NetBSD/sys/dev/i2c/lm87.c

475 lines
14 KiB
C

/* $NetBSD: lm87.c,v 1.16 2022/07/02 16:28:39 andvar Exp $ */
/* $OpenBSD: lm87.c,v 1.20 2008/11/10 05:19:48 cnst Exp $ */
/*
* Copyright (c) 2005 Mark Kettenis
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: lm87.c,v 1.16 2022/07/02 16:28:39 andvar Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <dev/sysmon/sysmonvar.h>
#include <dev/i2c/i2cvar.h>
/* LM87 registers */
#define LM87_INT_HHIGH_L 0x13 /* Hardware int high limit (lockable) */
#define LM87_EXT_HHIGH_L 0x14 /* Hardware ext high limit (lockable) */
#define LM87_TEST 0x15
#define LM87_CHANNEL 0x16 /* Dual purpose pin and scaling */
#define LM87_INT_HHIGH 0x17 /* Hardware int temp high limit */
#define LM87_EXT_HHIGH 0x18 /* Hardware ext temp high limit */
#define LM87_DAC_DATA 0x19 /* DAC output scaling */
#define LM87_AIN1_LOW 0x1a /* Analog in 1 low limit */
#define LM87_AIN2_LOW 0x1b /* Analog in 2 low limit */
#define LM87_2_5V 0x20 /* +2.5V or ext temp 2 reading */
#define LM87_VCCP1 0x21 /* Vccp1 reading */
#define LM87_VCC 0x22 /* +Vcc reading */
#define LM87_5V 0x23 /* +5V reading */
#define LM87_12V 0x24 /* +12V reading */
#define LM87_VCCP2 0x25 /* Vccp2 reading */
#define LM87_EXT_TEMP 0x26 /* External temperature 1 reading */
#define LM87_INT_TEMP 0x27 /* Internal temperature reading */
#define LM87_FAN1 0x28 /* Fan1 or AIN1 reading */
#define LM87_FAN2 0x29 /* Fan2 or AIN2 reading */
#define LM87_2_5V_HIGH 0x2b /* +2.5V or ext temp 2 high limit */
#define LM87_2_5V_LOW 0x2c /* +2.5V or ext temp 2 low limit */
#define LM87_VCCP1_HIGH 0x2d /* Vccp1 high limit */
#define LM87_VCCP1_LOW 0x2e /* Vccp1 low limit */
#define LM87_VCC_HIGH 0x2f /* +3.3V (Vcc) high limit */
#define LM87_VCC_LOW 0x30 /* +3.3V (Vcc) low limit */
#define LM87_5V_HIGH 0x31 /* +5V high limit */
#define LM87_5V_LOW 0x32 /* +5V low limit */
#define LM87_12V_HIGH 0x33 /* +12V high limit */
#define LM87_12V_LOW 0x34 /* +12V low limit */
#define LM87_VCCP2_HIGH 0x35 /* Vccp2 high limit */
#define LM87_VCCP2_LOW 0x36 /* Vccp2 low limit */
#define LM87_EXT_HIGH 0x37 /* External temperature 1 high limit */
#define LM87_EXT_LOW 0x38 /* External temperature low limit */
#define LM87_INT_HIGH 0x39 /* Internal temperature 1 high limit */
#define LM87_INT_LOW 0x3a /* Internal temperature low limit */
#define LM87_FAN1_HIGH 0x3b /* Fan 1 count or AIN1 high limit */
