to match with SCSI inquiry information
*/
static int
dsematch(device_t parent, cfdata_t match, void *aux)
{
struct scsipibus_attach_args *sa = aux;
int priority;
(void)scsipi_inqmatch(&sa->sa_inqbuf,
dse_patterns, sizeof(dse_patterns) / sizeof(dse_patterns[0]),
sizeof(dse_patterns[0]), &priority);
return priority;
}
/*
* The routine called by the low level scsi routine when it discovers
* a device suitable for this driver.
*/
static void
dseattach(device_t parent, device_t self, void *aux)
{
struct dse_softc *sc = device_private(self);
struct scsipibus_attach_args *sa = aux;
struct scsipi_periph *periph = sa->sa_periph;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint8_t myaddr[ETHER_ADDR_LEN];
char wqname[MAXCOMLEN];
int rv;
sc->sc_dev = self;
aprint_normal("\n");
SC_DEBUG(periph, SCSIPI_DB2, ("dseattach: "));
sc->sc_attach_state = 0;
callout_init(&sc->sc_recv_ch, CALLOUT_MPSAFE);
callout_setfunc(&sc->sc_recv_ch, dse_recv_callout, (void *)sc);
mutex_init(&sc->sc_iflock, MUTEX_DEFAULT, IPL_SOFTNET);
/*
* Store information needed to contact our base driver
*/
sc->sc_periph = periph;
periph->periph_dev = sc->sc_dev;
periph->periph_switch = &dse_switch;
#if 0
sc_periph->sc_link_dbflags = SCSIPI_DB1;
#endif
dse_poll = mstohz(DSE_POLL);
dse_poll = dse_poll? dse_poll: 1;
dse_poll0 = mstohz(DSE_POLL0);
dse_poll0 = dse_poll0? dse_poll0: 1;
/*
* Initialize and attach send and receive buffers
*/
sc->sc_tbuf = malloc(ETHERMTU + sizeof(struct ether_header) +
DSE_EXTRAS_TX + 16, M_DEVBUF, M_WAITOK);
sc->sc_rbuf = malloc(RBUF_LEN + 16, M_DEVBUF, M_WAITOK);
/* initialize adaptor and obtain MAC address */
dse_init_adaptor(sc);
sc->sc_attach_state = 1;
/* Initialize ifnet structure. */
strcpy(ifp->if_xname, device_xname(sc->sc_dev));
ifp->if_softc = sc;
ifp->if_start = dse_ifstart;
ifp->if_ioctl = dse_ioctl;
ifp->if_watchdog = dsewatchdog;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_extflags = IFEF_MPSAFE;
dse_get_addr(sc, myaddr);
/* Attach the interface. */
if_initialize(ifp);
snprintf(wqname, sizeof(wqname), "%sRx", device_xname(sc->sc_dev));
rv = workqueue_create(&sc->sc_recv_wq, wqname, dse_recv_worker, sc,
PRI_SOFTNET, IPL_NET, WQ_MPSAFE);
if (rv != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create recv Rx workqueue\n");
dsedetach(sc->sc_dev, 0);
return; /* Error */
}
sc->sc_recv_work_pending = false;
sc->sc_attach_state = 2;
snprintf(wqname, sizeof(wqname), "%sTx", device_xname(sc->sc_dev));
rv = workqueue_create(&sc->sc_send_wq, wqname, dse_send_worker, ifp,
PRI_SOFTNET, IPL_NET, WQ_MPSAFE);
if (rv != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create send Tx workqueue\n");
dsedetach(sc->sc_dev, 0);
return; /* Error */
}
sc->sc_send_work_pending = false;
sc->sc_ipq = if_percpuq_create(&sc->sc_ethercom.ec_if);
ether_ifattach(ifp, myaddr);
if_register(ifp);
sc->sc_attach_state = 4;
bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
}
static int
dsedetach(device_t self, int flags)
{
struct dse_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
switch(sc->sc_attach_state) {
case 4:
dse_stop(sc);
mutex_enter(&sc->sc_iflock);
ifp->if_flags &= ~IFF_RUNNING;
dse_disable(sc);
ether_ifdetach(ifp);
