NetBSD/sys/dev/marvell/if_mvxpe.c

3314 lines
88 KiB
C

/* $NetBSD: if_mvxpe.c,v 1.41 2024/02/10 18:43:52 andvar Exp $ */
/*
* Copyright (c) 2015 Internet Initiative Japan Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_mvxpe.c,v 1.41 2024/02/10 18:43:52 andvar Exp $");
#include "opt_multiprocessor.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/evcnt.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/rndsource.h>
#include <net/if.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/marvell/marvellreg.h>
#include <dev/marvell/marvellvar.h>
#include <dev/marvell/mvxpbmvar.h>
#include <dev/marvell/if_mvxpereg.h>
#include <dev/marvell/if_mvxpevar.h>
#include "locators.h"
#if BYTE_ORDER == BIG_ENDIAN
#error "BIG ENDIAN not supported"
#endif
#ifdef MVXPE_DEBUG
#define STATIC /* nothing */
#else
#define STATIC static
#endif
/* autoconf(9) */
STATIC int mvxpe_match(device_t, struct cfdata *, void *);
STATIC void mvxpe_attach(device_t, device_t, void *);
STATIC int mvxpe_evcnt_attach(struct mvxpe_softc *);
CFATTACH_DECL_NEW(mvxpe_mbus, sizeof(struct mvxpe_softc),
mvxpe_match, mvxpe_attach, NULL, NULL);
STATIC void mvxpe_sc_lock(struct mvxpe_softc *);
STATIC void mvxpe_sc_unlock(struct mvxpe_softc *);
/* MII */
STATIC int mvxpe_miibus_readreg(device_t, int, int, uint16_t *);
STATIC int mvxpe_miibus_writereg(device_t, int, int, uint16_t);
STATIC void mvxpe_miibus_statchg(struct ifnet *);
/* Address Decoding Window */
STATIC void mvxpe_wininit(struct mvxpe_softc *, enum marvell_tags *);
/* Device Register Initialization */
STATIC int mvxpe_initreg(struct ifnet *);
/* Descriptor Ring Control for each of queues */
STATIC void *mvxpe_dma_memalloc(struct mvxpe_softc *, bus_dmamap_t *, size_t);
STATIC int mvxpe_ring_alloc_queue(struct mvxpe_softc *, int);
STATIC void mvxpe_ring_dealloc_queue(struct mvxpe_softc *, int);
STATIC void mvxpe_ring_init_queue(struct mvxpe_softc *, int);
STATIC void mvxpe_ring_flush_queue(struct mvxpe_softc *, int);
STATIC void mvxpe_ring_sync_rx(struct mvxpe_softc *, int, int, int, int);
STATIC void mvxpe_ring_sync_tx(struct mvxpe_softc *, int, int, int, int);
/* Rx/Tx Queue Control */
STATIC int mvxpe_rx_queue_init(struct ifnet *, int);
STATIC int mvxpe_tx_queue_init(struct ifnet *, int);
STATIC int mvxpe_rx_queue_enable(struct ifnet *, int);
STATIC int mvxpe_tx_queue_enable(struct ifnet *, int);
STATIC void mvxpe_rx_lockq(struct mvxpe_softc *, int);
STATIC void mvxpe_rx_unlockq(struct mvxpe_softc *, int);
STATIC void mvxpe_tx_lockq(struct mvxpe_softc *, int);
STATIC void mvxpe_tx_unlockq(struct mvxpe_softc *, int);
/* Interrupt Handlers */
STATIC void mvxpe_disable_intr(struct mvxpe_softc *);
STATIC void mvxpe_enable_intr(struct mvxpe_softc *);
STATIC int mvxpe_rxtxth_intr(void *);
STATIC int mvxpe_misc_intr(void *);
STATIC int mvxpe_rxtx_intr(void *);
STATIC void mvxpe_tick(void *);
/* struct ifnet and mii callbacks*/
STATIC void mvxpe_start(struct ifnet *);
STATIC int mvxpe_ioctl(struct ifnet *, u_long, void *);
STATIC int mvxpe_init(struct ifnet *);
STATIC void mvxpe_stop(struct ifnet *, int);
STATIC void mvxpe_watchdog(struct ifnet *);
STATIC int mvxpe_ifflags_cb(struct ethercom *);
STATIC int mvxpe_mediachange(struct ifnet *);
STATIC void mvxpe_mediastatus(struct ifnet *, struct ifmediareq *);
/* Link State Notify */
STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc);
STATIC void mvxpe_linkup(struct mvxpe_softc *);
STATIC void mvxpe_linkdown(struct mvxpe_softc *);
STATIC void mvxpe_linkreset(struct mvxpe_softc *);
/* Tx Subroutines */
STATIC int mvxpe_tx_queue_select(struct mvxpe_softc *, struct mbuf *);
STATIC int mvxpe_tx_queue(struct mvxpe_softc *, struct mbuf *, int);
STATIC void mvxpe_tx_set_csumflag(struct ifnet *,
struct mvxpe_tx_desc *, struct mbuf *);
STATIC void mvxpe_tx_complete(struct mvxpe_softc *, uint32_t);
STATIC void mvxpe_tx_queue_complete(struct mvxpe_softc *, int);
/* Rx Subroutines */
STATIC void mvxpe_rx(struct mvxpe_softc *, uint32_t);
STATIC void mvxpe_rx_queue(struct mvxpe_softc *, int, int);
STATIC int mvxpe_rx_queue_select(struct mvxpe_softc *, uint32_t, int *);
STATIC void mvxpe_rx_refill(struct mvxpe_softc *, uint32_t);
STATIC void mvxpe_rx_queue_refill(struct mvxpe_softc *, int);
STATIC int mvxpe_rx_queue_add(struct mvxpe_softc *, int);
STATIC void mvxpe_rx_set_csumflag(struct ifnet *,
struct mvxpe_rx_desc *, struct mbuf *);
/* MAC address filter */
STATIC uint8_t mvxpe_crc8(const uint8_t *, size_t);
STATIC void mvxpe_filter_setup(struct mvxpe_softc *);
/* sysctl(9) */
STATIC int sysctl_read_mib(SYSCTLFN_PROTO);
STATIC int sysctl_clear_mib(SYSCTLFN_PROTO);
STATIC int sysctl_set_queue_length(SYSCTLFN_PROTO);
STATIC int sysctl_set_queue_rxthtime(SYSCTLFN_PROTO);
STATIC void sysctl_mvxpe_init(struct mvxpe_softc *);
/* MIB */
STATIC void mvxpe_clear_mib(struct mvxpe_softc *);
STATIC void mvxpe_update_mib(struct mvxpe_softc *);
/* for Debug */
STATIC void mvxpe_dump_txdesc(struct mvxpe_tx_desc *, int) __attribute__((__unused__));
STATIC void mvxpe_dump_rxdesc(struct mvxpe_rx_desc *, int) __attribute__((__unused__));
STATIC int mvxpe_root_num;
STATIC kmutex_t mii_mutex;
STATIC int mii_init = 0;
#ifdef MVXPE_DEBUG
STATIC int mvxpe_debug = MVXPE_DEBUG;
#endif
/*
* List of MIB register and names
*/
STATIC struct mvxpe_mib_def {
uint32_t regnum;
int reg64;
const char *sysctl_name;
const char *desc;
int ext;
#define MVXPE_MIBEXT_IF_OERRORS 1
#define MVXPE_MIBEXT_IF_IERRORS 2
#define MVXPE_MIBEXT_IF_COLLISIONS 3
} mvxpe_mib_list[] = {
{MVXPE_MIB_RX_GOOD_OCT, 1, "rx_good_oct",
"Good Octets Rx", 0},
{MVXPE_MIB_RX_BAD_OCT, 0, "rx_bad_oct",
"Bad Octets Rx", 0},
{MVXPE_MIB_TX_MAC_TRNS_ERR, 0, "tx_mac_err",
"MAC Transmit Error", MVXPE_MIBEXT_IF_OERRORS},
{MVXPE_MIB_RX_GOOD_FRAME, 0, "rx_good_frame",
"Good Frames Rx", 0},
{MVXPE_MIB_RX_BAD_FRAME, 0, "rx_bad_frame",
"Bad Frames Rx", 0},
{MVXPE_MIB_RX_BCAST_FRAME, 0, "rx_bcast_frame",
"Broadcast Frames Rx", 0},
{MVXPE_MIB_RX_MCAST_FRAME, 0, "rx_mcast_frame",
"Multicast Frames Rx", 0},
{MVXPE_MIB_RX_FRAME64_OCT, 0, "rx_frame_1_64",
"Frame Size 1 - 64", 0},
{MVXPE_MIB_RX_FRAME127_OCT, 0, "rx_frame_65_127",
"Frame Size 65 - 127", 0},
{MVXPE_MIB_RX_FRAME255_OCT, 0, "rx_frame_128_255",
"Frame Size 128 - 255", 0},
{MVXPE_MIB_RX_FRAME511_OCT, 0, "rx_frame_256_511",
"Frame Size 256 - 511"},
{MVXPE_MIB_RX_FRAME1023_OCT, 0, "rx_frame_512_1023",
"Frame Size 512 - 1023", 0},
{MVXPE_MIB_RX_FRAMEMAX_OCT, 0, "rx_frame_1024_max",
"Frame Size 1024 - Max", 0},
{MVXPE_MIB_TX_GOOD_OCT, 1, "tx_good_oct",
"Good Octets Tx", 0},
{MVXPE_MIB_TX_GOOD_FRAME, 0, "tx_good_frame",
"Good Frames Tx", 0},
{MVXPE_MIB_TX_EXCES_COL, 0, "tx_exces_collision",
"Excessive Collision", MVXPE_MIBEXT_IF_OERRORS},
{MVXPE_MIB_TX_MCAST_FRAME, 0, "tx_mcast_frame",
"Multicast Frames Tx"},
{MVXPE_MIB_TX_BCAST_FRAME, 0, "tx_bcast_frame",
"Broadcast Frames Tx"},
{MVXPE_MIB_TX_MAC_CTL_ERR, 0, "tx_mac_err",
"Unknown MAC Control", 0},
{MVXPE_MIB_FC_SENT, 0, "fc_tx",
"Flow Control Tx", 0},
{MVXPE_MIB_FC_GOOD, 0, "fc_rx_good",
"Good Flow Control Rx", 0},
{MVXPE_MIB_FC_BAD, 0, "fc_rx_bad",
"Bad Flow Control Rx", 0},
{MVXPE_MIB_PKT_UNDERSIZE, 0, "pkt_undersize",
"Undersized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
{MVXPE_MIB_PKT_FRAGMENT, 0, "pkt_fragment",
"Fragmented Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
{MVXPE_MIB_PKT_OVERSIZE, 0, "pkt_oversize",
"Oversized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
{MVXPE_MIB_PKT_JABBER, 0, "pkt_jabber",
"Jabber Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
{MVXPE_MIB_MAC_RX_ERR, 0, "mac_rx_err",
"MAC Rx Errors", MVXPE_MIBEXT_IF_IERRORS},
{MVXPE_MIB_MAC_CRC_ERR, 0, "mac_crc_err",
"MAC CRC Errors", MVXPE_MIBEXT_IF_IERRORS},
{MVXPE_MIB_MAC_COL, 0, "mac_collision",
"MAC Collision", MVXPE_MIBEXT_IF_COLLISIONS},
{MVXPE_MIB_MAC_LATE_COL, 0, "mac_late_collision",
"MAC Late Collision", MVXPE_MIBEXT_IF_OERRORS},
};
/*
* autoconf(9)
*/
/* ARGSUSED */
STATIC int
mvxpe_match(device_t parent, cfdata_t match, void *aux)
{
struct marvell_attach_args *mva = aux;
bus_size_t pv_off;
uint32_t pv;
if (strcmp(mva->mva_name, match->cf_name) != 0)
return 0;
if (mva->mva_offset == MVA_OFFSET_DEFAULT)
return 0;
/* check port version */
pv_off = mva->mva_offset + MVXPE_PV;
pv = bus_space_read_4(mva->mva_iot, mva->mva_ioh, pv_off);
if (MVXPE_PV_GET_VERSION(pv) < 0x10)
return 0; /* old version is not supported */
return 1;
}
/* ARGSUSED */
STATIC void
mvxpe_attach(device_t parent, device_t self, void *aux)
{
struct mvxpe_softc *sc = device_private(self);
struct mii_softc *child;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mii_data * const mii = &sc->sc_mii;
struct marvell_attach_args *mva = aux;
prop_dictionary_t dict;
prop_data_t enaddrp = NULL;
uint32_t phyaddr, maddrh, maddrl;
uint8_t enaddr[ETHER_ADDR_LEN];
int q;
aprint_naive("\n");
aprint_normal(": Marvell ARMADA GbE Controller\n");
memset(sc, 0, sizeof(*sc));
sc->sc_dev = self;
sc->sc_port = mva->mva_unit;
sc->sc_iot = mva->mva_iot;
sc->sc_dmat = mva->mva_dmat;
mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
callout_init(&sc->sc_tick_ch, 0);
callout_setfunc(&sc->sc_tick_ch, mvxpe_tick, sc);
/*
* BUS space
*/
if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
mva->mva_offset, mva->mva_size, &sc->sc_ioh)) {
aprint_error_dev(self, "Cannot map registers\n");
goto fail;
}
if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
mva->mva_offset + MVXPE_PORTMIB_BASE, MVXPE_PORTMIB_SIZE,
&sc->sc_mibh)) {
aprint_error_dev(self,
"Cannot map destination address filter registers\n");
goto fail;
}
sc->sc_version = MVXPE_READ(sc, MVXPE_PV);
aprint_normal_dev(self, "Port Version %#x\n", sc->sc_version);
/*
* Buffer Manager(BM) subsystem.