#define LM87_FAN2_HIGH 0x3c /* Fan 2 count or AIN2 high limit */
#define LM87_COMPANY_ID 0x3e /* Company ID */
#define LM87_REVISION 0x3f /* Revision */
#define LM87_CONFIG1 0x40 /* Configuration 1 */
#define LM87_INT_STAT1 0x41 /* Interrupt status 1 */
#define LM87_INT_STAT2 0x42 /* Interrupt status 2 */
#define LM87_INT_MASK1 0x43 /* Interrupt mask 1 */
#define LM87_INT_MASK2 0x44 /* Interrupt mask 2 */
#define LM87_CI_CLEAR 0x46 /* Chassis intrusion */
#define LM87_FANDIV 0x47 /* Fan divisor + VID 0-3 */
#define LM87_VID4 0x48 /* VID4 */
#define LM87_CONFIG2 0x4a /* Configuration 2 */
#define LM87_INT_MIRR1 0x4c /* Interrupt status 1 mirror */
#define LM87_INT_MIRR2 0x4d /* Interrupt status 2 mirror */
#define LM87_ALERT 0x80 /* SMB Alert enable */
/* Register contents */
#define LM87_CONFIG1_START 0x01
#define LM87_CONFIG1_INTCLR 0x08
#define LM87_CHANNEL_AIN1 0x01
#define LM87_CHANNEL_AIN2 0x02
#define LM87_CHANNEL_TEMP2 0x04
#define LM87_CHANNEL_VCC5 0x08
struct lmenv_id {
u_int8_t id, family;
const char *name;
};
static const struct lmenv_id lmenv_ids[] = {
{ 0x01, 81, "LM81" },
{ 0x02, 87, "LM87" }, /* LM87 or LM87CIMT */
{ 0x23, 81, "ADM9240" },
{ 0xda, 81, "DSL780" },
{ 0x00, 0, NULL }
};
/* Sensors */
#define LMENV_2_5V 0
#define LMENV_VCCP1 1
#define LMENV_VCC 2
#define LMENV_5V 3
#define LMENV_12V 4
#define LMENV_VCCP2 5
#define LMENV_EXT_TEMP 6
#define LMENV_INT_TEMP 7
#define LMENV_FAN1 8
#define LMENV_FAN2 9
#define LMENV_NUM_SENSORS 10
struct lmenv_softc {
i2c_tag_t sc_tag;
i2c_addr_t sc_addr;
int sc_fan1_div, sc_fan2_div;
int sc_family;
uint8_t sc_channel;
struct sysmon_envsys *sc_sme;
envsys_data_t sc_sensor[LMENV_NUM_SENSORS];
};
int lmenv_match(device_t, cfdata_t, void *);
void lmenv_attach(device_t, device_t, void *);
void lmenv_refresh(struct sysmon_envsys *, envsys_data_t *);
CFATTACH_DECL_NEW(lmenv, sizeof(struct lmenv_softc),
lmenv_match, lmenv_attach, NULL, NULL);
static const struct device_compatible_entry compat_data[] = {
{ .compat = "lm87" },
{ .compat = "lm87cimt" },
{ .compat = "adm9240" },
{ .compat = "lm81" },
{ .compat = "ds1780" },
DEVICE_COMPAT_EOL
};
int
lmenv_match(device_t parent, cfdata_t match, void *aux)
{
struct i2c_attach_args *ia = aux;
u_int8_t cmd, val;
int error, i, match_result;
if (iic_use_direct_match(ia, match, compat_data, &match_result))
return match_result;
/*
* Indirect config - not much we can do!