if_detach(ifp);
mutex_exit(&sc->sc_iflock);
if_percpuq_destroy(sc->sc_ipq);
/*FALLTHROUGH*/
case 3:
workqueue_destroy(sc->sc_send_wq);
/*FALLTHROUGH*/
case 2:
workqueue_destroy(sc->sc_recv_wq);
/*FALLTHROUGH*/
case 1:
free(sc->sc_rbuf, M_DEVBUF);
free(sc->sc_tbuf, M_DEVBUF);
callout_destroy(&sc->sc_recv_ch);
mutex_destroy(&sc->sc_iflock);
break;
default:
aprint_error_dev(sc->sc_dev, "detach failed (state %d)\n",
sc->sc_attach_state);
return 1;
break;
}
return 0;
}
/*
* submit SCSI command
*/
static __inline int
dse_scsipi_cmd(struct scsipi_periph *periph, struct scsipi_generic *cmd,
int cmdlen, u_char *data_addr, int datalen, int retries, int timeout,
struct buf *bp, int flags)
{
int error = 0;
error = scsipi_command(periph, cmd, cmdlen, data_addr,
datalen, retries, timeout, bp, flags);
return error;
}
/*
* Start routine for calling from network sub system
*/
static void
dse_ifstart(struct ifnet *ifp)
{
struct dse_softc *sc = ifp->if_softc;
mutex_enter(&sc->sc_iflock);
if (!sc->sc_send_work_pending) {
sc->sc_send_work_pending = true;
workqueue_enqueue(sc->sc_send_wq, &sc->sc_send_work, NULL);
}
mutex_exit(&sc->sc_iflock);
if (sc->sc_flags & DSE_NEED_RECV) {
sc->sc_flags &= ~DSE_NEED_RECV;
}
}
/*
* Invoke the transmit workqueue and transmission on the interface.
*/
static void
dse_send_worker(struct work *wk, void *cookie)
{
struct ifnet *ifp = cookie;
struct dse_softc *sc = ifp->if_softc;
scsi_dayna_ether_generic cmd_send;
struct mbuf *m, *m0;
int len, error;
u_char *cp;
mutex_enter(&sc->sc_iflock);
sc->sc_send_work_pending = false;
mutex_exit(&sc->sc_iflock);
KASSERT(if_is_mpsafe(ifp));
/* Don't transmit if interface is busy or not running */
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
while (1) {
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
/* If BPF is listening on this interface, let it see the
* packet before we commit it to the wire.
*/
bpf_mtap(ifp, m0, BPF_D_OUT);
/* We need to use m->m_pkthdr.len, so require the header */
if ((m0->m_flags & M_PKTHDR) == 0)
panic("ctscstart: no header mbuf");
len = m0->m_pkthdr.len;
/* Mark the interface busy. */
ifp->if_flags |= IFF_OACTIVE;
/* Chain; copy into linear buffer allocated at attach time. */
cp = sc->sc_tbuf;
for (m = m0; m != NULL; ) {
memcpy(cp, mtod(m, u_char *), m->m_len);
cp += m->m_len;
m = m0 = m_free(m);
}
if (len < DSE_MINSIZE) {
#ifdef DSE_DEBUG
if (sc->sc_debug)
aprint_error_dev(sc->sc_dev,
"packet size %d (%zu) < %d\n", len,
cp - (u_char *)sc->sc_tbuf, DSE_MINSIZE);
#endif
memset(cp, 0, DSE_MINSIZE - len);
len = DSE_MINSIZE;
}
/* Fill out SCSI command. */
memset(&cmd_send, 0, sizeof(cmd_send));
cmd_send.opcode[0] = DAYNA_CMD_SEND;
_lto2b(len, &(cmd_send.length[0]));
cmd_send.byte6 = 0x00;
/* Send command to device. */
error = dse_scsipi_cmd(sc->sc_periph,
(void *)&cmd_send, sizeof(cmd_send),
sc->sc_tbuf, len, DSE_RETRIES,
DSE_TIMEOUT, NULL, XS_CTL_NOSLEEP | XS_CTL_POLL |
XS_CTL_DATA_OUT);
if (error) {
aprint_error_dev(sc->sc_dev,
"not queued, error %d\n", error);
if_statinc(ifp, if_oerrors);
ifp->if_flags &= ~IFF_OACTIVE;
} else
if_statinc(ifp, if_opackets);
}
}
/*
* Called from the scsibus layer via our scsi device switch.