*/
sc->sc_bm = mvxpbm_device(mva);
if (sc->sc_bm == NULL) {
aprint_error_dev(self, "no Buffer Manager.\n");
goto fail;
}
aprint_normal_dev(self,
"Using Buffer Manager: %s\n", mvxpbm_xname(sc->sc_bm));
aprint_normal_dev(sc->sc_dev,
"%zu kbytes managed buffer, %zu bytes * %u entries allocated.\n",
mvxpbm_buf_size(sc->sc_bm) / 1024,
mvxpbm_chunk_size(sc->sc_bm), mvxpbm_chunk_count(sc->sc_bm));
/*
* make sure DMA engines are in reset state
*/
MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
/*
* Address decoding window
*/
mvxpe_wininit(sc, mva->mva_tags);
/*
* MAC address
*/
dict = device_properties(self);
if (dict)
enaddrp = prop_dictionary_get(dict, "mac-address");
if (enaddrp) {
memcpy(enaddr, prop_data_data_nocopy(enaddrp), ETHER_ADDR_LEN);
maddrh = enaddr[0] << 24;
maddrh |= enaddr[1] << 16;
maddrh |= enaddr[2] << 8;
maddrh |= enaddr[3];
maddrl = enaddr[4] << 8;
maddrl |= enaddr[5];
MVXPE_WRITE(sc, MVXPE_MACAH, maddrh);
MVXPE_WRITE(sc, MVXPE_MACAL, maddrl);
}
else {
/*
* even if enaddr is not found in dictionary,
* the port may be initialized by IPL program such as U-BOOT.
*/
maddrh = MVXPE_READ(sc, MVXPE_MACAH);
maddrl = MVXPE_READ(sc, MVXPE_MACAL);
if ((maddrh | maddrl) == 0) {
aprint_error_dev(self, "No Ethernet address\n");
return;
}
}
sc->sc_enaddr[0] = maddrh >> 24;
sc->sc_enaddr[1] = maddrh >> 16;
sc->sc_enaddr[2] = maddrh >> 8;
sc->sc_enaddr[3] = maddrh >> 0;
sc->sc_enaddr[4] = maddrl >> 8;
sc->sc_enaddr[5] = maddrl >> 0;
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(sc->sc_enaddr));
/*
* Register interrupt handlers
* XXX: handle Ethernet unit intr. and Error intr.
*/
mvxpe_disable_intr(sc);
marvell_intr_establish(mva->mva_irq, IPL_NET, mvxpe_rxtxth_intr, sc);
/*
* MIB buffer allocation
*/
sc->sc_sysctl_mib_size =
__arraycount(mvxpe_mib_list) * sizeof(struct mvxpe_sysctl_mib);
sc->sc_sysctl_mib = kmem_alloc(sc->sc_sysctl_mib_size, KM_SLEEP);
memset(sc->sc_sysctl_mib, 0, sc->sc_sysctl_mib_size);
/*
* Device DMA Buffer allocation
*/
for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
if (mvxpe_ring_alloc_queue(sc, q) != 0)
goto fail;
mvxpe_ring_init_queue(sc, q);
}
/*
* We can support 802.1Q VLAN-sized frames and jumbo
* Ethernet frames.
*/
sc->sc_ethercom.ec_capabilities |=
ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = mvxpe_start;
ifp->if_ioctl = mvxpe_ioctl;
ifp->if_init = mvxpe_init;
ifp->if_stop = mvxpe_stop;
ifp->if_watchdog = mvxpe_watchdog;
/*
* We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
*/
ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx;
ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx;
ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Tx;
ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Rx;
ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Tx;
ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Rx;
/*
* Initialize struct ifnet
*/
IFQ_SET_MAXLEN(&ifp->if_snd, uimax(MVXPE_TX_RING_CNT - 1, IFQ_MAXLEN));
IFQ_SET_READY(&ifp->if_snd);
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
/*
* Enable DMA engines and Initialize Device Registers.
*/
MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
mvxpe_sc_lock(sc); /* XXX */
mvxpe_filter_setup(sc);
mvxpe_sc_unlock(sc);
mvxpe_initreg(ifp);
/*
* Now MAC is working, setup MII.
*/
if (mii_init == 0) {
/*
* MII bus is shared by all MACs and all PHYs in SoC.
* serializing the bus access should be safe.
*/
mutex_init(&mii_mutex, MUTEX_DEFAULT, IPL_NET);
mii_init = 1;
}
mii->mii_ifp = ifp;
mii->mii_readreg = mvxpe_miibus_readreg;
mii->mii_writereg = mvxpe_miibus_writereg;
mii->mii_statchg = mvxpe_miibus_statchg;
sc->sc_ethercom.ec_mii = mii;
ifmedia_init(&mii->mii_media, 0, mvxpe_mediachange, mvxpe_mediastatus);
/*
* XXX: phy addressing highly depends on Board Design.
* we assume phyaddress == MAC unit number here,
* but some boards may not.
*/
mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, device_unit(sc->sc_dev),
0);
child = LIST_FIRST(&mii->mii_phys);
if (child == NULL) {
aprint_error_dev(self, "no PHY found!\n");
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
} else {
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
phyaddr = MVXPE_PHYADDR_PHYAD(child->mii_phy);
MVXPE_WRITE(sc, MVXPE_PHYADDR, phyaddr);
DPRINTSC(sc, 1, "PHYADDR: %#x\n", MVXPE_READ(sc, MVXPE_PHYADDR));
}
/*
* Call MI attach routines.
*/
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, sc->sc_enaddr);
ether_set_ifflags_cb(&sc->sc_ethercom, mvxpe_ifflags_cb);
sysctl_mvxpe_init(sc);
mvxpe_evcnt_attach(sc);
rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
return;
fail:
for (q = 0; q < MVXPE_QUEUE_SIZE; q++)
mvxpe_ring_dealloc_queue(sc, q);
if (sc->sc_sysctl_mib)
kmem_free(sc->sc_sysctl_mib, sc->sc_sysctl_mib_size);
return;
}
STATIC int
mvxpe_evcnt_attach(struct mvxpe_softc *sc)
{
#ifdef MVXPE_EVENT_COUNTERS
int q;
/* Master Interrupt Handler */
evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtxth, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "RxTxTH Intr.");
evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtx, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "RxTx Intr.");
evcnt_attach_dynamic(&sc->sc_ev.ev_i_misc, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "MISC Intr.");
/* RXTXTH Interrupt */
evcnt_attach_dynamic(&sc->sc_ev.ev_rxtxth_txerr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "RxTxTH Tx error summary");
/* MISC Interrupt */
evcnt_attach_dynamic(&sc->sc_ev.ev_misc_phystatuschng, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "MISC phy status changed");
evcnt_attach_dynamic(&sc->sc_ev.ev_misc_linkchange, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "MISC link status changed");
evcnt_attach_dynamic(&sc->sc_ev.ev_misc_iae, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "MISC internal address error");
evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxoverrun, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "MISC Rx FIFO overrun");
evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxcrc, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "MISC Rx CRC error");
evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxlargepacket, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "MISC Rx too large frame");
evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txunderrun, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "MISC Tx FIFO underrun");
evcnt_attach_dynamic(&sc->sc_ev.ev_misc_prbserr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "MISC SERDES loopback test err");
evcnt_attach_dynamic(&sc->sc_ev.ev_misc_srse, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "MISC SERDES sync error");
evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txreq, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "MISC Tx resource error");
/* RxTx Interrupt */
evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rreq, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "RxTx Rx resource error");
evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rpq, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "RxTx Rx packet");
evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_tbrq, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "RxTx Tx complete");
evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rxtxth, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "RxTx RxTxTH summary");
evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_txerr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "RxTx Tx error summary");
evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_misc, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "RxTx MISC summary");
/* Link */
evcnt_attach_dynamic(&sc->sc_ev.ev_link_up, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "link up");
evcnt_attach_dynamic(&sc->sc_ev.ev_link_down, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "link down");
/* Rx Descriptor */
evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_ce, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Rx CRC error counter");
evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_or, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Rx FIFO overrun counter");
evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_mf, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Rx too large frame counter");
evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_re, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Rx resource error counter");
evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_scat, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Rx unexpected scatter bufs");
/* Tx Descriptor */
evcnt_attach_dynamic(&sc->sc_ev.ev_txd_lc, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Tx late collision counter");
evcnt_attach_dynamic(&sc->sc_ev.ev_txd_rl, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Tx excess. collision counter");
evcnt_attach_dynamic(&sc->sc_ev.ev_txd_ur, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Tx FIFO underrun counter");
evcnt_attach_dynamic(&sc->sc_ev.ev_txd_oth, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Tx unknown error counter");
/* Status Registers */
evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pdfc, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Rx discard counter");
evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pofc, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Rx overrun counter");
evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txbadfcs, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Tx bad FCS counter");
evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txdropped, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Tx dropped counter");
evcnt_attach_dynamic(&sc->sc_ev.ev_reg_lpic, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "LP_IDLE counter");
/* Device Driver Errors */
evcnt_attach_dynamic(&sc->sc_ev.ev_drv_wdogsoft, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "watchdog timer expired");
evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txerr, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "Tx descriptor alloc failed");
#define MVXPE_QUEUE_DESC(q) "Rx success in queue " # q
for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
static const char *rxq_desc[] = {
MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
};
evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxq[q], EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), rxq_desc[q]);
}
#undef MVXPE_QUEUE_DESC
#define MVXPE_QUEUE_DESC(q) "Tx success in queue " # q
for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
static const char *txq_desc[] = {
MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
};
evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txq[q], EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), txq_desc[q]);
}
#undef MVXPE_QUEUE_DESC
#define MVXPE_QUEUE_DESC(q) "Rx error in queue " # q
for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
static const char *rxqe_desc[] = {
MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
};
evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxqe[q], EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), rxqe_desc[q]);
}
#undef MVXPE_QUEUE_DESC
#define MVXPE_QUEUE_DESC(q) "Tx error in queue " # q
for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
static const char *txqe_desc[] = {
MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
};
evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txqe[q], EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), txqe_desc[q]);
}
#undef MVXPE_QUEUE_DESC
#endif /* MVXPE_EVENT_COUNTERS */
return 0;
}
STATIC void
mvxpe_sc_lock(struct mvxpe_softc *sc)
{
mutex_enter(&sc->sc_mtx);
}
STATIC void
mvxpe_sc_unlock(struct mvxpe_softc *sc)
{
mutex_exit(&sc->sc_mtx);
}
/*
* MII
*/
STATIC int
mvxpe_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
{
struct mvxpe_softc *sc = device_private(dev);
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t smi;
int i, rv = 0;
mutex_enter(&mii_mutex);
for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
DELAY(1);
if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
break;
}
if (i == MVXPE_PHY_TIMEOUT) {
aprint_error_ifnet(ifp, "SMI busy timeout\n");
rv = ETIMEDOUT;
goto out;
}
smi =
MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) | MVXPE_SMI_OPCODE_READ;
MVXPE_WRITE(sc, MVXPE_SMI, smi);
for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
DELAY(1);
smi = MVXPE_READ(sc, MVXPE_SMI);
if (smi & MVXPE_SMI_READVALID) {
*val = smi & MVXPE_SMI_DATA_MASK;
break;
}
}
DPRINTDEV(dev, 9, "i=%d, timeout=%d\n", i, MVXPE_PHY_TIMEOUT);
if (i >= MVXPE_PHY_TIMEOUT)
rv = ETIMEDOUT;
out:
mutex_exit(&mii_mutex);
DPRINTDEV(dev, 9, "phy=%d, reg=%#x, val=%#hx\n", phy, reg, *val);
return rv;
}
STATIC int
mvxpe_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
{
struct mvxpe_softc *sc = device_private(dev);
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t smi;
int i, rv = 0;
DPRINTDEV(dev, 9, "phy=%d reg=%#x val=%#hx\n", phy, reg, val);
mutex_enter(&mii_mutex);
for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
DELAY(1);
if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
break;
}
if (i == MVXPE_PHY_TIMEOUT) {
aprint_error_ifnet(ifp, "SMI busy timeout\n");
rv = ETIMEDOUT;
goto out;
}
smi = MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) |
MVXPE_SMI_OPCODE_WRITE | (val & MVXPE_SMI_DATA_MASK);
MVXPE_WRITE(sc, MVXPE_SMI, smi);
for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
DELAY(1);
if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
break;
}
if (i == MVXPE_PHY_TIMEOUT) {
aprint_error_ifnet(ifp, "phy write timed out\n");
rv = ETIMEDOUT;
}
out:
mutex_exit(&mii_mutex);
return rv;
}
STATIC void
mvxpe_miibus_statchg(struct ifnet *ifp)
{
/* nothing to do */
}
/*
* Address Decoding Window
*/
STATIC void
mvxpe_wininit(struct mvxpe_softc *sc, enum marvell_tags *tags)
{
device_t pdev = device_parent(sc->sc_dev);
uint64_t base;
uint32_t en, ac, size;
int window, target, attr, rv, i;
/* First disable all address decode windows */
en = MVXPE_BARE_EN_MASK;
MVXPE_WRITE(sc, MVXPE_BARE, en);
ac = 0;
for (window = 0, i = 0;
tags[i] != MARVELL_TAG_UNDEFINED && window < MVXPE_NWINDOW; i++) {
rv = marvell_winparams_by_tag(pdev, tags[i],
&target, &attr, &base, &size);
if (rv != 0 || size == 0)
continue;
if (base > 0xffffffffULL) {
if (window >= MVXPE_NREMAP) {
aprint_error_dev(sc->sc_dev,
"can't remap window %d\n", window);
continue;
}
MVXPE_WRITE(sc, MVXPE_HA(window),
(base >> 32) & 0xffffffff);
}
MVXPE_WRITE(sc, MVXPE_BASEADDR(window),
MVXPE_BASEADDR_TARGET(target) |
MVXPE_BASEADDR_ATTR(attr) |
MVXPE_BASEADDR_BASE(base));
MVXPE_WRITE(sc, MVXPE_S(window), MVXPE_S_SIZE(size));
DPRINTSC(sc, 1, "Window %d Base 0x%016llx: Size 0x%08x\n",
window, base, size);
en &= ~(1 << window);
/* set full access (r/w) */
ac |= MVXPE_EPAP_EPAR(window, MVXPE_EPAP_AC_FA);
window++;
}
/* allow to access decode window */
MVXPE_WRITE(sc, MVXPE_EPAP, ac);
MVXPE_WRITE(sc, MVXPE_BARE, en);
}
/*
* Device Register Initialization
* reset device registers to device driver default value.
