NetBSD/sys/dev/i2c/axppmic.c

1342 lines
38 KiB
C

/* $NetBSD: axppmic.c,v 1.37 2022/10/30 11:51:19 jmcneill Exp $ */
/*-
* Copyright (c) 2014-2018 Jared McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.37 2022/10/30 11:51:19 jmcneill Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/kmem.h>
#include <sys/workqueue.h>
#include <dev/i2c/i2cvar.h>
#include <dev/sysmon/sysmonvar.h>
#include <dev/sysmon/sysmon_taskq.h>
#include <dev/fdt/fdtvar.h>
#define AXP_POWER_SOURCE_REG 0x00
#define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
#define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
#define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
#define AXP_POWER_MODE_REG 0x01
#define AXP_POWER_MODE_BATT_VALID __BIT(4)
#define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
#define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
#define AXP_CHIP_ID_REG 0x03
#define AXP_POWER_DISABLE_REG 0x32
#define AXP_POWER_DISABLE_CTRL __BIT(7)
#define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
#define AXP_IRQ1_ACIN_RAISE __BIT(6)
#define AXP_IRQ1_ACIN_LOWER __BIT(5)
#define AXP_IRQ1_VBUS_RAISE __BIT(3)
#define AXP_IRQ1_VBUS_LOWER __BIT(2)
#define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
#define AXP_BATSENSE_HI_REG 0x78
#define AXP_BATSENSE_LO_REG 0x79
#define AXP_BATTCHG_HI_REG 0x7a
#define AXP_BATTCHG_LO_REG 0x7b
#define AXP_BATTDISCHG_HI_REG 0x7c
#define AXP_BATTDISCHG_LO_REG 0x7d
#define AXP_ADC_RAW(_hi, _lo) \
(((u_int)(_hi) << 4) | ((_lo) & 0xf))
#define AXP_GPIO_CTRL_REG(pin) (0x90 + (pin) * 2)
#define AXP_GPIO_CTRL_FUNC_MASK __BITS(2,0)
#define AXP_GPIO_CTRL_FUNC_LOW 0
#define AXP_GPIO_CTRL_FUNC_HIGH 1
#define AXP_GPIO_CTRL_FUNC_INPUT 2
#define AXP_GPIO_SIGNAL_REG 0x94
#define AXP_FUEL_GAUGE_CTRL_REG 0xb8
#define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
#define AXP_BATT_CAP_REG 0xb9
#define AXP_BATT_CAP_VALID __BIT(7)
#define AXP_BATT_CAP_PERCENT __BITS(6,0)
#define AXP_BATT_MAX_CAP_HI_REG 0xe0
#define AXP_BATT_MAX_CAP_VALID __BIT(7)
#define AXP_BATT_MAX_CAP_LO_REG 0xe1
#define AXP_BATT_COULOMB_HI_REG 0xe2
#define AXP_BATT_COULOMB_VALID __BIT(7)
#define AXP_BATT_COULOMB_LO_REG 0xe3
#define AXP_COULOMB_RAW(_hi, _lo) \
(((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
#define AXP_BATT_CAP_WARN_REG 0xe6
#define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
#define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
#define AXP_ADDR_EXT_REG 0xff /* AXP806 */
#define AXP_ADDR_EXT_MASTER 0
#define AXP_ADDR_EXT_SLAVE __BIT(4)
struct axppmic_ctrl {
device_t c_dev;
const char * c_name;
u_int c_min;
u_int c_max;
u_int c_step1;
u_int c_step1cnt;
u_int c_step2;
u_int c_step2cnt;
u_int c_step2start;
uint8_t c_enable_reg;
uint8_t c_enable_mask;
uint8_t c_enable_val;
uint8_t c_disable_val;
uint8_t c_voltage_reg;
uint8_t c_voltage_mask;
};
#define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
{ .c_name = (name), .c_min = (min), .c_max = (max), \
.c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
.c_step2 = 0, .c_step2cnt = 0, \
.c_enable_reg = (ereg), .c_enable_mask = (emask), \
.c_enable_val = (emask), .c_disable_val = 0, \
.c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
#define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
{ .c_name = (name), .c_min = (min), .c_max = (max), \
.c_step1 = (step1), .c_step1cnt = (step1cnt), \
.c_step2 = (step2), .c_step2cnt = (step2cnt), \
.c_enable_reg = (ereg), .c_enable_mask = (emask), \
.c_enable_val = (emask), .c_disable_val = 0, \
.c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
#define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
{ .c_name = (name), .c_min = (min), .c_max = (max), \
.c_step1 = (step1), .c_step1cnt = (step1cnt), \
.c_step2start = (step2start), \
.c_step2 = (step2), .c_step2cnt = (step2cnt), \
.c_enable_reg = (ereg), .c_enable_mask = (emask), \