*/
static void
dsedone(struct scsipi_xfer *xs, int error)
{
struct dse_softc *sc = device_private(xs->xs_periph->periph_dev);
struct scsipi_generic *cmd = xs->cmd;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
if (IS_SEND(cmd)) {
ifp->if_flags &= ~IFF_OACTIVE;
} else if (IS_RECV(cmd)) {
/* RECV complete */
/* pass data up. reschedule a recv */
/* scsipi_free_xs will call start. Harmless. */
if (error) {
/* Reschedule after a delay */
callout_schedule(&sc->sc_recv_ch, dse_poll);
} else {
int n, ntimeo;
n = dse_read(sc, xs->data, xs->datalen - xs->resid);
if (n > dse_max_received)
dse_max_received = n;
if (n == 0)
ntimeo = dse_poll;
else if (n >= RDATA_MAX)
ntimeo = dse_poll0;
else {
ntimeo = sc->sc_last_timeout;
ntimeo = (ntimeo * RDATA_GOAL)/n;
ntimeo = (ntimeo < dse_poll0?
dse_poll0: ntimeo);
ntimeo = (ntimeo > dse_poll?
dse_poll: ntimeo);
}
sc->sc_last_timeout = ntimeo;
callout_schedule(&sc->sc_recv_ch, ntimeo);
}
}
}
/*
* Setup a receive command by queuing the work.
* Usually called from a callout, but also from se_init().
*/
static void
dse_recv_callout(void *v)
{
/* do a recv command */
struct dse_softc *sc = (struct dse_softc *) v;
if (sc->sc_enabled == 0)
return;
mutex_enter(&sc->sc_iflock);
if (sc->sc_recv_work_pending == true) {
callout_schedule(&sc->sc_recv_ch, dse_poll);
mutex_exit(&sc->sc_iflock);
return;
}
sc->sc_recv_work_pending = true;
workqueue_enqueue(sc->sc_recv_wq, &sc->sc_recv_work, NULL);
mutex_exit(&sc->sc_iflock);
}
/*
* Invoke the receive workqueue
*/
static void
dse_recv_worker(struct work *wk, void *cookie)
{
struct dse_softc *sc = (struct dse_softc *) cookie;
dse_recv(sc);
mutex_enter(&sc->sc_iflock);
sc->sc_recv_work_pending = false;
mutex_exit(&sc->sc_iflock);
}
/*
* Do the actual work of receiving data.
*/
static void
dse_recv(struct dse_softc *sc)
{
scsi_dayna_ether_generic cmd_recv;
int error, len;
/* do a recv command */
/* fill out command buffer */
memset(&cmd_recv, 0, sizeof(cmd_recv));
cmd_recv.opcode[0] = DAYNA_CMD_RECV;
len = MAX_BYTES_RX + DSE_EXTRAS_RX;
_lto2b(len, &(cmd_recv.length[0]));
cmd_recv.byte6 = 0xC0;
error = dse_scsipi_cmd(sc->sc_periph,
(void *)&cmd_recv, sizeof(cmd_recv),
sc->sc_rbuf, RBUF_LEN, DSE_RETRIES, DSE_TIMEOUT, NULL,
XS_CTL_NOSLEEP | XS_CTL_POLL | XS_CTL_DATA_IN);
if (error)
callout_schedule(&sc->sc_recv_ch, dse_poll);
}
/*
* We copy the data into mbufs. When full cluster sized units are present
* we copy into clusters.