* the device is not enabled here.
*/
STATIC int
mvxpe_initreg(struct ifnet *ifp)
{
struct mvxpe_softc *sc = ifp->if_softc;
int serdes = 0;
uint32_t reg;
int q, i;
DPRINTIFNET(ifp, 1, "initializing device register\n");
/* Init TX/RX Queue Registers */
for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
mvxpe_rx_lockq(sc, q);
if (mvxpe_rx_queue_init(ifp, q) != 0) {
aprint_error_ifnet(ifp,
"initialization failed: cannot initialize queue\n");
mvxpe_rx_unlockq(sc, q);
return ENOBUFS;
}
mvxpe_rx_unlockq(sc, q);
mvxpe_tx_lockq(sc, q);
if (mvxpe_tx_queue_init(ifp, q) != 0) {
aprint_error_ifnet(ifp,
"initialization failed: cannot initialize queue\n");
mvxpe_tx_unlockq(sc, q);
return ENOBUFS;
}
mvxpe_tx_unlockq(sc, q);
}
/* Tx MTU Limit */
MVXPE_WRITE(sc, MVXPE_TXMTU, MVXPE_MTU);
/* Check SGMII or SERDES(assume IPL/U-BOOT initialize this) */
reg = MVXPE_READ(sc, MVXPE_PMACC0);
if ((reg & MVXPE_PMACC0_PORTTYPE) != 0)
serdes = 1;
/* Ethernet Unit Control */
reg = MVXPE_READ(sc, MVXPE_EUC);
reg |= MVXPE_EUC_POLLING;
MVXPE_WRITE(sc, MVXPE_EUC, reg);
/* Auto Negotiation */
reg = MVXPE_PANC_MUSTSET; /* must write 0x1 */
reg |= MVXPE_PANC_FORCELINKFAIL;/* force link state down */
reg |= MVXPE_PANC_ANSPEEDEN; /* interface speed negotiation */
reg |= MVXPE_PANC_ANDUPLEXEN; /* negotiate duplex mode */
if (serdes) {
reg |= MVXPE_PANC_INBANDANEN; /* In Band negotiation */
reg |= MVXPE_PANC_INBANDANBYPASSEN; /* bypass negotiation */
reg |= MVXPE_PANC_SETFULLDX; /* set full-duplex on failure */
}
MVXPE_WRITE(sc, MVXPE_PANC, reg);
/* EEE: Low Power Idle */
reg = MVXPE_LPIC0_LILIMIT(MVXPE_LPI_LI);
reg |= MVXPE_LPIC0_TSLIMIT(MVXPE_LPI_TS);
MVXPE_WRITE(sc, MVXPE_LPIC0, reg);
reg = MVXPE_LPIC1_TWLIMIT(MVXPE_LPI_TS);
MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
reg = MVXPE_LPIC2_MUSTSET;
MVXPE_WRITE(sc, MVXPE_LPIC2, reg);
/* Port MAC Control set 0 */
reg = MVXPE_PMACC0_MUSTSET; /* must write 0x1 */
reg &= ~MVXPE_PMACC0_PORTEN; /* port is still disabled */
reg |= MVXPE_PMACC0_FRAMESIZELIMIT(MVXPE_MRU);
if (serdes)
reg |= MVXPE_PMACC0_PORTTYPE;
MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
/* Port MAC Control set 1 is only used for loop-back test */
/* Port MAC Control set 2 */
reg = MVXPE_READ(sc, MVXPE_PMACC2);
reg &= (MVXPE_PMACC2_PCSEN | MVXPE_PMACC2_RGMIIEN);
reg |= MVXPE_PMACC2_MUSTSET;
MVXPE_WRITE(sc, MVXPE_PMACC2, reg);
/* Port MAC Control set 3 is used for IPG tune */
/* Port MAC Control set 4 is not used */
/* Port Configuration */
/* Use queue 0 only */
reg = MVXPE_READ(sc, MVXPE_PXC);
reg &= ~(MVXPE_PXC_RXQ_MASK | MVXPE_PXC_RXQARP_MASK |
MVXPE_PXC_TCPQ_MASK | MVXPE_PXC_UDPQ_MASK | MVXPE_PXC_BPDUQ_MASK);
MVXPE_WRITE(sc, MVXPE_PXC, reg);
/* Port Configuration Extended: enable Tx CRC generation */
reg = MVXPE_READ(sc, MVXPE_PXCX);
reg &= ~MVXPE_PXCX_TXCRCDIS;
MVXPE_WRITE(sc, MVXPE_PXCX, reg);
/* clear MIB counter registers(clear by read) */
for (i = 0; i < __arraycount(mvxpe_mib_list); i++)
MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum));
/* Set SDC register except IPGINT bits */
reg = MVXPE_SDC_RXBSZ_16_64BITWORDS;
reg |= MVXPE_SDC_TXBSZ_16_64BITWORDS;
reg |= MVXPE_SDC_BLMR;
reg |= MVXPE_SDC_BLMT;
MVXPE_WRITE(sc, MVXPE_SDC, reg);
return 0;
}
/*
* Descriptor Ring Controls for each of queues
*/
STATIC void *
mvxpe_dma_memalloc(struct mvxpe_softc *sc, bus_dmamap_t *map, size_t size)
{
bus_dma_segment_t segs;
void *kva = NULL;
int nsegs;
/*
* Allocate the descriptor queues.
* struct mvxpe_ring_data contians array of descriptor per queue.
*/
if (bus_dmamem_alloc(sc->sc_dmat,
size, PAGE_SIZE, 0, &segs, 1, &nsegs, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->sc_dev,
"can't alloc device memory (%zu bytes)\n", size);
return NULL;
}
if (bus_dmamem_map(sc->sc_dmat,
&segs, nsegs, size, &kva, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->sc_dev,
"can't map dma buffers (%zu bytes)\n", size);
goto fail1;
}
if (bus_dmamap_create(sc->sc_dmat,
size, 1, size, 0, BUS_DMA_NOWAIT, map)) {
aprint_error_dev(sc->sc_dev, "can't create dma map\n");
goto fail2;
}
if (bus_dmamap_load(sc->sc_dmat,
*map, kva, size, NULL, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->sc_dev, "can't load dma map\n");
goto fail3;
}
memset(kva, 0, size);
return kva;
fail3:
bus_dmamap_destroy(sc->sc_dmat, *map);
memset(map, 0, sizeof(*map));
fail2:
bus_dmamem_unmap(sc->sc_dmat, kva, size);
fail1:
bus_dmamem_free(sc->sc_dmat, &segs, nsegs);
return NULL;
}
STATIC int
mvxpe_ring_alloc_queue(struct mvxpe_softc *sc, int q)
{
struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
/*
* MVXPE_RX_RING_CNT and MVXPE_TX_RING_CNT is a hard limit of
* queue length. real queue length is limited by
* sc->sc_rx_ring[q].rx_queue_len and sc->sc_tx_ring[q].tx_queue_len.
*
* because descriptor ring reallocation needs reprogramming of
* DMA registers, we allocate enough descriptor for hard limit
* of queue length.
*/
rx->rx_descriptors =
mvxpe_dma_memalloc(sc, &rx->rx_descriptors_map,
(sizeof(struct mvxpe_rx_desc) * MVXPE_RX_RING_CNT));
if (rx->rx_descriptors == NULL)
goto fail;
tx->tx_descriptors =
mvxpe_dma_memalloc(sc, &tx->tx_descriptors_map,
(sizeof(struct mvxpe_tx_desc) * MVXPE_TX_RING_CNT));
if (tx->tx_descriptors == NULL)
goto fail;
return 0;
fail:
mvxpe_ring_dealloc_queue(sc, q);
aprint_error_dev(sc->sc_dev, "DMA Ring buffer allocation failure.\n");
return ENOMEM;
}
STATIC void
mvxpe_ring_dealloc_queue(struct mvxpe_softc *sc, int q)
{
struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
bus_dma_segment_t *segs;
bus_size_t size;
void *kva;
int nsegs;
/* Rx */
kva = (void *)MVXPE_RX_RING_MEM_VA(sc, q);
if (kva) {
segs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_segs;
nsegs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_nsegs;
size = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_mapsize;
bus_dmamap_unload(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
bus_dmamap_destroy(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
bus_dmamem_unmap(sc->sc_dmat, kva, size);
bus_dmamem_free(sc->sc_dmat, segs, nsegs);
}
/* Tx */
kva = (void *)MVXPE_TX_RING_MEM_VA(sc, q);
if (kva) {
segs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_segs;
nsegs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_nsegs;
size = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_mapsize;
bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
bus_dmamap_destroy(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
bus_dmamem_unmap(sc->sc_dmat, kva, size);
bus_dmamem_free(sc->sc_dmat, segs, nsegs);
}
/* Clear doungling pointers all */
memset(rx, 0, sizeof(*rx));
memset(tx, 0, sizeof(*tx));
}
STATIC void
mvxpe_ring_init_queue(struct mvxpe_softc *sc, int q)
{
struct mvxpe_rx_desc *rxd = MVXPE_RX_RING_MEM_VA(sc, q);
struct mvxpe_tx_desc *txd = MVXPE_TX_RING_MEM_VA(sc, q);
struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
static const int rx_default_queue_len[] = {
MVXPE_RX_QUEUE_LIMIT_0, MVXPE_RX_QUEUE_LIMIT_1,
MVXPE_RX_QUEUE_LIMIT_2, MVXPE_RX_QUEUE_LIMIT_3,
MVXPE_RX_QUEUE_LIMIT_4, MVXPE_RX_QUEUE_LIMIT_5,
MVXPE_RX_QUEUE_LIMIT_6, MVXPE_RX_QUEUE_LIMIT_7,
};
static const int tx_default_queue_len[] = {
MVXPE_TX_QUEUE_LIMIT_0, MVXPE_TX_QUEUE_LIMIT_1,
MVXPE_TX_QUEUE_LIMIT_2, MVXPE_TX_QUEUE_LIMIT_3,
MVXPE_TX_QUEUE_LIMIT_4, MVXPE_TX_QUEUE_LIMIT_5,
MVXPE_TX_QUEUE_LIMIT_6, MVXPE_TX_QUEUE_LIMIT_7,
};
extern uint32_t mvTclk;
int i;
/* Rx handle */
for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
MVXPE_RX_DESC(sc, q, i) = &rxd[i];
MVXPE_RX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_rx_desc) * i;
MVXPE_RX_PKTBUF(sc, q, i) = NULL;
}
mutex_init(&rx->rx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
rx->rx_dma = rx->rx_cpu = 0;
rx->rx_queue_len = rx_default_queue_len[q];