.c_enable_val = (emask), .c_disable_val = 0, \
.c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
#define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask) \
{ .c_name = (name), .c_min = (min), .c_max = (max), \
.c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
.c_step2 = 0, .c_step2cnt = 0, \
.c_enable_reg = (ereg), .c_enable_mask = (emask), \
.c_enable_val = (eval), .c_disable_val = (dval), \
.c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
#define AXP_CTRL_SW(name, ereg, emask) \
{ .c_name = (name), \
.c_enable_reg = (ereg), .c_enable_mask = (emask), \
.c_enable_val = (emask), .c_disable_val = 0 }
static const struct axppmic_ctrl axp803_ctrls[] = {
AXP_CTRL("dldo1", 700, 3300, 100,
0x12, __BIT(3), 0x15, __BITS(4,0)),
AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
0x12, __BIT(4), 0x16, __BITS(4,0)),
AXP_CTRL("dldo3", 700, 3300, 100,
0x12, __BIT(5), 0x17, __BITS(4,0)),
AXP_CTRL("dldo4", 700, 3300, 100,
0x12, __BIT(6), 0x18, __BITS(4,0)),
AXP_CTRL("eldo1", 700, 1900, 50,
0x12, __BIT(0), 0x19, __BITS(4,0)),
AXP_CTRL("eldo2", 700, 1900, 50,
0x12, __BIT(1), 0x1a, __BITS(4,0)),
AXP_CTRL("eldo3", 700, 1900, 50,
0x12, __BIT(2), 0x1b, __BITS(4,0)),
AXP_CTRL("fldo1", 700, 1450, 50,
0x13, __BIT(2), 0x1c, __BITS(3,0)),
AXP_CTRL("fldo2", 700, 1450, 50,
0x13, __BIT(3), 0x1d, __BITS(3,0)),
AXP_CTRL("dcdc1", 1600, 3400, 100,
0x10, __BIT(0), 0x20, __BITS(4,0)),
AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
0x10, __BIT(1), 0x21, __BITS(6,0)),
AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
0x10, __BIT(2), 0x22, __BITS(6,0)),
AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
0x10, __BIT(3), 0x23, __BITS(6,0)),
AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
0x10, __BIT(4), 0x24, __BITS(6,0)),
AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
0x10, __BIT(5), 0x25, __BITS(6,0)),
AXP_CTRL("aldo1", 700, 3300, 100,
0x13, __BIT(5), 0x28, __BITS(4,0)),
AXP_CTRL("aldo2", 700, 3300, 100,
0x13, __BIT(6), 0x29, __BITS(4,0)),
AXP_CTRL("aldo3", 700, 3300, 100,
0x13, __BIT(7), 0x2a, __BITS(4,0)),
};
static const struct axppmic_ctrl axp805_ctrls[] = {
AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
0x10, __BIT(0), 0x12, __BITS(6,0)),
AXP_CTRL("dcdcb", 1000, 2550, 50,
0x10, __BIT(1), 0x13, __BITS(4,0)),
AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
0x10, __BIT(2), 0x14, __BITS(6,0)),
AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
0x10, __BIT(3), 0x15, __BITS(5,0)),
AXP_CTRL("dcdce", 1100, 3400, 100,
0x10, __BIT(4), 0x16, __BITS(4,0)),
AXP_CTRL("aldo1", 700, 3300, 100,
0x10, __BIT(5), 0x17, __BITS(4,0)),
AXP_CTRL("aldo2", 700, 3400, 100,
0x10, __BIT(6), 0x18, __BITS(4,0)),
AXP_CTRL("aldo3", 700, 3300, 100,
0x10, __BIT(7), 0x19, __BITS(4,0)),
AXP_CTRL("bldo1", 700, 1900, 100,
0x11, __BIT(0), 0x20, __BITS(3,0)),
AXP_CTRL("bldo2", 700, 1900, 100,
0x11, __BIT(1), 0x21, __BITS(3,0)),
AXP_CTRL("bldo3", 700, 1900, 100,
0x11, __BIT(2), 0x22, __BITS(3,0)),
AXP_CTRL("bldo4", 700, 1900, 100,
0x11, __BIT(3), 0x23, __BITS(3,0)),
AXP_CTRL("cldo1", 700, 3300, 100,
0x11, __BIT(4), 0x24, __BITS(4,0)),
AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
0x11, __BIT(5), 0x25, __BITS(4,0)),
AXP_CTRL("cldo3", 700, 3300, 100,
0x11, __BIT(6), 0x26, __BITS(4,0)),
};
static const struct axppmic_ctrl axp809_ctrls[] = {
AXP_CTRL("dc5ldo", 700, 1400, 100,
0x10, __BIT(0), 0x1c, __BITS(2,0)),
AXP_CTRL("dcdc1", 1600, 3400, 100,
0x10, __BIT(1), 0x21, __BITS(4,0)),
AXP_CTRL("dcdc2", 600, 1540, 20,
0x10, __BIT(2), 0x22, __BITS(5,0)),
AXP_CTRL("dcdc3", 600, 1860, 20,
0x10, __BIT(3), 0x23, __BITS(5,0)),
AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
0x10, __BIT(4), 0x24, __BITS(5,0)),
AXP_CTRL("dcdc5", 1000, 2550, 50,
0x10, __BIT(5), 0x25, __BITS(4,0)),
AXP_CTRL("aldo1", 700, 3300, 100,
0x10, __BIT(6), 0x28, __BITS(4,0)),
AXP_CTRL("aldo2", 700, 3300, 100,