*/
static struct mbuf *
dse_get(struct dse_softc *sc, uint8_t *data, int totlen)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m, *m0, *newm;
int len;
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 == NULL)
return NULL;
m_set_rcvif(m0, ifp);
m0->m_pkthdr.len = totlen;
len = MHLEN;
m = m0;
while (totlen > 0) {
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if((m->m_flags & M_EXT) == 0)
goto bad;
len = MCLBYTES;
}
if (m == m0) {
char *newdata = (char *)
ALIGN(m->m_data + sizeof(struct ether_header)) -
sizeof(struct ether_header);
len -= newdata - m->m_data;
m->m_data = newdata;
}
m->m_len = len = uimin(totlen, len);
memcpy(mtod(m, void *), data, len);
data += len;
totlen -= len;
if (totlen > 0) {
MGET(newm, M_DONTWAIT, MT_DATA);
if (newm == NULL)
goto bad;
len = MLEN;
m = m->m_next = newm;
}
}
return m0;
bad:
m_freem(m0);
return NULL ;
}
#ifdef MAC68K_DEBUG
static int
peek_packet(uint8_t* buf)
{
struct ether_header *eh;
uint16_t type;
int len;
eh = (struct ether_header*)buf;
type = _2btol((uint8_t*)&(eh->ether_type));
len = sizeof(struct ether_header);
if (type <= ETHERMTU) {
/* for 802.3 */
len += type;
} else{
/* for Ethernet II (DIX) */
switch (type) {
case ETHERTYPE_ARP:
len += 28;
break;
case ETHERTYPE_IP:
len += _2btol(buf + sizeof(struct ether_header) + 2);
break;
default:
len = 0;
goto l_end;
break;
}
}
if (len < DSE_MINSIZE) {
len = DSE_MINSIZE;
}
len += ETHER_CRC_LEN;
l_end:;
return len;
}
#endif
/*
* Pass packets to higher levels.
*/
static int
dse_read(struct dse_softc *sc, uint8_t *data, int datalen)
{
struct mbuf *m;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int len;
int n;
#ifdef MAC68K_DEBUG
int peek_flag = 1;
#endif
mutex_enter(&sc->sc_iflock);
n = 0;
while (datalen >= DSE_HEADER_RX) {
/*
* fetch bytes of stream.
* here length = (ether frame length) + (FCS's 4 bytes)
*/
/* fetch frame length */
len = _2btol(data);
/* skip header part */
data += DSE_HEADER_RX;
datalen -= DSE_HEADER_RX;
#if 0 /* 03/10/2001 only for debug */
{
printf("DATALEN %d len %d\n", datalen, len);
int j;
printf("\ndump[%d]: ",n);
for ( j = 0 ; j < datalen ; j++ ) {
printf("%02X ",data[j-DSE_HEADER_RX]);
}
}
#endif
#ifdef MAC68K_DEBUG
if (peek_flag) {
peek_flag = 0;
len = peek_packet(data);
}
#endif
if (len == 0)
break;
#ifdef DSE_DEBUG
aprint_error_dev(sc->sc_dev, "dse_read: datalen = %d, packetlen"
" = %d, proto = 0x%04x\n", datalen, len,
ntohs(((struct ether_header *)data)->ether_type));
#endif
if ((len < (DSE_MINSIZE + ETHER_CRC_LEN)) ||
(MAX_BYTES_RX < len)) {
#ifdef DSE_DEBUG
aprint_error_dev(sc->sc_dev, "invalid packet size "
"%d; dropping\n", len);
#endif
if_statinc(ifp, if_ierrors);
break;
}
/* Don't need crc. Must keep ether header for BPF */
m = dse_get(sc, data, len - ETHER_CRC_LEN);
if (m == NULL) {
#ifdef DSE_DEBUG
if (sc->sc_debug)
aprint_error_dev(sc->sc_dev, "dse_read: "
"dse_get returned null\n");
#endif
if_statinc(ifp, if_ierrors);
goto next_packet;
}
if_statinc(ifp, if_ipackets);
/*
* Check if there's a BPF listener on this interface.
* If so, hand off the raw packet to BPF.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, m, BPF_D_OUT);
/* Pass the packet up. */
if_percpuq_enqueue(sc->sc_ipq, m);
next_packet:
data += len;
datalen -= len;
n++;
}
mutex_exit(&sc->sc_iflock);
return n;
}
static void
dsewatchdog(struct ifnet *ifp)
{
struct dse_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
if_statinc(ifp, if_oerrors);
dse_reset(sc);
}
static int
dse_reset(struct dse_softc *sc)
{
int error;
#if 0
/* Maybe we don't *really* want to reset the entire bus
* because the ctron isn't working. We would like to send a
* "BUS DEVICE RESET" message, but don't think the ctron
* understands it.