if (rx->rx_queue_len > MVXPE_RX_RING_CNT)
rx->rx_queue_len = MVXPE_RX_RING_CNT;
rx->rx_queue_th_received = rx->rx_queue_len / MVXPE_RXTH_RATIO;
rx->rx_queue_th_free = rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
rx->rx_queue_th_time = (mvTclk / 1000) / 2; /* 0.5 [ms] */
/* Tx handle */
for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
MVXPE_TX_DESC(sc, q, i) = &txd[i];
MVXPE_TX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_tx_desc) * i;
MVXPE_TX_MBUF(sc, q, i) = NULL;
/* Tx handle needs DMA map for busdma_load_mbuf() */
if (bus_dmamap_create(sc->sc_dmat,
mvxpbm_chunk_size(sc->sc_bm),
MVXPE_TX_SEGLIMIT, mvxpbm_chunk_size(sc->sc_bm), 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&MVXPE_TX_MAP(sc, q, i))) {
aprint_error_dev(sc->sc_dev,
"can't create dma map (tx ring %d)\n", i);
}
}
mutex_init(&tx->tx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
tx->tx_dma = tx->tx_cpu = 0;
tx->tx_queue_len = tx_default_queue_len[q];
if (tx->tx_queue_len > MVXPE_TX_RING_CNT)
tx->tx_queue_len = MVXPE_TX_RING_CNT;
tx->tx_used = 0;
tx->tx_queue_th_free = tx->tx_queue_len / MVXPE_TXTH_RATIO;
}
STATIC void
mvxpe_ring_flush_queue(struct mvxpe_softc *sc, int q)
{
struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
struct mbuf *m;
int i;
KASSERT_RX_MTX(sc, q);
KASSERT_TX_MTX(sc, q);
/* Rx handle */
for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
if (MVXPE_RX_PKTBUF(sc, q, i) == NULL)
continue;
mvxpbm_free_chunk(MVXPE_RX_PKTBUF(sc, q, i));
MVXPE_RX_PKTBUF(sc, q, i) = NULL;
}
rx->rx_dma = rx->rx_cpu = 0;
/* Tx handle */
for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
m = MVXPE_TX_MBUF(sc, q, i);
if (m == NULL)
continue;
MVXPE_TX_MBUF(sc, q, i) = NULL;
bus_dmamap_sync(sc->sc_dmat,
MVXPE_TX_MAP(sc, q, i), 0, m->m_pkthdr.len,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, i));
m_freem(m);
}
tx->tx_dma = tx->tx_cpu = 0;
tx->tx_used = 0;
}
STATIC void
mvxpe_ring_sync_rx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
{
int wrap;
KASSERT_RX_MTX(sc, q);
KASSERT(count > 0 && count <= MVXPE_RX_RING_CNT);
KASSERT(idx >= 0 && idx < MVXPE_RX_RING_CNT);
wrap = (idx + count) - MVXPE_RX_RING_CNT;
if (wrap > 0) {
count -= wrap;
KASSERT(count > 0);
bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
0, sizeof(struct mvxpe_rx_desc) * wrap, ops);
}
bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
MVXPE_RX_DESC_OFF(sc, q, idx),
sizeof(struct mvxpe_rx_desc) * count, ops);
}
STATIC void
mvxpe_ring_sync_tx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
{
int wrap = 0;
KASSERT_TX_MTX(sc, q);
KASSERT(count > 0 && count <= MVXPE_TX_RING_CNT);
KASSERT(idx >= 0 && idx < MVXPE_TX_RING_CNT);
wrap = (idx + count) - MVXPE_TX_RING_CNT;
if (wrap > 0) {
count -= wrap;
bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
0, sizeof(struct mvxpe_tx_desc) * wrap, ops);
}
bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
MVXPE_TX_DESC_OFF(sc, q, idx),
sizeof(struct mvxpe_tx_desc) * count, ops);
}
/*
* Rx/Tx Queue Control
*/
STATIC int
mvxpe_rx_queue_init(struct ifnet *ifp, int q)
{
struct mvxpe_softc *sc = ifp->if_softc;
uint32_t reg;
KASSERT_RX_MTX(sc, q);
KASSERT(MVXPE_RX_RING_MEM_PA(sc, q) != 0);
/* descriptor address */
MVXPE_WRITE(sc, MVXPE_PRXDQA(q), MVXPE_RX_RING_MEM_PA(sc, q));
/* Rx buffer size and descriptor ring size */
reg = MVXPE_PRXDQS_BUFFERSIZE(mvxpbm_chunk_size(sc->sc_bm) >> 3);
reg |= MVXPE_PRXDQS_DESCRIPTORSQUEUESIZE(MVXPE_RX_RING_CNT);
MVXPE_WRITE(sc, MVXPE_PRXDQS(q), reg);
DPRINTIFNET(ifp, 1, "PRXDQS(%d): %#x\n",
q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
/* Rx packet offset address */
reg = MVXPE_PRXC_PACKETOFFSET(mvxpbm_packet_offset(sc->sc_bm) >> 3);
MVXPE_WRITE(sc, MVXPE_PRXC(q), reg);
DPRINTIFNET(ifp, 1, "PRXC(%d): %#x\n",
q, MVXPE_READ(sc, MVXPE_PRXC(q)));
/* Rx DMA SNOOP */
reg = MVXPE_PRXSNP_SNOOPNOOFBYTES(MVXPE_MRU);
reg |= MVXPE_PRXSNP_L2DEPOSITNOOFBYTES(MVXPE_MRU);
MVXPE_WRITE(sc, MVXPE_PRXSNP(q), reg);
/* if DMA is not working, register is not updated */
KASSERT(MVXPE_READ(sc, MVXPE_PRXDQA(q)) == MVXPE_RX_RING_MEM_PA(sc, q));
return 0;
}
STATIC int
mvxpe_tx_queue_init(struct ifnet *ifp, int q)
{
struct mvxpe_softc *sc = ifp->if_softc;
struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
uint32_t reg;
KASSERT_TX_MTX(sc, q);
KASSERT(MVXPE_TX_RING_MEM_PA(sc, q) != 0);
/* descriptor address */
MVXPE_WRITE(sc, MVXPE_PTXDQA(q), MVXPE_TX_RING_MEM_PA(sc, q));
/* Tx threshold, and descriptor ring size */
reg = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
DPRINTIFNET(ifp, 1, "PTXDQS(%d): %#x\n",
q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
/* if DMA is not working, register is not updated */
KASSERT(MVXPE_READ(sc, MVXPE_PTXDQA(q)) == MVXPE_TX_RING_MEM_PA(sc, q));
return 0;
}
STATIC int
mvxpe_rx_queue_enable(struct ifnet *ifp, int q)
{
struct mvxpe_softc *sc = ifp->if_softc;
struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
uint32_t reg;
KASSERT_RX_MTX(sc, q);
/* Set Rx interrupt threshold */
reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
MVXPE_WRITE(sc, MVXPE_PRXDQTH(q), reg);
reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
/* Unmask RXTX_TH Intr. */
reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
reg |= MVXPE_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
reg |= MVXPE_PRXTXTI_RDTAQ(q); /* Rx Descriptor Alart */
MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
/* Enable Rx queue */
reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
reg |= MVXPE_RQC_ENQ(q);
MVXPE_WRITE(sc, MVXPE_RQC, reg);
return 0;
}
STATIC int
mvxpe_tx_queue_enable(struct ifnet *ifp, int q)
{
struct mvxpe_softc *sc = ifp->if_softc;
struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
uint32_t reg;
KASSERT_TX_MTX(sc, q);
/* Set Tx interrupt threshold */
reg = MVXPE_READ(sc, MVXPE_PTXDQS(q));
reg &= ~MVXPE_PTXDQS_TBT_MASK; /* keep queue size */
reg |= MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
/* Unmask RXTX_TH Intr. */
reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
reg |= MVXPE_PRXTXTI_TBTCQ(q); /* Tx Threshold cross */
MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
/* Don't update MVXPE_TQC here, there is no packet yet. */
return 0;
}
STATIC void
mvxpe_rx_lockq(struct mvxpe_softc *sc, int q)
{
KASSERT(q >= 0);
KASSERT(q < MVXPE_QUEUE_SIZE);
mutex_enter(&sc->sc_rx_ring[q].rx_ring_mtx);
}
STATIC void
mvxpe_rx_unlockq(struct mvxpe_softc *sc, int q)
{
KASSERT(q >= 0);
KASSERT(q < MVXPE_QUEUE_SIZE);
mutex_exit(&sc->sc_rx_ring[q].rx_ring_mtx);
}
STATIC void
mvxpe_tx_lockq(struct mvxpe_softc *sc, int q)
{
KASSERT(q >= 0);
KASSERT(q < MVXPE_QUEUE_SIZE);
mutex_enter(&sc->sc_tx_ring[q].tx_ring_mtx);
}
STATIC void
mvxpe_tx_unlockq(struct mvxpe_softc *sc, int q)
{
KASSERT(q >= 0);
KASSERT(q < MVXPE_QUEUE_SIZE);
mutex_exit(&sc->sc_tx_ring[q].tx_ring_mtx);
}
/*
* Interrupt Handlers
*/
STATIC void
mvxpe_disable_intr(struct mvxpe_softc *sc)
{
MVXPE_WRITE(sc, MVXPE_EUIM, 0);
MVXPE_WRITE(sc, MVXPE_EUIC, 0);
MVXPE_WRITE(sc, MVXPE_PRXTXTIM, 0);
MVXPE_WRITE(sc, MVXPE_PRXTXTIC, 0);
MVXPE_WRITE(sc, MVXPE_PRXTXIM, 0);
MVXPE_WRITE(sc, MVXPE_PRXTXIC, 0);
MVXPE_WRITE(sc, MVXPE_PMIM, 0);
MVXPE_WRITE(sc, MVXPE_PMIC, 0);
MVXPE_WRITE(sc, MVXPE_PIE, 0);
}
STATIC void
mvxpe_enable_intr(struct mvxpe_softc *sc)
{
uint32_t reg;
/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
reg = MVXPE_READ(sc, MVXPE_PMIM);
reg |= MVXPE_PMI_PHYSTATUSCHNG;
reg |= MVXPE_PMI_LINKCHANGE;
reg |= MVXPE_PMI_IAE;
reg |= MVXPE_PMI_RXOVERRUN;
reg |= MVXPE_PMI_RXCRCERROR;
reg |= MVXPE_PMI_RXLARGEPACKET;
reg |= MVXPE_PMI_TXUNDRN;
#if 0
/*
* The device may raise false interrupts for SERDES even if the device
* is not configured to use SERDES connection.