* Check typical addresses and read the Company ID register
*/
if ((ia->ia_addr < 0x2c) || (ia->ia_addr > 0x2f))
return 0;
cmd = LM87_COMPANY_ID;
if (iic_acquire_bus(ia->ia_tag, 0))
return 0;
error = iic_exec(ia->ia_tag, I2C_OP_READ_WITH_STOP, ia->ia_addr,
&cmd, 1, &val, 1, 0);
iic_release_bus(ia->ia_tag, 0);
if (error)
return 0;
for (i = 0; lmenv_ids[i].id != 0; i++)
if (lmenv_ids[i].id == val)
return I2C_MATCH_ADDRESS_AND_PROBE;
return 0;
}
void
lmenv_attach(device_t parent, device_t self, void *aux)
{
struct lmenv_softc *sc = device_private(self);
struct i2c_attach_args *ia = aux;
u_int8_t cmd, data, data2;
int i;
sc->sc_tag = ia->ia_tag;
sc->sc_addr = ia->ia_addr;
iic_acquire_bus(sc->sc_tag, 0);
cmd = LM87_COMPANY_ID;
if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &cmd, sizeof cmd, &data, sizeof data, 0)) {
iic_release_bus(sc->sc_tag, 0);
printf(": cannot read ID register\n");
return;
}
for (i = 0; lmenv_ids[i].id != 0; i++)
if (lmenv_ids[i].id == data)
break;
cmd = LM87_REVISION;
if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &cmd, sizeof cmd, &data2, sizeof data, 0)) {
iic_release_bus(sc->sc_tag, 0);
printf(": cannot read revision register\n");
return;
}
printf(": %s rev %x\n", lmenv_ids[i].name, data2);
sc->sc_family = lmenv_ids[i].family;
cmd = LM87_FANDIV;
if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &cmd, sizeof cmd, &data, sizeof data, 0)) {
iic_release_bus(sc->sc_tag, 0);
printf(", cannot read Fan Divisor register\n");
return;
}
sc->sc_fan1_div = 1 << ((data >> 4) & 0x03);
sc->sc_fan2_div = 1 << ((data >> 6) & 0x03);
if (sc->sc_family == 87) {
cmd = LM87_CHANNEL;
if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &cmd, sizeof cmd, &sc->sc_channel,
sizeof sc->sc_channel, 0)) {
iic_release_bus(sc->sc_tag, 0);
printf(", cannot read Channel register\n");
return;
}
} else
sc->sc_channel = 0;
cmd = LM87_CONFIG1;
if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &cmd, sizeof cmd, &data, sizeof data, 0)) {
iic_release_bus(sc->sc_tag, 0);
printf(", cannot read Configuration Register 1\n");
return;
}
/*
* if chip is not running, try to start it.
* if it is stalled doing an interrupt, unstall it
*/
data2 = (data | LM87_CONFIG1_START);
data2 = data2 & ~LM87_CONFIG1_INTCLR;
if (data != data2) {
if (iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
sc->sc_addr, &cmd, sizeof cmd, &data2, sizeof data2, 0)) {
iic_release_bus(sc->sc_tag, 0);
printf(", cannot write Configuration Register 1\n");
return;
}
}
iic_release_bus(sc->sc_tag, 0);
/* Initialize sensor data. */
sc->sc_sensor[LMENV_2_5V].state = ENVSYS_SINVALID;
if (sc->sc_channel & LM87_CHANNEL_TEMP2) {
sc->sc_sensor[LMENV_INT_TEMP].units = ENVSYS_STEMP;
strlcpy(sc->sc_sensor[LMENV_2_5V].desc, "External 2",
sizeof(sc->sc_sensor[LMENV_2_5V].desc));