*/
error = dse_scsipi_cmd(sc->sc_periph, 0, 0, 0, 0, DSE_RETRIES, 2000,
NULL, XS_CTL_RESET);
#endif
error = dse_init(sc);
return error;
}
static int
dse_init_adaptor(struct dse_softc *sc)
{
scsi_dayna_ether_generic cmd_vend1;
u_char tmpbuf[sizeof(cmd_vend1)];
int error;
#if 0 /* 07/21/2001 for test */
/* Maybe we don't *really* want to reset the entire bus
* because the ctron isn't working. We would like to send a
* "BUS DEVICE RESET" message, but don't think the ctron
* understands it.
*/
error = dse_scsipi_cmd(sc->sc_periph, 0, 0, 0, 0, DSE_RETRIES,
2000, NULL, XS_CTL_RESET);
#endif
cmd_vend1 = sonic_ether_vendor1;
error = dse_scsipi_cmd(sc->sc_periph,
(struct scsipi_generic *)&cmd_vend1, sizeof(cmd_vend1),
&(tmpbuf[0]), sizeof(tmpbuf),
DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_POLL | XS_CTL_DATA_IN);
if (error)
goto l_end;
/* wait 500 msec */
kpause("dsesleep", false, hz / 2, NULL);
l_end:
return error;
}
static int
dse_get_addr(struct dse_softc *sc, uint8_t *myaddr)
{
scsi_dayna_ether_generic cmd_get_addr;
u_char tmpbuf[REQ_LEN_GET_ADDR];
int error;
memset(&cmd_get_addr, 0, sizeof(cmd_get_addr));
cmd_get_addr.opcode[0] = DAYNA_CMD_GET_ADDR;
_lto2b(REQ_LEN_GET_ADDR, cmd_get_addr.length);
error = dse_scsipi_cmd(sc->sc_periph,
(struct scsipi_generic *)&cmd_get_addr, sizeof(cmd_get_addr),
tmpbuf, sizeof(tmpbuf),
DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_POLL | XS_CTL_DATA_IN);
if (error == 0) {
memcpy(myaddr, &(tmpbuf[0]), ETHER_ADDR_LEN);
aprint_error_dev(sc->sc_dev, "ethernet address %s\n",
ether_sprintf(myaddr));
}
return error;
}
#if 0 /* 07/16/2000 comment-out */
static int
dse_set_mode(struct dse_softc *sc, int len, int mode)
return 0;
}
#endif
static int
dse_init(struct dse_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int error = 0;
if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == IFF_UP) {
ifp->if_flags |= IFF_RUNNING;
mutex_enter(&sc->sc_iflock);
if (!sc->sc_recv_work_pending) {
sc->sc_recv_work_pending = true;
workqueue_enqueue(sc->sc_recv_wq, &sc->sc_recv_work,
NULL);
}
mutex_exit(&sc->sc_iflock);
ifp->if_flags &= ~IFF_OACTIVE;
mutex_enter(&sc->sc_iflock);
if (!sc->sc_send_work_pending) {
sc->sc_send_work_pending = true;
workqueue_enqueue(sc->sc_send_wq, &sc->sc_send_work,
NULL);
}
mutex_exit(&sc->sc_iflock);
}
return error;
}
static uint8_t BROADCAST_ADDR[ETHER_ADDR_LEN] =
{ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
static int
dse_set_multi(struct dse_softc *sc)
{
scsi_dayna_ether_generic cmd_set_multi;
struct ether_multistep step;
struct ether_multi *enm;
u_char *cp, *mybuf;
int error, len;
error = 0;
#ifdef DSE_DEBUG
aprint_error_dev(sc->sc_dev, "dse_set_multi\n");
#endif
mybuf = malloc(ETHER_ADDR_LEN * DSE_MCAST_MAX, M_DEVBUF, M_NOWAIT);
if (mybuf == NULL) {
error = EIO;
goto l_end;
}
/*
* copy all entries to transfer buffer