*/
reg |= MVXPE_PMI_PRBSERROR;
reg |= MVXPE_PMI_SRSE;
#else
reg &= ~MVXPE_PMI_PRBSERROR;
reg &= ~MVXPE_PMI_SRSE;
#endif
reg |= MVXPE_PMI_TREQ_MASK;
MVXPE_WRITE(sc, MVXPE_PMIM, reg);
/* Enable Summary Bit to check all interrupt cause. */
reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
reg |= MVXPE_PRXTXTI_PMISCICSUMMARY;
reg |= MVXPE_PRXTXTI_PTXERRORSUMMARY;
reg |= MVXPE_PRXTXTI_PRXTXICSUMMARY;
MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
/* Enable All Queue Interrupt */
reg = MVXPE_READ(sc, MVXPE_PIE);
reg |= MVXPE_PIE_RXPKTINTRPTENB_MASK;
reg |= MVXPE_PIE_TXPKTINTRPTENB_MASK;
MVXPE_WRITE(sc, MVXPE_PIE, reg);
}
STATIC int
mvxpe_rxtxth_intr(void *arg)
{
struct mvxpe_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t ic, queues, datum = 0;
DPRINTSC(sc, 2, "got RXTX_TH_Intr\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtxth);
mvxpe_sc_lock(sc);
ic = MVXPE_READ(sc, MVXPE_PRXTXTIC);
if (ic == 0) {
mvxpe_sc_unlock(sc);
return 0;
}
MVXPE_WRITE(sc, MVXPE_PRXTXTIC, ~ic);
datum = datum ^ ic;
DPRINTIFNET(ifp, 2, "PRXTXTIC: %#x\n", ic);
/* ack maintenance interrupt first */
if (ic & MVXPE_PRXTXTI_PTXERRORSUMMARY) {
DPRINTIFNET(ifp, 1, "PRXTXTIC: +PTXERRORSUMMARY\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtxth_txerr);
}
if ((ic & MVXPE_PRXTXTI_PMISCICSUMMARY)) {
DPRINTIFNET(ifp, 2, "PTXTXTIC: +PMISCICSUMMARY\n");
mvxpe_misc_intr(sc);
}
if (ic & MVXPE_PRXTXTI_PRXTXICSUMMARY) {
DPRINTIFNET(ifp, 2, "PTXTXTIC: +PRXTXICSUMMARY\n");
mvxpe_rxtx_intr(sc);
}
if (!(ifp->if_flags & IFF_RUNNING)) {
mvxpe_sc_unlock(sc);
return 1;
}
/* RxTxTH interrupt */
queues = MVXPE_PRXTXTI_GET_RBICTAPQ(ic);
if (queues) {
DPRINTIFNET(ifp, 2, "PRXTXTIC: +RXEOF\n");
mvxpe_rx(sc, queues);
}
queues = MVXPE_PRXTXTI_GET_TBTCQ(ic);
if (queues) {
DPRINTIFNET(ifp, 2, "PRXTXTIC: +TBTCQ\n");
mvxpe_tx_complete(sc, queues);
}
queues = MVXPE_PRXTXTI_GET_RDTAQ(ic);
if (queues) {
DPRINTIFNET(ifp, 2, "PRXTXTIC: +RDTAQ\n");
mvxpe_rx_refill(sc, queues);
}
mvxpe_sc_unlock(sc);
if_schedule_deferred_start(ifp);
rnd_add_uint32(&sc->sc_rnd_source, datum);
return 1;
}
STATIC int
mvxpe_misc_intr(void *arg)
{
struct mvxpe_softc *sc = arg;
#ifdef MVXPE_DEBUG
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
#endif
uint32_t ic;
uint32_t datum = 0;
int claimed = 0;
DPRINTSC(sc, 2, "got MISC_INTR\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_misc);
KASSERT_SC_MTX(sc);
for (;;) {
ic = MVXPE_READ(sc, MVXPE_PMIC);
ic &= MVXPE_READ(sc, MVXPE_PMIM);
if (ic == 0)
break;
MVXPE_WRITE(sc, MVXPE_PMIC, ~ic);
datum = datum ^ ic;
claimed = 1;
DPRINTIFNET(ifp, 2, "PMIC=%#x\n", ic);
if (ic & MVXPE_PMI_PHYSTATUSCHNG) {
DPRINTIFNET(ifp, 2, "+PHYSTATUSCHNG\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_phystatuschng);
}
if (ic & MVXPE_PMI_LINKCHANGE) {
DPRINTIFNET(ifp, 2, "+LINKCHANGE\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_linkchange);
mvxpe_linkupdate(sc);
}
if (ic & MVXPE_PMI_IAE) {
DPRINTIFNET(ifp, 2, "+IAE\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_iae);
}
if (ic & MVXPE_PMI_RXOVERRUN) {
DPRINTIFNET(ifp, 2, "+RXOVERRUN\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxoverrun);
}
if (ic & MVXPE_PMI_RXCRCERROR) {
DPRINTIFNET(ifp, 2, "+RXCRCERROR\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxcrc);
}
if (ic & MVXPE_PMI_RXLARGEPACKET) {
DPRINTIFNET(ifp, 2, "+RXLARGEPACKET\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxlargepacket);
}
if (ic & MVXPE_PMI_TXUNDRN) {
DPRINTIFNET(ifp, 2, "+TXUNDRN\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txunderrun);
}
if (ic & MVXPE_PMI_PRBSERROR) {
DPRINTIFNET(ifp, 2, "+PRBSERROR\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_prbserr);
}
if (ic & MVXPE_PMI_TREQ_MASK) {
DPRINTIFNET(ifp, 2, "+TREQ\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txreq);
}
}
if (datum)
rnd_add_uint32(&sc->sc_rnd_source, datum);
return claimed;
}
STATIC int
mvxpe_rxtx_intr(void *arg)
{
struct mvxpe_softc *sc = arg;
#ifdef MVXPE_DEBUG
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
#endif
uint32_t datum = 0;
uint32_t prxtxic;
int claimed = 0;
DPRINTSC(sc, 2, "got RXTX_Intr\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtx);
KASSERT_SC_MTX(sc);
for (;;) {
prxtxic = MVXPE_READ(sc, MVXPE_PRXTXIC);
prxtxic &= MVXPE_READ(sc, MVXPE_PRXTXIM);
if (prxtxic == 0)
break;
MVXPE_WRITE(sc, MVXPE_PRXTXIC, ~prxtxic);
datum = datum ^ prxtxic;
claimed = 1;
DPRINTSC(sc, 2, "PRXTXIC: %#x\n", prxtxic);
if (prxtxic & MVXPE_PRXTXI_RREQ_MASK) {
DPRINTIFNET(ifp, 1, "Rx Resource Error.\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rreq);
}
if (prxtxic & MVXPE_PRXTXI_RPQ_MASK) {
DPRINTIFNET(ifp, 1, "Rx Packet in Queue.\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rpq);
}
if (prxtxic & MVXPE_PRXTXI_TBRQ_MASK) {
DPRINTIFNET(ifp, 1, "Tx Buffer Return.\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_tbrq);
}
if (prxtxic & MVXPE_PRXTXI_PRXTXTHICSUMMARY) {
DPRINTIFNET(ifp, 1, "PRXTXTHIC Summary\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rxtxth);
}
if (prxtxic & MVXPE_PRXTXI_PTXERRORSUMMARY) {
DPRINTIFNET(ifp, 1, "PTXERROR Summary\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_txerr);
}
if (prxtxic & MVXPE_PRXTXI_PMISCICSUMMARY) {
DPRINTIFNET(ifp, 1, "PMISCIC Summary\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_misc);
}
}
if (datum)
rnd_add_uint32(&sc->sc_rnd_source, datum);
return claimed;
}
STATIC void
mvxpe_tick(void *arg)
{
struct mvxpe_softc *sc = arg;
struct mii_data *mii = &sc->sc_mii;
mvxpe_sc_lock(sc);
mii_tick(mii);
mii_pollstat(&sc->sc_mii);
/* read mib registers(clear by read) */
mvxpe_update_mib(sc);
/* read counter registers(clear by read) */
MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pdfc,
MVXPE_READ(sc, MVXPE_PDFC));
MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pofc,
MVXPE_READ(sc, MVXPE_POFC));
MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txbadfcs,
MVXPE_READ(sc, MVXPE_TXBADFCS));
MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txdropped,
MVXPE_READ(sc, MVXPE_TXDROPPED));
MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_lpic,
MVXPE_READ(sc, MVXPE_LPIC));
mvxpe_sc_unlock(sc);
callout_schedule(&sc->sc_tick_ch, hz);
}
/*
* struct ifnet and mii callbacks
*/
STATIC void
mvxpe_start(struct ifnet *ifp)
{
struct mvxpe_softc *sc = ifp->if_softc;
struct mbuf *m;
int q;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
DPRINTIFNET(ifp, 1, "not running\n");
return;
}
mvxpe_sc_lock(sc);
if (!MVXPE_IS_LINKUP(sc)) {
/* If Link is DOWN, can't start TX */
DPRINTIFNET(ifp, 1, "link fail\n");
for (;;) {
/*
* discard stale packets all.
* these may confuse DAD, ARP or timer based protocols.
*/
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
m_freem(m);
}
mvxpe_sc_unlock(sc);
return;
}
for (;;) {
/*
* don't use IFQ_POLL().
* there is lock problem between IFQ_POLL and IFQ_DEQUEUE
* on SMP enabled networking stack.
*/
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
q = mvxpe_tx_queue_select(sc, m);
if (q < 0)
break;
/* mutex is held in mvxpe_tx_queue_select() */
if (mvxpe_tx_queue(sc, m, q) != 0) {
DPRINTIFNET(ifp, 1, "cannot add packet to tx ring\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txerr);
mvxpe_tx_unlockq(sc, q);
break;
}
mvxpe_tx_unlockq(sc, q);
KASSERT(sc->sc_tx_ring[q].tx_used >= 0);
KASSERT(sc->sc_tx_ring[q].tx_used <=
sc->sc_tx_ring[q].tx_queue_len);
DPRINTIFNET(ifp, 1, "a packet is added to tx ring\n");
sc->sc_tx_pending++;
if_statinc(ifp, if_opackets);
ifp->if_timer = 1;
sc->sc_wdogsoft = 1;
bpf_mtap(ifp, m, BPF_D_OUT);
}
mvxpe_sc_unlock(sc);
return;
}
STATIC int
mvxpe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct mvxpe_softc *sc = ifp->if_softc;
int error = 0;
switch (cmd) {
default:
DPRINTIFNET(ifp, 2, "mvxpe_ioctl ETHER\n");
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING) {
mvxpe_sc_lock(sc);
mvxpe_filter_setup(sc);
mvxpe_sc_unlock(sc);
}
error = 0;
}
break;
}
return error;
}
STATIC int
mvxpe_init(struct ifnet *ifp)
{
struct mvxpe_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
uint32_t reg;
int q;
mvxpe_sc_lock(sc);
/* Start DMA Engine */
MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
/* Enable port */
reg = MVXPE_READ(sc, MVXPE_PMACC0);
reg |= MVXPE_PMACC0_PORTEN;
MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
/* Link up */
mvxpe_linkup(sc);
/* Enable All Queue and interrupt of each Queue */
for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
mvxpe_rx_lockq(sc, q);
mvxpe_rx_queue_enable(ifp, q);
mvxpe_rx_queue_refill(sc, q);
mvxpe_rx_unlockq(sc, q);
mvxpe_tx_lockq(sc, q);
mvxpe_tx_queue_enable(ifp, q);
mvxpe_tx_unlockq(sc, q);
}
/* Enable interrupt */
mvxpe_enable_intr(sc);
/* Set Counter */
callout_schedule(&sc->sc_tick_ch, hz);
/* Media check */
mii_mediachg(mii);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
mvxpe_sc_unlock(sc);
return 0;
}
/* ARGSUSED */
STATIC void
mvxpe_stop(struct ifnet *ifp, int disable)
{
struct mvxpe_softc *sc = ifp->if_softc;
uint32_t reg;
int q, cnt;
DPRINTIFNET(ifp, 1, "stop device dma and interrupts.\n");
mvxpe_sc_lock(sc);
callout_stop(&sc->sc_tick_ch);
/* Link down */
mvxpe_linkdown(sc);
/* Disable Rx interrupt */
reg = MVXPE_READ(sc, MVXPE_PIE);
reg &= ~MVXPE_PIE_RXPKTINTRPTENB_MASK;
MVXPE_WRITE(sc, MVXPE_PIE, reg);
reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
reg &= ~MVXPE_PRXTXTI_RBICTAPQ_MASK;
reg &= ~MVXPE_PRXTXTI_RDTAQ_MASK;
MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
/* Wait for all Rx activity to terminate. */
reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
reg = MVXPE_RQC_DIS(reg);
MVXPE_WRITE(sc, MVXPE_RQC, reg);
cnt = 0;
do {
if (cnt >= RX_DISABLE_TIMEOUT) {
aprint_error_ifnet(ifp,
"timeout for RX stopped. rqc 0x%x\n", reg);
break;
}
cnt++;
reg = MVXPE_READ(sc, MVXPE_RQC);
} while (reg & MVXPE_RQC_EN_MASK);
/* Wait for all Tx activety to terminate. */
reg = MVXPE_READ(sc, MVXPE_PIE);
reg &= ~MVXPE_PIE_TXPKTINTRPTENB_MASK;
MVXPE_WRITE(sc, MVXPE_PIE, reg);
reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
reg &= ~MVXPE_PRXTXTI_TBTCQ_MASK;
MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
reg = MVXPE_READ(sc, MVXPE_TQC) & MVXPE_TQC_EN_MASK;
reg = MVXPE_TQC_DIS(reg);
MVXPE_WRITE(sc, MVXPE_TQC, reg);
cnt = 0;
do {
if (cnt >= TX_DISABLE_TIMEOUT) {
aprint_error_ifnet(ifp,
"timeout for TX stopped. tqc 0x%x\n", reg);
break;
}
cnt++;
reg = MVXPE_READ(sc, MVXPE_TQC);
} while (reg & MVXPE_TQC_EN_MASK);
/* Wait for all Tx FIFO is empty */
cnt = 0;
do {
if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
aprint_error_ifnet(ifp,
"timeout for TX FIFO drained. ps0 0x%x\n", reg);
break;
}
cnt++;
reg = MVXPE_READ(sc, MVXPE_PS0);
} while (!(reg & MVXPE_PS0_TXFIFOEMP) && (reg & MVXPE_PS0_TXINPROG));
/* Reset the MAC Port Enable bit */
reg = MVXPE_READ(sc, MVXPE_PMACC0);
reg &= ~MVXPE_PMACC0_PORTEN;
MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
/* Disable each of queue */
for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
mvxpe_rx_lockq(sc, q);
mvxpe_tx_lockq(sc, q);
/* Disable Rx packet buffer refill request */
reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
reg |= MVXPE_PRXDQTH_NODT(0);
MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
if (disable) {
/*
* Hold Reset state of DMA Engine
* (must write 0x0 to restart it)
*/
MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
mvxpe_ring_flush_queue(sc, q);
}
mvxpe_tx_unlockq(sc, q);
mvxpe_rx_unlockq(sc, q);
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
mvxpe_sc_unlock(sc);
}
STATIC void
mvxpe_watchdog(struct ifnet *ifp)
{
struct mvxpe_softc *sc = ifp->if_softc;
int q;
mvxpe_sc_lock(sc);
/*
* Reclaim first as there is a possibility of losing Tx completion
* interrupts.
*/
mvxpe_tx_complete(sc, 0xff);
for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
if (tx->tx_dma != tx->tx_cpu) {
if (sc->sc_wdogsoft) {
/*
* There is race condition between CPU and DMA
* engine. When DMA engine encounters queue end,
* it clears MVXPE_TQC_ENQ bit.
* XXX: how about enhanced mode?