0x10, __BIT(7), 0x29, __BITS(4,0)),
AXP_CTRL("eldo1", 700, 3300, 100,
0x12, __BIT(0), 0x19, __BITS(4,0)),
AXP_CTRL("eldo2", 700, 3300, 100,
0x12, __BIT(1), 0x1a, __BITS(4,0)),
AXP_CTRL("eldo3", 700, 3300, 100,
0x12, __BIT(2), 0x1b, __BITS(4,0)),
AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
0x12, __BIT(3), 0x15, __BITS(4,0)),
AXP_CTRL("dldo2", 700, 3300, 100,
0x12, __BIT(4), 0x16, __BITS(4,0)),
AXP_CTRL("aldo3", 700, 3300, 100,
0x12, __BIT(5), 0x2a, __BITS(4,0)),
AXP_CTRL_SW("sw",
0x12, __BIT(6)),
/* dc1sw is another switch for dcdc1 */
AXP_CTRL("dc1sw", 1600, 3400, 100,
0x12, __BIT(7), 0x21, __BITS(4,0)),
AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
};
static const struct axppmic_ctrl axp813_ctrls[] = {
AXP_CTRL("dldo1", 700, 3300, 100,
0x12, __BIT(3), 0x15, __BITS(4,0)),
AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
0x12, __BIT(4), 0x16, __BITS(4,0)),
AXP_CTRL("dldo3", 700, 3300, 100,
0x12, __BIT(5), 0x17, __BITS(4,0)),
AXP_CTRL("dldo4", 700, 3300, 100,
0x12, __BIT(6), 0x18, __BITS(4,0)),
AXP_CTRL("eldo1", 700, 1900, 50,
0x12, __BIT(0), 0x19, __BITS(4,0)),
AXP_CTRL("eldo2", 700, 1900, 50,
0x12, __BIT(1), 0x1a, __BITS(4,0)),
AXP_CTRL("eldo3", 700, 1900, 50,
0x12, __BIT(2), 0x1b, __BITS(4,0)),
AXP_CTRL("fldo1", 700, 1450, 50,
0x13, __BIT(2), 0x1c, __BITS(3,0)),
AXP_CTRL("fldo2", 700, 1450, 50,
0x13, __BIT(3), 0x1d, __BITS(3,0)),
AXP_CTRL("dcdc1", 1600, 3400, 100,
0x10, __BIT(0), 0x20, __BITS(4,0)),
AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
0x10, __BIT(1), 0x21, __BITS(6,0)),
AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
0x10, __BIT(2), 0x22, __BITS(6,0)),
AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
0x10, __BIT(3), 0x23, __BITS(6,0)),
AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
0x10, __BIT(4), 0x24, __BITS(6,0)),
AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
0x10, __BIT(5), 0x25, __BITS(6,0)),
AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
0x10, __BIT(6), 0x26, __BITS(6,0)),
AXP_CTRL("aldo1", 700, 3300, 100,
0x13, __BIT(5), 0x28, __BITS(4,0)),
AXP_CTRL("aldo2", 700, 3300, 100,
0x13, __BIT(6), 0x29, __BITS(4,0)),
AXP_CTRL("aldo3", 700, 3300, 100,
0x13, __BIT(7), 0x2a, __BITS(4,0)),
};
struct axppmic_irq {
u_int reg;
uint8_t mask;
};
#define AXPPMIC_IRQ(_reg, _mask) \
{ .reg = (_reg), .mask = (_mask) }
struct axppmic_config {
const char *name;
const char *gpio_compat;
u_int gpio_npins;
const struct axppmic_ctrl *controls;
u_int ncontrols;
u_int irq_regs;
bool has_battery;
bool has_fuel_gauge;
bool has_mode_set;
struct axppmic_irq poklirq;
struct axppmic_irq acinirq;
struct axppmic_irq vbusirq;
struct axppmic_irq battirq;
struct axppmic_irq chargeirq;
struct axppmic_irq chargestirq;
u_int batsense_step; /* uV */
u_int charge_step; /* uA */
u_int discharge_step; /* uA */
u_int maxcap_step; /* uAh */
u_int coulomb_step; /* uAh */
};
enum axppmic_sensor {
AXP_SENSOR_ACIN_PRESENT,
AXP_SENSOR_VBUS_PRESENT,
AXP_SENSOR_BATT_PRESENT,
AXP_SENSOR_BATT_CHARGING,
AXP_SENSOR_BATT_CHARGE_STATE,
AXP_SENSOR_BATT_VOLTAGE,
AXP_SENSOR_BATT_CHARGE_CURRENT,
AXP_SENSOR_BATT_DISCHARGE_CURRENT,
AXP_SENSOR_BATT_CAPACITY_PERCENT,
AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
AXP_SENSOR_BATT_CURRENT_CAPACITY,
AXP_NSENSORS
};
struct axppmic_softc {
device_t sc_dev;
i2c_tag_t sc_i2c;
i2c_addr_t sc_addr;
int sc_phandle;
void *sc_ih;
struct workqueue *sc_wq;
kmutex_t sc_intr_lock;
struct work sc_work;
bool sc_work_scheduled;
const struct axppmic_config *sc_conf;
struct sysmon_pswitch sc_smpsw;
struct sysmon_envsys *sc_sme;
envsys_data_t sc_sensor[AXP_NSENSORS];
u_int sc_warn_thres;
u_int sc_shut_thres;
};
struct axppmic_gpio_pin {
struct axppmic_softc *pin_sc;
u_int pin_nr;
int pin_flags;
bool pin_actlo;
};
struct axpreg_softc {
device_t sc_dev;
i2c_tag_t sc_i2c;
i2c_addr_t sc_addr;
const struct axppmic_ctrl *sc_ctrl;
};
struct axpreg_attach_args {