} else {
sc->sc_sensor[LMENV_2_5V].units = ENVSYS_SVOLTS_DC;
strlcpy(sc->sc_sensor[LMENV_2_5V].desc, "+2.5Vin",
sizeof(sc->sc_sensor[LMENV_2_5V].desc));
}
sc->sc_sensor[LMENV_VCCP1].state = ENVSYS_SINVALID;
sc->sc_sensor[LMENV_VCCP1].units = ENVSYS_SVOLTS_DC;
strlcpy(sc->sc_sensor[LMENV_VCCP1].desc, "Vccp1",
sizeof(sc->sc_sensor[LMENV_VCCP1].desc));
sc->sc_sensor[LMENV_VCC].state = ENVSYS_SINVALID;
sc->sc_sensor[LMENV_VCC].units = ENVSYS_SVOLTS_DC;
strlcpy(sc->sc_sensor[LMENV_VCC].desc, "+Vcc",
sizeof(sc->sc_sensor[LMENV_VCC].desc));
sc->sc_sensor[LMENV_5V].state = ENVSYS_SINVALID;
sc->sc_sensor[LMENV_5V].units = ENVSYS_SVOLTS_DC;
strlcpy(sc->sc_sensor[LMENV_5V].desc, "+5Vin/Vcc",
sizeof(sc->sc_sensor[LMENV_5V].desc));
sc->sc_sensor[LMENV_12V].state = ENVSYS_SINVALID;
sc->sc_sensor[LMENV_12V].units = ENVSYS_SVOLTS_DC;
strlcpy(sc->sc_sensor[LMENV_12V].desc, "+12Vin",
sizeof(sc->sc_sensor[LMENV_12V].desc));
sc->sc_sensor[LMENV_VCCP2].state = ENVSYS_SINVALID;
if (!(sc->sc_channel & LM87_CHANNEL_TEMP2)) {
sc->sc_sensor[LMENV_VCCP2].units = ENVSYS_SVOLTS_DC;
strlcpy(sc->sc_sensor[LMENV_VCCP2].desc, "Vccp2",
sizeof(sc->sc_sensor[LMENV_VCCP2].desc));
}
sc->sc_sensor[LMENV_EXT_TEMP].state = ENVSYS_SINVALID;
sc->sc_sensor[LMENV_EXT_TEMP].units = ENVSYS_STEMP;
if (sc->sc_channel & LM87_CHANNEL_TEMP2)
strlcpy(sc->sc_sensor[LMENV_EXT_TEMP].desc, "External 1",
sizeof(sc->sc_sensor[LMENV_EXT_TEMP].desc));
else
strlcpy(sc->sc_sensor[LMENV_EXT_TEMP].desc, "External",
sizeof(sc->sc_sensor[LMENV_EXT_TEMP].desc));
sc->sc_sensor[LMENV_INT_TEMP].state = ENVSYS_SINVALID;
sc->sc_sensor[LMENV_INT_TEMP].units = ENVSYS_STEMP;
strlcpy(sc->sc_sensor[LMENV_INT_TEMP].desc, "Internal",
sizeof(sc->sc_sensor[LMENV_INT_TEMP].desc));
sc->sc_sensor[LMENV_FAN1].state = ENVSYS_SINVALID;
if (sc->sc_channel & LM87_CHANNEL_AIN1) {
sc->sc_sensor[LMENV_FAN1].units = ENVSYS_SVOLTS_DC;
strlcpy(sc->sc_sensor[LMENV_FAN1].desc, "AIN1",
sizeof(sc->sc_sensor[LMENV_FAN1].desc));
} else {
sc->sc_sensor[LMENV_FAN1].units = ENVSYS_SFANRPM;
strlcpy(sc->sc_sensor[LMENV_FAN1].desc, "FAN1",
sizeof(sc->sc_sensor[LMENV_FAN1].desc));
}
sc->sc_sensor[LMENV_FAN2].state = ENVSYS_SINVALID;
if (sc->sc_channel & LM87_CHANNEL_AIN2) {
sc->sc_sensor[LMENV_FAN2].units = ENVSYS_SVOLTS_DC;
strlcpy(sc->sc_sensor[LMENV_FAN2].desc, "AIN2",
sizeof(sc->sc_sensor[LMENV_FAN2].desc));
} else {
sc->sc_sensor[LMENV_FAN2].units = ENVSYS_SFANRPM;
strlcpy(sc->sc_sensor[LMENV_FAN2].desc, "FAN2",
sizeof(sc->sc_sensor[LMENV_FAN2].desc));
}
sc->sc_sme = sysmon_envsys_create();
for (i = 0; i < LMENV_NUM_SENSORS; i++)
if (sysmon_envsys_sensor_attach(sc->sc_sme,
&sc->sc_sensor[i])) {
sysmon_envsys_destroy(sc->sc_sme);
aprint_error_dev(self,
"unable to attach sensor %d at sysmon\n", i);
return;
}