*/
MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
ifp->if_timer = 5;
sc->sc_wdogsoft = 0;
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_wdogsoft);
} else {
aprint_error_ifnet(ifp, "watchdog timeout\n");
if_statinc(ifp, if_oerrors);
mvxpe_linkreset(sc);
mvxpe_sc_unlock(sc);
/* trigger reinitialize sequence */
mvxpe_stop(ifp, 1);
mvxpe_init(ifp);
mvxpe_sc_lock(sc);
}
}
}
mvxpe_sc_unlock(sc);
}
STATIC int
mvxpe_ifflags_cb(struct ethercom *ec)
{
struct ifnet *ifp = &ec->ec_if;
struct mvxpe_softc *sc = ifp->if_softc;
u_short change = ifp->if_flags ^ sc->sc_if_flags;
mvxpe_sc_lock(sc);
if (change != 0)
sc->sc_if_flags = ifp->if_flags;
if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
mvxpe_sc_unlock(sc);
return ENETRESET;
}
if ((change & IFF_PROMISC) != 0)
mvxpe_filter_setup(sc);
if ((change & IFF_UP) != 0)
mvxpe_linkreset(sc);
mvxpe_sc_unlock(sc);
return 0;
}
STATIC int
mvxpe_mediachange(struct ifnet *ifp)
{
return ether_mediachange(ifp);
}
STATIC void
mvxpe_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
ether_mediastatus(ifp, ifmr);
}
/*
* Link State Notify
*/
STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc)
{
int linkup; /* bool */
KASSERT_SC_MTX(sc);
/* tell miibus */
mii_pollstat(&sc->sc_mii);
/* syslog */
linkup = MVXPE_IS_LINKUP(sc);
if (sc->sc_linkstate == linkup)
return;
#ifdef DEBUG
log(LOG_DEBUG,
"%s: link %s\n", device_xname(sc->sc_dev), linkup ? "up" : "down");
#endif
if (linkup)
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_up);
else
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_down);
sc->sc_linkstate = linkup;
}
STATIC void
mvxpe_linkup(struct mvxpe_softc *sc)
{
uint32_t reg;
KASSERT_SC_MTX(sc);
/* set EEE parameters */
reg = MVXPE_READ(sc, MVXPE_LPIC1);
if (sc->sc_cf.cf_lpi)
reg |= MVXPE_LPIC1_LPIRE;
else
reg &= ~MVXPE_LPIC1_LPIRE;
MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
/* set auto-negotiation parameters */
reg = MVXPE_READ(sc, MVXPE_PANC);
if (sc->sc_cf.cf_fc) {
/* flow control negotiation */
reg |= MVXPE_PANC_PAUSEADV;
reg |= MVXPE_PANC_ANFCEN;
}
else {
reg &= ~MVXPE_PANC_PAUSEADV;
reg &= ~MVXPE_PANC_ANFCEN;
}
reg &= ~MVXPE_PANC_FORCELINKFAIL;
reg &= ~MVXPE_PANC_FORCELINKPASS;
MVXPE_WRITE(sc, MVXPE_PANC, reg);
mii_mediachg(&sc->sc_mii);
}
STATIC void
mvxpe_linkdown(struct mvxpe_softc *sc)
{
struct mii_softc *mii;
uint32_t reg;
KASSERT_SC_MTX(sc);
return;
reg = MVXPE_READ(sc, MVXPE_PANC);
reg |= MVXPE_PANC_FORCELINKFAIL;
reg &= MVXPE_PANC_FORCELINKPASS;
MVXPE_WRITE(sc, MVXPE_PANC, reg);
mii = LIST_FIRST(&sc->sc_mii.mii_phys);
if (mii)
mii_phy_down(mii);
}
STATIC void
mvxpe_linkreset(struct mvxpe_softc *sc)
{
struct mii_softc *mii;
KASSERT_SC_MTX(sc);
/* force reset PHY first */
mii = LIST_FIRST(&sc->sc_mii.mii_phys);
if (mii)
mii_phy_reset(mii);
/* reinit MAC and PHY */
mvxpe_linkdown(sc);
if ((sc->sc_if_flags & IFF_UP) != 0)
mvxpe_linkup(sc);
}
/*
* Tx Subroutines
*/
STATIC int
mvxpe_tx_queue_select(struct mvxpe_softc *sc, struct mbuf *m)
{
int q = 0;
/* XXX: get attribute from ALTQ framework? */
mvxpe_tx_lockq(sc, q);
return 0;
}
STATIC int
mvxpe_tx_queue(struct mvxpe_softc *sc, struct mbuf *m, int q)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_dma_segment_t *txsegs;
struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
struct mvxpe_tx_desc *t = NULL;
uint32_t ptxsu;
int txnsegs;
int start, used;
int i;
KASSERT_TX_MTX(sc, q);
KASSERT(tx->tx_used >= 0);
KASSERT(tx->tx_used <= tx->tx_queue_len);
/* load mbuf using dmamap of 1st descriptor */
if (bus_dmamap_load_mbuf(sc->sc_dmat,
MVXPE_TX_MAP(sc, q, tx->tx_cpu), m, BUS_DMA_NOWAIT) != 0) {
m_freem(m);
return ENOBUFS;
}
txsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_segs;
txnsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_nsegs;
if (txnsegs <= 0 || (txnsegs + tx->tx_used) > tx->tx_queue_len) {
/* we have no enough descriptors or mbuf is broken */
bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, tx->tx_cpu));
m_freem(m);
return ENOBUFS;
}
DPRINTSC(sc, 2, "send packet %p descriptor %d\n", m, tx->tx_cpu);
KASSERT(MVXPE_TX_MBUF(sc, q, tx->tx_cpu) == NULL);
/* remember mbuf using 1st descriptor */
MVXPE_TX_MBUF(sc, q, tx->tx_cpu) = m;
bus_dmamap_sync(sc->sc_dmat,
MVXPE_TX_MAP(sc, q, tx->tx_cpu), 0, m->m_pkthdr.len,
BUS_DMASYNC_PREWRITE);
/* load to tx descriptors */
start = tx->tx_cpu;
used = 0;
for (i = 0; i < txnsegs; i++) {
if (__predict_false(txsegs[i].ds_len == 0))
continue;
t = MVXPE_TX_DESC(sc, q, tx->tx_cpu);
t->command = 0;
t->l4ichk = 0;
t->flags = 0;
if (i == 0) {
/* 1st descriptor */
t->command |= MVXPE_TX_CMD_W_PACKET_OFFSET(0);
t->command |= MVXPE_TX_CMD_PADDING;
t->command |= MVXPE_TX_CMD_F;
mvxpe_tx_set_csumflag(ifp, t, m);
}
t->bufptr = txsegs[i].ds_addr;
t->bytecnt = txsegs[i].ds_len;
tx->tx_cpu = tx_counter_adv(tx->tx_cpu, 1);
tx->tx_used++;
used++;
}
/* t is last descriptor here */
KASSERT(t != NULL);
t->command |= MVXPE_TX_CMD_L;
DPRINTSC(sc, 2, "queue %d, %d descriptors used\n", q, used);
#ifdef MVXPE_DEBUG
if (mvxpe_debug > 2)
for (i = start; i <= tx->tx_cpu; i++) {
t = MVXPE_TX_DESC(sc, q, i);
mvxpe_dump_txdesc(t, i);
}
#endif
mvxpe_ring_sync_tx(sc, q, start, used,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
while (used > 255) {
ptxsu = MVXPE_PTXSU_NOWD(255);
MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
used -= 255;
}
if (used > 0) {
ptxsu = MVXPE_PTXSU_NOWD(used);
MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
}
MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
DPRINTSC(sc, 2,
"PTXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQA(q)));
DPRINTSC(sc, 2,
"PTXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
DPRINTSC(sc, 2,
"PTXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXS(q)));
DPRINTSC(sc, 2,
"PTXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PTXDI(q)));
DPRINTSC(sc, 2, "TQC: %#x\n", MVXPE_READ(sc, MVXPE_TQC));
DPRINTIFNET(ifp, 2,
"Tx: tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
tx->tx_cpu, tx->tx_dma, tx->tx_used);
return 0;
}
STATIC void
mvxpe_tx_set_csumflag(struct ifnet *ifp,
struct mvxpe_tx_desc *t, struct mbuf *m)
{
struct ether_header *eh;
int csum_flags;
uint32_t iphl = 0, ipoff = 0;
csum_flags = ifp->if_csum_flags_tx & m->m_pkthdr.csum_flags;
eh = mtod(m, struct ether_header *);
switch (htons(eh->ether_type)) {
case ETHERTYPE_IP:
case ETHERTYPE_IPV6:
ipoff = ETHER_HDR_LEN;
break;
case ETHERTYPE_VLAN:
ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
break;
}
if (csum_flags & (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
iphl = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
t->command |= MVXPE_TX_CMD_L3_IP4;
}
else if (csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
iphl = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
t->command |= MVXPE_TX_CMD_L3_IP6;
}
else {
t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
return;
}
/* L3 */
if (csum_flags & M_CSUM_IPv4) {
t->command |= MVXPE_TX_CMD_IP4_CHECKSUM;
}
/* L4 */
if ((csum_flags &
(M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0) {
t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
}
else if (csum_flags & M_CSUM_TCPv4) {
t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
t->command |= MVXPE_TX_CMD_L4_TCP;
}
else if (csum_flags & M_CSUM_UDPv4) {
t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
t->command |= MVXPE_TX_CMD_L4_UDP;
}
else if (csum_flags & M_CSUM_TCPv6) {
t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
t->command |= MVXPE_TX_CMD_L4_TCP;
}
else if (csum_flags & M_CSUM_UDPv6) {
t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
t->command |= MVXPE_TX_CMD_L4_UDP;
}
t->l4ichk = 0;
t->command |= MVXPE_TX_CMD_IP_HEADER_LEN(iphl >> 2);
t->command |= MVXPE_TX_CMD_L3_OFFSET(ipoff);
}
STATIC void
mvxpe_tx_complete(struct mvxpe_softc *sc, uint32_t queues)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int q;
DPRINTSC(sc, 2, "tx completed.\n");
KASSERT_SC_MTX(sc);
for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
if (!MVXPE_IS_QUEUE_BUSY(queues, q))
continue;
mvxpe_tx_lockq(sc, q);
mvxpe_tx_queue_complete(sc, q);
mvxpe_tx_unlockq(sc, q);
}
KASSERT(sc->sc_tx_pending >= 0);
if (sc->sc_tx_pending == 0)
ifp->if_timer = 0;
}
STATIC void
mvxpe_tx_queue_complete(struct mvxpe_softc *sc, int q)
{
struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
struct mvxpe_tx_desc *t;
struct mbuf *m;
uint32_t ptxs, ptxsu, ndesc;
int i;
KASSERT_TX_MTX(sc, q);
ptxs = MVXPE_READ(sc, MVXPE_PTXS(q));
ndesc = MVXPE_PTXS_GET_TBC(ptxs);
if (ndesc == 0)
return;
DPRINTSC(sc, 2,
"tx complete queue %d, %d descriptors.\n", q, ndesc);
mvxpe_ring_sync_tx(sc, q, tx->tx_dma, ndesc,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (i = 0; i < ndesc; i++) {
int error = 0;
t = MVXPE_TX_DESC(sc, q, tx->tx_dma);
if (t->flags & MVXPE_TX_F_ES) {
DPRINTSC(sc, 1,
"tx error queue %d desc %d\n",
q, tx->tx_dma);
switch (t->flags & MVXPE_TX_F_EC_MASK) {
case MVXPE_TX_F_EC_LC:
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_lc);
break;
case MVXPE_TX_F_EC_UR:
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_ur);
break;
case MVXPE_TX_F_EC_RL:
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_rl);
break;
default:
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_oth);
break;
}
error = 1;
}
m = MVXPE_TX_MBUF(sc, q, tx->tx_dma);
if (m != NULL) {
KASSERT((t->command & MVXPE_TX_CMD_F) != 0);
MVXPE_TX_MBUF(sc, q, tx->tx_dma) = NULL;
bus_dmamap_sync(sc->sc_dmat,
MVXPE_TX_MAP(sc, q, tx->tx_dma), 0, m->m_pkthdr.len,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat,
MVXPE_TX_MAP(sc, q, tx->tx_dma));
m_freem(m);
sc->sc_tx_pending--;
}
else
KASSERT((t->flags & MVXPE_TX_CMD_F) == 0);
tx->tx_dma = tx_counter_adv(tx->tx_dma, 1);
tx->tx_used--;
if (error)
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txqe[q]);
else
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txq[q]);
}
KASSERT(tx->tx_used >= 0);
KASSERT(tx->tx_used <= tx->tx_queue_len);
while (ndesc > 255) {
ptxsu = MVXPE_PTXSU_NORB(255);
MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
ndesc -= 255;
}
if (ndesc > 0) {
ptxsu = MVXPE_PTXSU_NORB(ndesc);
MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
}
DPRINTSC(sc, 2,
"Tx complete q %d, tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
q, tx->tx_cpu, tx->tx_dma, tx->tx_used);
}
/*
* Rx Subroutines
*/
STATIC void
mvxpe_rx(struct mvxpe_softc *sc, uint32_t queues)
{
int q, npkt;
KASSERT_SC_MTX(sc);
while ( (npkt = mvxpe_rx_queue_select(sc, queues, &q))) {
/* mutex is held by rx_queue_select */
mvxpe_rx_queue(sc, q, npkt);
mvxpe_rx_unlockq(sc, q);
}
}
STATIC void
mvxpe_rx_queue(struct mvxpe_softc *sc, int q, int npkt)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