const struct axppmic_ctrl *reg_ctrl;
int reg_phandle;
i2c_tag_t reg_i2c;
i2c_addr_t reg_addr;
};
static const struct axppmic_config axp803_config = {
.name = "AXP803",
.gpio_compat = "x-powers,axp803-gpio",
.gpio_npins = 2,
.controls = axp803_ctrls,
.ncontrols = __arraycount(axp803_ctrls),
.irq_regs = 6,
.has_battery = true,
.has_fuel_gauge = true,
.batsense_step = 1100,
.charge_step = 1000,
.discharge_step = 1000,
.maxcap_step = 1456,
.coulomb_step = 1456,
.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
};
static const struct axppmic_config axp805_config = {
.name = "AXP805",
.controls = axp805_ctrls,
.ncontrols = __arraycount(axp805_ctrls),
.irq_regs = 2,
.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
};
static const struct axppmic_config axp806_config = {
.name = "AXP806",
.controls = axp805_ctrls,
.ncontrols = __arraycount(axp805_ctrls),
#if notyet
.irq_regs = 2,
.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
#endif
.has_mode_set = true,
};
static const struct axppmic_config axp809_config = {
.name = "AXP809",
.controls = axp809_ctrls,
.ncontrols = __arraycount(axp809_ctrls),
};
static const struct axppmic_config axp813_config = {
.name = "AXP813",
.gpio_compat = "x-powers,axp813-gpio",
.gpio_npins = 2,
.controls = axp813_ctrls,
.ncontrols = __arraycount(axp813_ctrls),
.irq_regs = 6,
.has_battery = true,
.has_fuel_gauge = true,
.batsense_step = 1100,
.charge_step = 1000,
.discharge_step = 1000,
.maxcap_step = 1456,
.coulomb_step = 1456,
.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
};
static const struct device_compatible_entry compat_data[] = {
{ .compat = "x-powers,axp803", .data = &axp803_config },
{ .compat = "x-powers,axp805", .data = &axp805_config },
{ .compat = "x-powers,axp806", .data = &axp806_config },
{ .compat = "x-powers,axp809", .data = &axp809_config },
{ .compat = "x-powers,axp813", .data = &axp813_config },
DEVICE_COMPAT_EOL
};
static int
axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
{
return iic_smbus_read_byte(tag, addr, reg, val, flags);
}
static int
axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
{
return iic_smbus_write_byte(tag, addr, reg, val, flags);
}
static int
axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
{
u_int vol, reg_val;
int nstep, error;
uint8_t val;
if (!c->c_voltage_mask)
return EINVAL;
if (min < c->c_min || min > c->c_max)
return EINVAL;
reg_val = 0;
nstep = 1;
vol = c->c_min;
for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
++reg_val;
vol += c->c_step1;
}
if (c->c_step2start)
vol = c->c_step2start;
for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
++reg_val;
vol += c->c_step2;
}
if (vol > max)
return EINVAL;
iic_acquire_bus(tag, 0);
if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) {
val &= ~c->c_voltage_mask;
val |= __SHIFTIN(reg_val, c->c_voltage_mask);
error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0);
}
iic_release_bus(tag, 0);
return error;
}
static int
axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
{
int reg_val, error;
uint8_t val;
if (!c->c_voltage_mask)
return EINVAL;
iic_acquire_bus(tag, 0);
error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0);
iic_release_bus(tag, 0);
if (error)
return error;
reg_val = __SHIFTOUT(val, c->c_voltage_mask);
if (reg_val < c->c_step1cnt) {
*pvol = c->c_min + reg_val * c->c_step1;
} else if (c->c_step2start) {
*pvol = c->c_step2start +
((reg_val - c->c_step1cnt) * c->c_step2);
} else {
*pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
((reg_val - c->c_step1cnt) * c->c_step2);
}
return 0;
}
static void
axppmic_power_poweroff(device_t dev)
{
struct axppmic_softc *sc = device_private(dev);
int error;
delay(1000000);
error = iic_acquire_bus(sc->sc_i2c, 0);
if (error == 0) {
error = axppmic_write(sc->sc_i2c, sc->sc_addr,
AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0);
iic_release_bus(sc->sc_i2c, 0);
}