sc->sc_sme->sme_name = device_xname(self);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_refresh = lmenv_refresh;
if (sysmon_envsys_register(sc->sc_sme)) {
aprint_error_dev(self,
"unable to register with sysmon\n");
sysmon_envsys_destroy(sc->sc_sme);
return;
}
}
void
lmenv_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct lmenv_softc *sc = sme->sme_cookie;
u_int8_t cmd, data;
u_int tmp;
iic_acquire_bus(sc->sc_tag, 0);
cmd = LM87_2_5V + edata->sensor;
if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &cmd, sizeof cmd, &data, sizeof data, 0)) {
edata->state = ENVSYS_SINVALID;
return;
}
switch (edata->sensor) {
case LMENV_2_5V:
/* Might be external temperature 2 */
if (sc->sc_channel & LM87_CHANNEL_TEMP2) {
if (data == 0x80)
edata->state = ENVSYS_SINVALID;
else {
edata->value_cur =
(int8_t)data * 1000000 + 273150000;
edata->state = ENVSYS_SVALID;
}
break;
}
edata->value_cur = 2500000 * data / 192;
edata->state = ENVSYS_SVALID;
break;
case LMENV_5V:
edata->value_cur = 5000000 * data / 192;
edata->state = ENVSYS_SVALID;
break;
case LMENV_12V:
edata->value_cur = 12000000 * data / 192;
edata->state = ENVSYS_SVALID;
break;
case LMENV_VCCP1:
edata->value_cur = 2700000 * data / 192;
edata->state = ENVSYS_SVALID;
break;
case LMENV_VCCP2:
/* If monitoring external temperature 2, this isn't monitored */
if (sc->sc_channel & LM87_CHANNEL_TEMP2) {
edata->state = ENVSYS_SINVALID;
break;
}
edata->value_cur = 2700000 * data / 192;
edata->state = ENVSYS_SVALID;
break;
case LMENV_VCC:
/* Voltage scale selectable (5V or 3.3V) */
edata->value_cur =
(LM87_CHANNEL_VCC5 ? 5000000 : 3300000) * data / 192;
edata->state = ENVSYS_SVALID;
break;
case LMENV_EXT_TEMP:
if (sc->sc_family == 81) {
edata->state = ENVSYS_SINVALID;
break; /* missing on LM81 */
}
/* FALLTHROUGH */
case LMENV_INT_TEMP:
if (data == 0x80)
edata->state = ENVSYS_SINVALID;
else {
edata->value_cur = (int8_t)data * 1000000 + 273150000;
edata->state = ENVSYS_SVALID;
}
break;
case LMENV_FAN1:
/* Might be analogue input 1 */
if (sc->sc_channel & LM87_CHANNEL_AIN1) {
edata->value_cur = 1870000 * data / 192;
edata->state = ENVSYS_SVALID;
break;
}
if (data == 0xff) {
edata->state = ENVSYS_SINVALID;
break;
}
tmp = data * sc->sc_fan1_div;
if (tmp == 0)
edata->state = ENVSYS_SINVALID;
else {
edata->value_cur = 1350000 / tmp;
edata->state = ENVSYS_SVALID;
}
break;
case LMENV_FAN2:
/* Might be analogue input 2 */
if (sc->sc_channel & LM87_CHANNEL_AIN2) {
edata->value_cur = 1870000 * data / 192;
edata->state = ENVSYS_SVALID;
break;
}
if (data == 0xff) {
edata->state = ENVSYS_SINVALID;
break;
}
tmp = data * sc->sc_fan2_div;
if (tmp == 0)
edata->state = ENVSYS_SINVALID;
else {
edata->value_cur = 1350000 / tmp;
edata->state = ENVSYS_SVALID;
}
break;
default:
edata->state = ENVSYS_SINVALID;
break;
}
iic_release_bus(sc->sc_tag, 0);
}