struct mvxpe_rx_desc *r;
struct mvxpbm_chunk *chunk;
struct mbuf *m;
uint32_t prxsu;
int error = 0;
int i;
KASSERT_RX_MTX(sc, q);
mvxpe_ring_sync_rx(sc, q, rx->rx_dma, npkt,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (i = 0; i < npkt; i++) {
/* get descriptor and packet */
chunk = MVXPE_RX_PKTBUF(sc, q, rx->rx_dma);
MVXPE_RX_PKTBUF(sc, q, rx->rx_dma) = NULL;
r = MVXPE_RX_DESC(sc, q, rx->rx_dma);
mvxpbm_dmamap_sync(chunk, r->bytecnt, BUS_DMASYNC_POSTREAD);
/* check errors */
if (r->status & MVXPE_RX_ES) {
switch (r->status & MVXPE_RX_EC_MASK) {
case MVXPE_RX_EC_CE:
DPRINTIFNET(ifp, 1, "CRC error\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_ce);
break;
case MVXPE_RX_EC_OR:
DPRINTIFNET(ifp, 1, "Rx FIFO overrun\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_or);
break;
case MVXPE_RX_EC_MF:
DPRINTIFNET(ifp, 1, "Rx too large frame\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_mf);
break;
case MVXPE_RX_EC_RE:
DPRINTIFNET(ifp, 1, "Rx resource error\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_re);
break;
}
error = 1;
goto rx_done;
}
if (!(r->status & MVXPE_RX_F) || !(r->status & MVXPE_RX_L)) {
DPRINTIFNET(ifp, 1, "not support scatter buf\n");
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_scat);
error = 1;
goto rx_done;
}
if (chunk == NULL) {
device_printf(sc->sc_dev,
"got rx interrupt, but no chunk\n");
error = 1;
goto rx_done;
}
/* extract packet buffer */
if (mvxpbm_init_mbuf_hdr(chunk) != 0) {
error = 1;
goto rx_done;
}
m = chunk->m;
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len = r->bytecnt - ETHER_CRC_LEN;
m_adj(m, MVXPE_HWHEADER_SIZE); /* strip MH */
mvxpe_rx_set_csumflag(ifp, r, m);
if_percpuq_enqueue(ifp->if_percpuq, m);
chunk = NULL; /* the BM chunk goes to networking stack now */
rx_done:
if (chunk) {
/* rx error. just return the chunk to BM. */
mvxpbm_free_chunk(chunk);
}
if (error)
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxqe[q]);
else
MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxq[q]);
rx->rx_dma = rx_counter_adv(rx->rx_dma, 1);
}
/* DMA status update */
DPRINTSC(sc, 2, "%d packets received from queue %d\n", npkt, q);
while (npkt > 255) {
prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
npkt -= 255;
}
if (npkt > 0) {
prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(npkt);
MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
}
DPRINTSC(sc, 2,
"PRXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQA(q)));
DPRINTSC(sc, 2,
"PRXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
DPRINTSC(sc, 2,
"PRXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXS(q)));
DPRINTSC(sc, 2,
"PRXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PRXDI(q)));
DPRINTSC(sc, 2, "RQC: %#x\n", MVXPE_READ(sc, MVXPE_RQC));
DPRINTIFNET(ifp, 2, "Rx: rx_cpu = %d, rx_dma = %d\n",
rx->rx_cpu, rx->rx_dma);
}
STATIC int
mvxpe_rx_queue_select(struct mvxpe_softc *sc, uint32_t queues, int *queue)
{
uint32_t prxs, npkt;
int q;
KASSERT_SC_MTX(sc);
KASSERT(queue != NULL);
DPRINTSC(sc, 2, "selecting rx queue\n");
for (q = MVXPE_QUEUE_SIZE - 1; q >= 0; q--) {
if (!MVXPE_IS_QUEUE_BUSY(queues, q))
continue;
prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
npkt = MVXPE_PRXS_GET_ODC(prxs);
if (npkt == 0)
continue;
DPRINTSC(sc, 2,
"queue %d selected: prxs=%#x, %u packet received.\n",
q, prxs, npkt);
*queue = q;
mvxpe_rx_lockq(sc, q);
return npkt;
}
return 0;
}
STATIC void
mvxpe_rx_refill(struct mvxpe_softc *sc, uint32_t queues)
{
int q;
KASSERT_SC_MTX(sc);
/* XXX: check rx bit array */
for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
if (!MVXPE_IS_QUEUE_BUSY(queues, q))
continue;
mvxpe_rx_lockq(sc, q);
mvxpe_rx_queue_refill(sc, q);
mvxpe_rx_unlockq(sc, q);
}
}
STATIC void
mvxpe_rx_queue_refill(struct mvxpe_softc *sc, int q)
{
struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
uint32_t prxs, prxsu, ndesc;
int idx, refill = 0;
int npkt;
KASSERT_RX_MTX(sc, q);
prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
ndesc = MVXPE_PRXS_GET_NODC(prxs) + MVXPE_PRXS_GET_ODC(prxs);
refill = rx->rx_queue_len - ndesc;
if (refill <= 0)
return;
DPRINTPRXS(2, q);
DPRINTSC(sc, 2, "%d buffers to refill.\n", refill);
idx = rx->rx_cpu;
for (npkt = 0; npkt < refill; npkt++)
if (mvxpe_rx_queue_add(sc, q) != 0)
break;
DPRINTSC(sc, 2, "queue %d, %d buffer refilled.\n", q, npkt);
if (npkt == 0)
return;
mvxpe_ring_sync_rx(sc, q, idx, npkt,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
while (npkt > 255) {
prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(255);
MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
npkt -= 255;
}
if (npkt > 0) {
prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(npkt);
MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
}
DPRINTPRXS(2, q);
return;
}
STATIC int
mvxpe_rx_queue_add(struct mvxpe_softc *sc, int q)
{
struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
struct mvxpe_rx_desc *r;
struct mvxpbm_chunk *chunk = NULL;
KASSERT_RX_MTX(sc, q);
/* Allocate the packet buffer */
chunk = mvxpbm_alloc(sc->sc_bm);
if (chunk == NULL) {
DPRINTSC(sc, 1, "BM chunk allocation failed.\n");
return ENOBUFS;
}
/* Add the packet to descriptor */
KASSERT(MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) == NULL);
MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) = chunk;
mvxpbm_dmamap_sync(chunk, BM_SYNC_ALL, BUS_DMASYNC_PREREAD);
r = MVXPE_RX_DESC(sc, q, rx->rx_cpu);
r->bufptr = chunk->buf_pa;
DPRINTSC(sc, 9, "chunk added to index %d\n", rx->rx_cpu);
rx->rx_cpu = rx_counter_adv(rx->rx_cpu, 1);
return 0;
}
STATIC void
mvxpe_rx_set_csumflag(struct ifnet *ifp,
struct mvxpe_rx_desc *r, struct mbuf *m0)
{
uint32_t csum_flags = 0;
if ((r->status & (MVXPE_RX_IP_HEADER_OK | MVXPE_RX_L3_IP)) == 0)
return; /* not a IP packet */
/* L3 */
if (r->status & MVXPE_RX_L3_IP) {
csum_flags |= M_CSUM_IPv4 & ifp->if_csum_flags_rx;
if ((r->status & MVXPE_RX_IP_HEADER_OK) == 0 &&
(csum_flags & M_CSUM_IPv4) != 0) {
csum_flags |= M_CSUM_IPv4_BAD;
goto finish;
}
else if (r->status & MVXPE_RX_IPV4_FRAGMENT) {
/*
* r->l4chk has partial checksum of each framgment.
* but there is no way to use it in NetBSD.
*/
return;
}
}
/* L4 */
switch (r->status & MVXPE_RX_L4_MASK) {
case MVXPE_RX_L4_TCP:
if (r->status & MVXPE_RX_L3_IP)
csum_flags |= M_CSUM_TCPv4 & ifp->if_csum_flags_rx;
else
csum_flags |= M_CSUM_TCPv6 & ifp->if_csum_flags_rx;
break;
case MVXPE_RX_L4_UDP:
if (r->status & MVXPE_RX_L3_IP)
csum_flags |= M_CSUM_UDPv4 & ifp->if_csum_flags_rx;
else
csum_flags |= M_CSUM_UDPv6 & ifp->if_csum_flags_rx;
break;
case MVXPE_RX_L4_OTH:
default:
break;
}
if ((r->status & MVXPE_RX_L4_CHECKSUM_OK) == 0 && (csum_flags &
(M_CSUM_TCPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
csum_flags |= M_CSUM_TCP_UDP_BAD;
finish:
m0->m_pkthdr.csum_flags = csum_flags;
}
/*
* MAC address filter
*/
STATIC uint8_t
mvxpe_crc8(const uint8_t *data, size_t size)
{
int bit;
uint8_t byte;
uint8_t crc = 0;
const uint8_t poly = 0x07;
while (size--)
for (byte = *data++, bit = NBBY-1; bit >= 0; bit--)
crc = (crc << 1) ^ ((((crc >> 7) ^ (byte >> bit)) & 1) ? poly : 0);
return crc;
}
CTASSERT(MVXPE_NDFSMT == MVXPE_NDFOMT);
STATIC void
mvxpe_filter_setup(struct mvxpe_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp= &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t dfut[MVXPE_NDFUT], dfsmt[MVXPE_NDFSMT], dfomt[MVXPE_NDFOMT];
uint32_t pxc;
int i;
const uint8_t special[ETHER_ADDR_LEN] = {0x01,0x00,0x5e,0x00,0x00,0x00};
KASSERT_SC_MTX(sc);
memset(dfut, 0, sizeof(dfut));
memset(dfsmt, 0, sizeof(dfsmt));
memset(dfomt, 0, sizeof(dfomt));
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
goto allmulti;
}
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/* ranges are complex and somewhat rare */
ETHER_UNLOCK(ec);
goto allmulti;
}
/* chip handles some IPv4 multicast specially */
if (memcmp(enm->enm_addrlo, special, 5) == 0) {
i = enm->enm_addrlo[5];
dfsmt[i>>2] |=
MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
} else {
i = mvxpe_crc8(enm->enm_addrlo, ETHER_ADDR_LEN);
dfomt[i>>2] |=
MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
}
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
goto set;
allmulti:
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
for (i = 0; i < MVXPE_NDFSMT; i++) {
dfsmt[i] = dfomt[i] =
MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
}
}
set:
pxc = MVXPE_READ(sc, MVXPE_PXC);
pxc &= ~MVXPE_PXC_UPM;
pxc |= MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP;
if (ifp->if_flags & IFF_BROADCAST) {
pxc &= ~(MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP);
}
if (ifp->if_flags & IFF_PROMISC) {
pxc |= MVXPE_PXC_UPM;
}
MVXPE_WRITE(sc, MVXPE_PXC, pxc);
/* Set Destination Address Filter Unicast Table */
if (ifp->if_flags & IFF_PROMISC) {
/* pass all unicast addresses */
for (i = 0; i < MVXPE_NDFUT; i++) {
dfut[i] =
MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
}
}
else {
i = sc->sc_enaddr[5] & 0xf; /* last nibble */
dfut[i>>2] = MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
}
MVXPE_WRITE_REGION(sc, MVXPE_DFUT(0), dfut, MVXPE_NDFUT);
/* Set Destination Address Filter Multicast Tables */
MVXPE_WRITE_REGION(sc, MVXPE_DFSMT(0), dfsmt, MVXPE_NDFSMT);
MVXPE_WRITE_REGION(sc, MVXPE_DFOMT(0), dfomt, MVXPE_NDFOMT);
}
/*
* sysctl(9)
*/
SYSCTL_SETUP(sysctl_mvxpe, "sysctl mvxpe subtree setup")
{
int rc;
const struct sysctlnode *node;
if ((rc = sysctl_createv(clog, 0, NULL, &node,
0, CTLTYPE_NODE, "mvxpe",
SYSCTL_DESCR("mvxpe interface controls"),
NULL, 0, NULL, 0,
CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
goto err;
}
mvxpe_root_num = node->sysctl_num;
return;
err:
aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
}
STATIC int
sysctl_read_mib(SYSCTLFN_ARGS)
{
struct mvxpe_sysctl_mib *arg;
struct mvxpe_softc *sc;
struct sysctlnode node;
uint64_t val;
int err;
node = *rnode;
arg = (struct mvxpe_sysctl_mib *)rnode->sysctl_data;
if (arg == NULL)
return EINVAL;
sc = arg->sc;
if (sc == NULL)
return EINVAL;
if (arg->index < 0 || arg->index > __arraycount(mvxpe_mib_list))
return EINVAL;
mvxpe_sc_lock(sc);
val = arg->counter;
mvxpe_sc_unlock(sc);
node.sysctl_data = &val;
err = sysctl_lookup(SYSCTLFN_CALL(&node));
if (err)
return err;
if (newp)
return EINVAL;
return 0;
}
STATIC int
sysctl_clear_mib(SYSCTLFN_ARGS)
{
struct mvxpe_softc *sc;
struct sysctlnode node;
int val;
int err;
node = *rnode;
sc = (struct mvxpe_softc *)rnode->sysctl_data;
if (sc == NULL)
return EINVAL;
val = 0;
node.sysctl_data = &val;
err = sysctl_lookup(SYSCTLFN_CALL(&node));
if (err || newp == NULL)
return err;
if (val < 0 || val > 1)
return EINVAL;
if (val == 1) {
mvxpe_sc_lock(sc);
mvxpe_clear_mib(sc);
mvxpe_sc_unlock(sc);