if (error) {
device_printf(dev, "WARNING: unable to power off, error %d\n",
error);
}
}
static struct fdtbus_power_controller_func axppmic_power_funcs = {
.poweroff = axppmic_power_poweroff,
};
static int
axppmic_gpio_ctl(struct axppmic_softc *sc, uint8_t pin, uint8_t func)
{
uint8_t val;
int error;
KASSERT(pin < sc->sc_conf->gpio_npins);
KASSERT((func & ~AXP_GPIO_CTRL_FUNC_MASK) == 0);
iic_acquire_bus(sc->sc_i2c, 0);
error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_CTRL_REG(pin),
&val, 0);
if (error == 0) {
val &= ~AXP_GPIO_CTRL_FUNC_MASK;
val |= func;
error = axppmic_write(sc->sc_i2c, sc->sc_addr,
AXP_GPIO_CTRL_REG(pin), val, 0);
}
iic_release_bus(sc->sc_i2c, 0);
return error;
}
static void *
axppmic_gpio_acquire(device_t dev, const void *data, size_t len, int flags)
{
struct axppmic_softc *sc = device_private(dev);
struct axppmic_gpio_pin *gpin;
const u_int *gpio = data;
int error;
if (len != 12) {
return NULL;
}
const uint8_t pin = be32toh(gpio[1]) & 0xff;
const bool actlo = be32toh(gpio[2]) & 1;
if (pin >= sc->sc_conf->gpio_npins) {
return NULL;
}
if ((flags & GPIO_PIN_INPUT) != 0) {
error = axppmic_gpio_ctl(sc, pin, AXP_GPIO_CTRL_FUNC_INPUT);
if (error != 0) {
return NULL;
}
}
gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP);
gpin->pin_sc = sc;
gpin->pin_nr = pin;
gpin->pin_flags = flags;
gpin->pin_actlo = actlo;
return gpin;
}
static void
axppmic_gpio_release(device_t dev, void *priv)
{
struct axppmic_softc *sc = device_private(dev);
struct axppmic_gpio_pin *gpin = priv;
axppmic_gpio_ctl(sc, gpin->pin_nr, AXP_GPIO_CTRL_FUNC_INPUT);
kmem_free(gpin, sizeof(*gpin));
}
static int
axppmic_gpio_read(device_t dev, void *priv, bool raw)
{
struct axppmic_softc *sc = device_private(dev);
struct axppmic_gpio_pin *gpin = priv;
uint8_t data;
int error, val;
KASSERT(sc == gpin->pin_sc);
const uint8_t data_mask = __BIT(gpin->pin_nr);
iic_acquire_bus(sc->sc_i2c, 0);
error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_SIGNAL_REG,
&data, 0);
iic_release_bus(sc->sc_i2c, 0);
if (error != 0) {
device_printf(dev, "WARNING: failed to read pin %d: %d\n",
gpin->pin_nr, error);
val = 0;
} else {
val = __SHIFTOUT(data, data_mask);
}
if (!raw && gpin->pin_actlo) {
val = !val;
}
return val;
}
static void
axppmic_gpio_write(device_t dev, void *priv, int val, bool raw)
{
struct axppmic_softc *sc = device_private(dev);
struct axppmic_gpio_pin *gpin = priv;
int error;
if (!raw && gpin->pin_actlo) {
val = !val;
}
error = axppmic_gpio_ctl(sc, gpin->pin_nr,
val == 0 ? AXP_GPIO_CTRL_FUNC_LOW : AXP_GPIO_CTRL_FUNC_HIGH);
if (error != 0) {
device_printf(dev, "WARNING: failed to write pin %d: %d\n",
gpin->pin_nr, error);
}
}
static struct fdtbus_gpio_controller_func axppmic_gpio_funcs = {
.acquire = axppmic_gpio_acquire,
.release = axppmic_gpio_release,
.read = axppmic_gpio_read,
.write = axppmic_gpio_write,
};
static void
axppmic_task_shut(void *priv)
{
struct axppmic_softc *sc = priv;
sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
}
static void
axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
{
struct axppmic_softc *sc = sme->sme_cookie;
const struct axppmic_config *c = sc->sc_conf;
uint8_t val, lo, hi;
e->state = ENVSYS_SINVALID;
const bool battery_present =
sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
switch (e->private) {
case AXP_SENSOR_ACIN_PRESENT:
if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
e->state = ENVSYS_SVALID;
e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
}
break;
case AXP_SENSOR_VBUS_PRESENT:
if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
e->state = ENVSYS_SVALID;
e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
}
break;
case AXP_SENSOR_BATT_PRESENT:
if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
if (val & AXP_POWER_MODE_BATT_VALID) {
e->state = ENVSYS_SVALID;
e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
}
}
break;