*/
cp = mybuf;
len = 0;
ETHER_FIRST_MULTI(step, &(sc->sc_ethercom), enm);
while ((len < (DSE_MCAST_MAX - 1)) && (enm != NULL)) {
/* ### refer low side entry */
memcpy(cp, enm->enm_addrlo, ETHER_ADDR_LEN);
cp += ETHER_ADDR_LEN;
len++;
ETHER_NEXT_MULTI(step, enm);
}
/* add broadcast address as default */
memcpy(cp, BROADCAST_ADDR, ETHER_ADDR_LEN);
len++;
len *= ETHER_ADDR_LEN;
memset(&cmd_set_multi, 0, sizeof(cmd_set_multi));
cmd_set_multi.opcode[0] = DAYNA_CMD_SET_MULTI;
_lto2b(len, cmd_set_multi.length);
error = dse_scsipi_cmd(sc->sc_periph,
(struct scsipi_generic*)&cmd_set_multi, sizeof(cmd_set_multi),
mybuf, len, DSE_RETRIES, DSE_TIMEOUT, NULL, XS_CTL_POLL | XS_CTL_DATA_OUT);
free(mybuf, M_DEVBUF);
l_end:
return error;
}
static void
dse_stop(struct dse_softc *sc)
{
/* Don't schedule any reads */
callout_stop(&sc->sc_recv_ch);
/* Wait for the workqueues to finish */
mutex_enter(&sc->sc_iflock);
workqueue_wait(sc->sc_recv_wq, &sc->sc_recv_work);
workqueue_wait(sc->sc_send_wq, &sc->sc_send_work);
mutex_exit(&sc->sc_iflock);
/* Abort any scsi cmds in progress */
mutex_enter(chan_mtx(sc->sc_periph->periph_channel));
scsipi_kill_pending(sc->sc_periph);
mutex_exit(chan_mtx(sc->sc_periph->periph_channel));
}
/*
* Process an ioctl request.
*/
static int
dse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct dse_softc *sc;
struct ifaddr *ifa;
struct ifreq *ifr;
struct sockaddr *sa;
int error;
error = 0;
sc = ifp->if_softc;
ifa = (struct ifaddr *)data;
ifr = (struct ifreq *)data;
switch (cmd) {
case SIOCINITIFADDR:
mutex_enter(&sc->sc_iflock);
if ((error = dse_enable(sc)) != 0)
break;
ifp->if_flags |= IFF_UP;
mutex_exit(&sc->sc_iflock);
#if 0
if ((error = dse_set_media(sc, CMEDIA_AUTOSENSE)) != 0)
break;
#endif
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
if ((error = dse_init(sc)) != 0)
break;
arp_ifinit(ifp, ifa);
break;
#endif
#ifdef NETATALK
case AF_APPLETALK:
if ((error = dse_init(sc)) != 0)
break;
break;
#endif
default:
error = dse_init(sc);
break;
}
break;
case SIOCSIFADDR:
mutex_enter(&sc->sc_iflock);
error = dse_enable(sc);
mutex_exit(&sc->sc_iflock);
if (error != 0)
break;
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
if ((error = dse_init(sc)) != 0)
break;
arp_ifinit(ifp, ifa);
break;
#endif
#ifdef NETATALK
case AF_APPLETALK:
if ((error = dse_init(sc)) != 0)
break;
break;
#endif
default:
error = dse_init(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
/* XXX re-use ether_ioctl() */
switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
case IFF_RUNNING:
/*
* If interface is marked down and it is running, then
* stop it.
*/
dse_stop(sc);
mutex_enter(&sc->sc_iflock);
ifp->if_flags &= ~IFF_RUNNING;
dse_disable(sc);
mutex_exit(&sc->sc_iflock);
break;
case IFF_UP:
/*
* If interface is marked up and it is stopped, then
* start it.