}
return 0;
}
STATIC int
sysctl_set_queue_length(SYSCTLFN_ARGS)
{
struct mvxpe_sysctl_queue *arg;
struct mvxpe_rx_ring *rx = NULL;
struct mvxpe_tx_ring *tx = NULL;
struct mvxpe_softc *sc;
struct sysctlnode node;
uint32_t reg;
int val;
int err;
node = *rnode;
arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
if (arg == NULL)
return EINVAL;
if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
return EINVAL;
if (arg->rxtx != MVXPE_SYSCTL_RX && arg->rxtx != MVXPE_SYSCTL_TX)
return EINVAL;
sc = arg->sc;
if (sc == NULL)
return EINVAL;
/* read queue length */
mvxpe_sc_lock(sc);
switch (arg->rxtx) {
case MVXPE_SYSCTL_RX:
mvxpe_rx_lockq(sc, arg->queue);
rx = MVXPE_RX_RING(sc, arg->queue);
val = rx->rx_queue_len;
mvxpe_rx_unlockq(sc, arg->queue);
break;
case MVXPE_SYSCTL_TX:
mvxpe_tx_lockq(sc, arg->queue);
tx = MVXPE_TX_RING(sc, arg->queue);
val = tx->tx_queue_len;
mvxpe_tx_unlockq(sc, arg->queue);
break;
}
node.sysctl_data = &val;
err = sysctl_lookup(SYSCTLFN_CALL(&node));
if (err || newp == NULL) {
mvxpe_sc_unlock(sc);
return err;
}
/* update queue length */
if (val < 8 || val > MVXPE_RX_RING_CNT) {
mvxpe_sc_unlock(sc);
return EINVAL;
}
switch (arg->rxtx) {
case MVXPE_SYSCTL_RX:
mvxpe_rx_lockq(sc, arg->queue);
rx->rx_queue_len = val;
rx->rx_queue_th_received =
rx->rx_queue_len / MVXPE_RXTH_RATIO;
rx->rx_queue_th_free =
rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
MVXPE_WRITE(sc, MVXPE_PRXDQTH(arg->queue), reg);
mvxpe_rx_unlockq(sc, arg->queue);
break;
case MVXPE_SYSCTL_TX:
mvxpe_tx_lockq(sc, arg->queue);
tx->tx_queue_len = val;
tx->tx_queue_th_free =
tx->tx_queue_len / MVXPE_TXTH_RATIO;
reg = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
MVXPE_WRITE(sc, MVXPE_PTXDQS(arg->queue), reg);
mvxpe_tx_unlockq(sc, arg->queue);
break;
}
mvxpe_sc_unlock(sc);
return 0;
}
STATIC int
sysctl_set_queue_rxthtime(SYSCTLFN_ARGS)
{
struct mvxpe_sysctl_queue *arg;
struct mvxpe_rx_ring *rx = NULL;
struct mvxpe_softc *sc;
struct sysctlnode node;
extern uint32_t mvTclk;
uint32_t reg, time_mvtclk;
int time_us;
int err;
node = *rnode;
arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
if (arg == NULL)
return EINVAL;
if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
return EINVAL;
if (arg->rxtx != MVXPE_SYSCTL_RX)
return EINVAL;
sc = arg->sc;
if (sc == NULL)
return EINVAL;
/* read queue length */
mvxpe_sc_lock(sc);
mvxpe_rx_lockq(sc, arg->queue);
rx = MVXPE_RX_RING(sc, arg->queue);
time_mvtclk = rx->rx_queue_th_time;
time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvTclk;
node.sysctl_data = &time_us;
DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n",
arg->queue, MVXPE_READ(sc, MVXPE_PRXITTH(arg->queue)));
err = sysctl_lookup(SYSCTLFN_CALL(&node));
if (err || newp == NULL) {
mvxpe_rx_unlockq(sc, arg->queue);
mvxpe_sc_unlock(sc);
return err;
}
/* update queue length (0[sec] - 1[sec]) */
if (time_us < 0 || time_us > (1000 * 1000)) {
mvxpe_rx_unlockq(sc, arg->queue);
mvxpe_sc_unlock(sc);
return EINVAL;
}
time_mvtclk =
(uint64_t)mvTclk * (uint64_t)time_us / (1000ULL * 1000ULL);
rx->rx_queue_th_time = time_mvtclk;
reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
MVXPE_WRITE(sc, MVXPE_PRXITTH(arg->queue), reg);
DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n", arg->queue, reg);
mvxpe_rx_unlockq(sc, arg->queue);
mvxpe_sc_unlock(sc);
return 0;
}
STATIC void
sysctl_mvxpe_init(struct mvxpe_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
const struct sysctlnode *node;
int mvxpe_nodenum;
int mvxpe_mibnum;
int mvxpe_rxqueuenum;
int mvxpe_txqueuenum;
int q, i;
/* hw.mvxpe.mvxpe[unit] */
if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
0, CTLTYPE_NODE, ifp->if_xname,
SYSCTL_DESCR("mvxpe per-controller controls"),
NULL, 0, NULL, 0,
CTL_HW, mvxpe_root_num, CTL_CREATE,
CTL_EOL) != 0) {
aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
return;
}
mvxpe_nodenum = node->sysctl_num;
/* hw.mvxpe.mvxpe[unit].mib */
if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
0, CTLTYPE_NODE, "mib",
SYSCTL_DESCR("mvxpe per-controller MIB counters"),
NULL, 0, NULL, 0,
CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
CTL_EOL) != 0) {
aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
return;
}
mvxpe_mibnum = node->sysctl_num;
/* hw.mvxpe.mvxpe[unit].rx */
if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
0, CTLTYPE_NODE, "rx",
SYSCTL_DESCR("Rx Queues"),
NULL, 0, NULL, 0,
CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
return;
}
mvxpe_rxqueuenum = node->sysctl_num;
/* hw.mvxpe.mvxpe[unit].tx */
if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
0, CTLTYPE_NODE, "tx",
SYSCTL_DESCR("Tx Queues"),
NULL, 0, NULL, 0,
CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
return;
}
mvxpe_txqueuenum = node->sysctl_num;
#ifdef MVXPE_DEBUG
/* hw.mvxpe.debug */
if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "debug",
SYSCTL_DESCR("mvxpe device driver debug control"),
NULL, 0, &mvxpe_debug, 0,
CTL_HW, mvxpe_root_num, CTL_CREATE, CTL_EOL) != 0) {
aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
return;
}
#endif
/*
* MIB access
*/
/* hw.mvxpe.mvxpe[unit].mib.<mibs> */
for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
const char *name = mvxpe_mib_list[i].sysctl_name;
const char *desc = mvxpe_mib_list[i].desc;
struct mvxpe_sysctl_mib *mib_arg = &sc->sc_sysctl_mib[i];
mib_arg->sc = sc;
mib_arg->index = i;
if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
CTLFLAG_READONLY, CTLTYPE_QUAD, name, desc,
sysctl_read_mib, 0, (void *)mib_arg, 0,
CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_mibnum,
CTL_CREATE, CTL_EOL) != 0) {
aprint_normal_dev(sc->sc_dev,
"couldn't create sysctl node\n");
break;
}
}
for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
struct mvxpe_sysctl_queue *rxarg = &sc->sc_sysctl_rx_queue[q];
struct mvxpe_sysctl_queue *txarg = &sc->sc_sysctl_tx_queue[q];
#define MVXPE_SYSCTL_NAME(num) "queue" # num
static const char *sysctl_queue_names[] = {
MVXPE_SYSCTL_NAME(0), MVXPE_SYSCTL_NAME(1),
MVXPE_SYSCTL_NAME(2), MVXPE_SYSCTL_NAME(3),
MVXPE_SYSCTL_NAME(4), MVXPE_SYSCTL_NAME(5),
MVXPE_SYSCTL_NAME(6), MVXPE_SYSCTL_NAME(7),
};
#undef MVXPE_SYSCTL_NAME
#ifdef SYSCTL_INCLUDE_DESCR
#define MVXPE_SYSCTL_DESCR(num) "configuration parameters for queue " # num
static const char *sysctl_queue_descrs[] = {
MVXPE_SYSCTL_DESCR(0), MVXPE_SYSCTL_DESCR(1),
MVXPE_SYSCTL_DESCR(2), MVXPE_SYSCTL_DESCR(3),
MVXPE_SYSCTL_DESCR(4), MVXPE_SYSCTL_DESCR(5),
MVXPE_SYSCTL_DESCR(6), MVXPE_SYSCTL_DESCR(7),
};
#undef MVXPE_SYSCTL_DESCR
#endif /* SYSCTL_INCLUDE_DESCR */
int mvxpe_curnum;
rxarg->sc = txarg->sc = sc;
rxarg->queue = txarg->queue = q;
rxarg->rxtx = MVXPE_SYSCTL_RX;
txarg->rxtx = MVXPE_SYSCTL_TX;
/* hw.mvxpe.mvxpe[unit].rx.[queue] */
if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
0, CTLTYPE_NODE,
sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descrs[q]),
NULL, 0, NULL, 0,
CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
CTL_CREATE, CTL_EOL) != 0) {
aprint_normal_dev(sc->sc_dev,
"couldn't create sysctl node\n");
break;
}
mvxpe_curnum = node->sysctl_num;
/* hw.mvxpe.mvxpe[unit].rx.[queue].length */
if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "length",
SYSCTL_DESCR("maximum length of the queue"),
sysctl_set_queue_length, 0, (void *)rxarg, 0,
CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
aprint_normal_dev(sc->sc_dev,
"couldn't create sysctl node\n");
break;
}
/* hw.mvxpe.mvxpe[unit].rx.[queue].threshold_timer_us */
if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "threshold_timer_us",
SYSCTL_DESCR("interrupt coalescing threshold timer [us]"),
sysctl_set_queue_rxthtime, 0, (void *)rxarg, 0,
CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
aprint_normal_dev(sc->sc_dev,
"couldn't create sysctl node\n");
break;
}
/* hw.mvxpe.mvxpe[unit].tx.[queue] */
if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
0, CTLTYPE_NODE,
sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descs[q]),
NULL, 0, NULL, 0,
CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
CTL_CREATE, CTL_EOL) != 0) {
aprint_normal_dev(sc->sc_dev,
"couldn't create sysctl node\n");
break;
}
mvxpe_curnum = node->sysctl_num;
/* hw.mvxpe.mvxpe[unit].tx.length[queue] */
if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "length",
SYSCTL_DESCR("maximum length of the queue"),
sysctl_set_queue_length, 0, (void *)txarg, 0,
CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
aprint_normal_dev(sc->sc_dev,
"couldn't create sysctl node\n");
break;
}
}
/* hw.mvxpe.mvxpe[unit].clear_mib */
if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "clear_mib",
SYSCTL_DESCR("mvxpe device driver debug control"),
sysctl_clear_mib, 0, (void *)sc, 0,
CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
CTL_EOL) != 0) {
aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
return;
}
}
/*
* MIB
*/
STATIC void
mvxpe_clear_mib(struct mvxpe_softc *sc)
{
int i;
KASSERT_SC_MTX(sc);
for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
if (mvxpe_mib_list[i].reg64)
MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum + 4));
MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
sc->sc_sysctl_mib[i].counter = 0;
}
}
STATIC void
mvxpe_update_mib(struct mvxpe_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int i;
KASSERT_SC_MTX(sc);
for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
uint32_t val_hi;
uint32_t val_lo;
uint64_t val;
if (mvxpe_mib_list[i].reg64) {
/* XXX: implement bus_space_read_8() */
val_lo = MVXPE_READ_MIB(sc,
(mvxpe_mib_list[i].regnum + 4));
val_hi = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
}
else {
val_lo = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
val_hi = 0;
}
if ((val_lo | val_hi) == 0)
continue;
val = ((uint64_t)val_hi << 32) | (uint64_t)val_lo;
sc->sc_sysctl_mib[i].counter += val;
switch (mvxpe_mib_list[i].ext) {
case MVXPE_MIBEXT_IF_OERRORS:
if_statadd(ifp, if_oerrors, val);
break;
case MVXPE_MIBEXT_IF_IERRORS:
if_statadd(ifp, if_ierrors, val);
break;
case MVXPE_MIBEXT_IF_COLLISIONS:
if_statadd(ifp, if_collisions, val);
break;
default:
break;
}
}
}
/*
* for Debug
*/
STATIC void
mvxpe_dump_txdesc(struct mvxpe_tx_desc *desc, int idx)
{
#define DESC_PRINT(X) \
if (X) \
printf("txdesc[%d]." #X "=%#x\n", idx, X);
DESC_PRINT(desc->command);
DESC_PRINT(desc->l4ichk);
DESC_PRINT(desc->bytecnt);
DESC_PRINT(desc->bufptr);
DESC_PRINT(desc->flags);
#undef DESC_PRINT
}
STATIC void
mvxpe_dump_rxdesc(struct mvxpe_rx_desc *desc, int idx)
{
#define DESC_PRINT(X) \
if (X) \
printf("rxdesc[%d]." #X "=%#x\n", idx, X);
DESC_PRINT(desc->status);
DESC_PRINT(desc->bytecnt);
DESC_PRINT(desc->bufptr);
DESC_PRINT(desc->l4chk);
#undef DESC_PRINT
}