case AXP_SENSOR_BATT_CHARGING:
if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
e->state = ENVSYS_SVALID;
e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
}
break;
case AXP_SENSOR_BATT_CHARGE_STATE:
if (battery_present &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
(val & AXP_BATT_CAP_VALID) != 0) {
const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
if (batt_val <= sc->sc_shut_thres) {
e->state = ENVSYS_SCRITICAL;
e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
} else if (batt_val <= sc->sc_warn_thres) {
e->state = ENVSYS_SWARNUNDER;
e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
} else {
e->state = ENVSYS_SVALID;
e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
}
}
break;
case AXP_SENSOR_BATT_CAPACITY_PERCENT:
if (battery_present &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
(val & AXP_BATT_CAP_VALID) != 0) {
e->state = ENVSYS_SVALID;
e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
}
break;
case AXP_SENSOR_BATT_VOLTAGE:
if (battery_present &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) {
e->state = ENVSYS_SVALID;
e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
}
break;
case AXP_SENSOR_BATT_CHARGE_CURRENT:
if (battery_present &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
(val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) {
e->state = ENVSYS_SVALID;
e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
}
break;
case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
if (battery_present &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
(val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) {
e->state = ENVSYS_SVALID;
e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
}
break;
case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
if (battery_present &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) {
e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
}
break;
case AXP_SENSOR_BATT_CURRENT_CAPACITY:
if (battery_present &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 &&
axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) {
e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
}
break;
}
}
static void
axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
{
struct axppmic_softc *sc = sme->sme_cookie;
switch (e->private) {
case AXP_SENSOR_BATT_CAPACITY_PERCENT:
case AXP_SENSOR_BATT_VOLTAGE:
case AXP_SENSOR_BATT_CHARGE_CURRENT:
case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
/* Always update battery capacity and ADCs */
iic_acquire_bus(sc->sc_i2c, 0);
axppmic_sensor_update(sme, e);
iic_release_bus(sc->sc_i2c, 0);
break;
default:
/* Refresh if the sensor is not in valid state */
if (e->state != ENVSYS_SVALID) {
iic_acquire_bus(sc->sc_i2c, 0);
axppmic_sensor_update(sme, e);
iic_release_bus(sc->sc_i2c, 0);
}
break;
}
}
static int
axppmic_intr(void *priv)
{
struct axppmic_softc * const sc = priv;
mutex_enter(&sc->sc_intr_lock);
fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih);
/* Interrupt is always masked when work is scheduled! */
KASSERT(!sc->sc_work_scheduled);
sc->sc_work_scheduled = true;
workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL);
mutex_exit(&sc->sc_intr_lock);
return 1;
}
static void
axppmic_work(struct work *work, void *arg)
{
struct axppmic_softc * const sc =
container_of(work, struct axppmic_softc, sc_work);
const struct axppmic_config * const c = sc->sc_conf;
const int flags = 0;
uint8_t stat;
u_int n;
KASSERT(sc->sc_work_scheduled);
iic_acquire_bus(sc->sc_i2c, flags);
for (n = 1; n <= c->irq_regs; n++) {
if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
if (stat != 0) {
axppmic_write(sc->sc_i2c, sc->sc_addr,
AXP_IRQ_STATUS_REG(n), stat, flags);
}
if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
sysmon_task_queue_sched(0, axppmic_task_shut, sc);
if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
}
}