*/
mutex_enter(&sc->sc_iflock);
error = dse_enable(sc);
mutex_exit(&sc->sc_iflock);
if (error)
break;
error = dse_init(sc);
break;
default:
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
mutex_enter(&sc->sc_iflock);
if (sc->sc_enabled)
error = dse_init(sc);
mutex_exit(&sc->sc_iflock);
break;
}
#ifdef DSE_DEBUG
if (ifp->if_flags & IFF_DEBUG)
sc->sc_debug = 1;
else
sc->sc_debug = 0;
#endif
break;
case SIOCADDMULTI:
if (sc->sc_enabled == 0) {
error = EIO;
break;
}
mutex_enter(&sc->sc_iflock);
sa = sockaddr_dup(ifreq_getaddr(cmd, ifr), M_WAITOK);
mutex_exit(&sc->sc_iflock);
if (ether_addmulti(sa, &sc->sc_ethercom) == ENETRESET) {
error = dse_set_multi(sc);
#ifdef DSE_DEBUG
aprint_error_dev(sc->sc_dev, "add multi: %s\n",
ether_sprintf(ifr->ifr_addr.sa_data));
#endif
} else
error = 0;
mutex_enter(&sc->sc_iflock);
sockaddr_free(sa);
mutex_exit(&sc->sc_iflock);
break;
case SIOCDELMULTI:
if (sc->sc_enabled == 0) {
error = EIO;
break;
}
mutex_enter(&sc->sc_iflock);
sa = sockaddr_dup(ifreq_getaddr(cmd, ifr), M_WAITOK);
mutex_exit(&sc->sc_iflock);
if (ether_delmulti(sa, &sc->sc_ethercom) == ENETRESET) {
error = dse_set_multi(sc);
#ifdef DSE_DEBUG
aprint_error_dev(sc->sc_dev, "delete multi: %s\n",
ether_sprintf(ifr->ifr_addr.sa_data));
#endif
} else
error = 0;
mutex_enter(&sc->sc_iflock);
sockaddr_free(sa);
mutex_exit(&sc->sc_iflock);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return error;
}
/*
* Enable the network interface.
*/
int
dse_enable(struct dse_softc *sc)
{
struct scsipi_periph *periph = sc->sc_periph;
struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;
int error = 0;
if (sc->sc_enabled == 0) {
if ((error = scsipi_adapter_addref(adapt)) == 0)
sc->sc_enabled = 1;
else
aprint_error_dev(sc->sc_dev, "device enable failed\n");
}
return error;
}
/*
* Disable the network interface.
*/
void
dse_disable(struct dse_softc *sc)
{
struct scsipi_periph *periph = sc->sc_periph;
struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;
if (sc->sc_enabled != 0) {
scsipi_adapter_delref(adapt);
sc->sc_enabled = 0;
}
}
#define DSEUNIT(z) (minor(z))
/*
* open the device.
*/
int
dseopen(dev_t dev, int flag, int fmt, struct lwp *l)
{
int unit, error;
struct dse_softc *sc;
struct scsipi_periph *periph;
struct scsipi_adapter *adapt;
unit = DSEUNIT(dev);
sc = device_lookup_private(&dse_cd, unit);
if (sc == NULL)
return ENXIO;
periph = sc->sc_periph;
adapt = periph->periph_channel->chan_adapter;
if ((error = scsipi_adapter_addref(adapt)) != 0)
return error;
SC_DEBUG(periph, SCSIPI_DB1,
("scopen: dev=0x%"PRIx64" (unit %d (of %d))\n", dev, unit,
dse_cd.cd_ndevs));
periph->periph_flags |= PERIPH_OPEN;
SC_DEBUG(periph, SCSIPI_DB3, ("open complete\n"));
return 0;
}
/*
* close the device.. only called if we are the LAST
* occurence of an open device
*/
int
dseclose(dev_t dev, int flag, int fmt, struct lwp *l)
{
struct dse_softc *sc = device_lookup_private(&dse_cd, DSEUNIT(dev));
struct scsipi_periph *periph = sc->sc_periph;
struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;
SC_DEBUG(sc->sc_periph, SCSIPI_DB1, ("closing\n"));
scsipi_wait_drain(periph);
scsipi_adapter_delref(adapt);
periph->periph_flags &= ~PERIPH_OPEN;
return 0;
}
/*
* Perform special action on behalf of the user
* Only does generic scsi ioctls.
*/
int
dseioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
{
struct dse_softc *sc = device_lookup_private(&dse_cd, DSEUNIT(dev));
return (scsipi_do_ioctl(sc->sc_periph, dev, cmd, addr, flag, l));
}