iic_release_bus(sc->sc_i2c, flags);
mutex_enter(&sc->sc_intr_lock);
sc->sc_work_scheduled = false;
fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih);
mutex_exit(&sc->sc_intr_lock);
}
static void
axppmic_attach_acadapter(struct axppmic_softc *sc)
{
envsys_data_t *e;
e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
e->private = AXP_SENSOR_ACIN_PRESENT;
e->units = ENVSYS_INDICATOR;
e->state = ENVSYS_SINVALID;
strlcpy(e->desc, "ACIN present", sizeof(e->desc));
sysmon_envsys_sensor_attach(sc->sc_sme, e);
e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
e->private = AXP_SENSOR_VBUS_PRESENT;
e->units = ENVSYS_INDICATOR;
e->state = ENVSYS_SINVALID;
strlcpy(e->desc, "VBUS present", sizeof(e->desc));
sysmon_envsys_sensor_attach(sc->sc_sme, e);
}
static void
axppmic_attach_battery(struct axppmic_softc *sc)
{
const struct axppmic_config *c = sc->sc_conf;
envsys_data_t *e;
uint8_t val;
iic_acquire_bus(sc->sc_i2c, 0);
if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) {
sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
}
iic_release_bus(sc->sc_i2c, 0);
e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
e->private = AXP_SENSOR_BATT_PRESENT;
e->units = ENVSYS_INDICATOR;
e->state = ENVSYS_SINVALID;
strlcpy(e->desc, "battery present", sizeof(e->desc));
sysmon_envsys_sensor_attach(sc->sc_sme, e);
e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
e->private = AXP_SENSOR_BATT_CHARGING;
e->units = ENVSYS_BATTERY_CHARGE;
e->state = ENVSYS_SINVALID;
strlcpy(e->desc, "charging", sizeof(e->desc));
sysmon_envsys_sensor_attach(sc->sc_sme, e);
e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
e->private = AXP_SENSOR_BATT_CHARGE_STATE;
e->units = ENVSYS_BATTERY_CAPACITY;
e->flags = ENVSYS_FMONSTCHANGED;
e->state = ENVSYS_SINVALID;
e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
strlcpy(e->desc, "charge state", sizeof(e->desc));
sysmon_envsys_sensor_attach(sc->sc_sme, e);
if (c->batsense_step) {
e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
e->private = AXP_SENSOR_BATT_VOLTAGE;
e->units = ENVSYS_SVOLTS_DC;
e->state = ENVSYS_SINVALID;
strlcpy(e->desc, "battery voltage", sizeof(e->desc));
sysmon_envsys_sensor_attach(sc->sc_sme, e);
}
if (c->charge_step) {
e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
e->units = ENVSYS_SAMPS;
e->state = ENVSYS_SINVALID;
strlcpy(e->desc, "battery charge current", sizeof(e->desc));
sysmon_envsys_sensor_attach(sc->sc_sme, e);
}
if (c->discharge_step) {
e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
e->units = ENVSYS_SAMPS;
e->state = ENVSYS_SINVALID;
strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
sysmon_envsys_sensor_attach(sc->sc_sme, e);
}
if (c->has_fuel_gauge) {
e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
e->units = ENVSYS_INTEGER;
e->state = ENVSYS_SINVALID;
e->flags = ENVSYS_FPERCENT;
strlcpy(e->desc, "battery percent", sizeof(e->desc));
sysmon_envsys_sensor_attach(sc->sc_sme, e);
}
if (c->maxcap_step) {
e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
e->units = ENVSYS_SAMPHOUR;
e->state = ENVSYS_SINVALID;
strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
sysmon_envsys_sensor_attach(sc->sc_sme, e);
}
if (c->coulomb_step) {
e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
e->units = ENVSYS_SAMPHOUR;
e->state = ENVSYS_SINVALID;
strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
sysmon_envsys_sensor_attach(sc->sc_sme, e);
}
}
static void
axppmic_attach_sensors(struct axppmic_softc *sc)
{
if (sc->sc_conf->has_battery) {
sc->sc_sme = sysmon_envsys_create();
sc->sc_sme->sme_name = device_xname(sc->sc_dev);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
sc->sc_sme->sme_class = SME_CLASS_BATTERY;
sc->sc_sme->sme_flags = SME_INIT_REFRESH;
axppmic_attach_acadapter(sc);
axppmic_attach_battery(sc);
sysmon_envsys_register(sc->sc_sme);
}
}
static int
axppmic_match(device_t parent, cfdata_t match, void *aux)
{
struct i2c_attach_args *ia = aux;
int match_result;
if (iic_use_direct_match(ia, match, compat_data, &match_result))
return match_result;
/* This device is direct-config only. */
return 0;
}
static void
axppmic_attach(device_t parent, device_t self, void *aux)
{
struct axppmic_softc *sc = device_private(self);
const struct device_compatible_entry *dce = NULL;
const struct axppmic_config *c;
struct axpreg_attach_args aaa;
struct i2c_attach_args *ia = aux;
int phandle, child, i;
uint8_t irq_mask, val;
int error;
dce = iic_compatible_lookup(ia, compat_data);
KASSERT(dce != NULL);
c = dce->data;
sc->sc_dev = self;
sc->sc_i2c = ia->ia_tag;
sc->sc_addr = ia->ia_addr;
sc->sc_phandle = ia->ia_cookie;
sc->sc_conf = c;
aprint_naive("\n");
aprint_normal(": %s\n", c->name);
if (c->has_mode_set) {
const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
of_hasprop(sc->sc_phandle, "x-powers,master-mode");
iic_acquire_bus(sc->sc_i2c, 0);
axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0);
iic_release_bus(sc->sc_i2c, 0);
}
iic_acquire_bus(sc->sc_i2c, 0);
error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0);
iic_release_bus(sc->sc_i2c, 0);
if (error != 0) {
aprint_error_dev(self, "couldn't read chipid\n");
return;
}
aprint_debug_dev(self, "chipid %#x\n", val);
sc->sc_smpsw.smpsw_name = device_xname(self);
sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
sysmon_pswitch_register(&sc->sc_smpsw);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM);
if (c->irq_regs > 0) {
char intrstr[128];
if (!fdtbus_intr_str(sc->sc_phandle, 0,
intrstr, sizeof(intrstr))) {
aprint_error_dev(self,
"WARNING: failed to decode interrupt\n");
}
sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
FDT_INTR_MPSAFE,
axppmic_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(self,
"WARNING: couldn't establish interrupt handler\n");
}
error = workqueue_create(&sc->sc_wq, device_xname(self),
axppmic_work, NULL,
PRI_SOFTSERIAL, IPL_VM,
WQ_MPSAFE);
if (error) {
sc->sc_wq = NULL;
aprint_error_dev(self,
"WARNING: couldn't create work queue: error %d\n",
error);
}
if (sc->sc_ih != NULL && sc->sc_wq != NULL) {
iic_acquire_bus(sc->sc_i2c, 0);
for (i = 1; i <= c->irq_regs; i++) {
irq_mask = 0;
if (i == c->poklirq.reg)
irq_mask |= c->poklirq.mask;
if (i == c->acinirq.reg)
irq_mask |= c->acinirq.mask;
if (i == c->vbusirq.reg)
irq_mask |= c->vbusirq.mask;
if (i == c->battirq.reg)
irq_mask |= c->battirq.mask;
if (i == c->chargeirq.reg)
irq_mask |= c->chargeirq.mask;
if (i == c->chargestirq.reg)
irq_mask |= c->chargestirq.mask;
axppmic_write(sc->sc_i2c, sc->sc_addr,
AXP_IRQ_ENABLE_REG(i),
irq_mask, 0);
}
iic_release_bus(sc->sc_i2c, 0);
}
}
fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
&axppmic_power_funcs);
if (c->gpio_compat != NULL) {
phandle = of_find_bycompat(sc->sc_phandle, c->gpio_compat);
if (phandle > 0) {
fdtbus_register_gpio_controller(self, phandle,
&axppmic_gpio_funcs);
}
}
phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
if (phandle > 0) {
aaa.reg_i2c = sc->sc_i2c;
aaa.reg_addr = sc->sc_addr;
for (i = 0; i < c->ncontrols; i++) {
const struct axppmic_ctrl *ctrl = &c->controls[i];
child = of_find_firstchild_byname(phandle, ctrl->c_name);
if (child <= 0)
continue;
aaa.reg_ctrl = ctrl;
aaa.reg_phandle = child;
config_found(sc->sc_dev, &aaa, NULL, CFARGS_NONE);
}
}
if (c->has_battery)
axppmic_attach_sensors(sc);
}
static int
axpreg_acquire(device_t dev)
{
return 0;
}
static void
axpreg_release(device_t dev)
{
}
static int
axpreg_enable(device_t dev, bool enable)
{
struct axpreg_softc *sc = device_private(dev);
const struct axppmic_ctrl *c = sc->sc_ctrl;
const int flags = 0;
uint8_t val;
int error;
if (!c->c_enable_mask)
return EINVAL;
iic_acquire_bus(sc->sc_i2c, flags);
if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
val &= ~c->c_enable_mask;
if (enable)
val |= c->c_enable_val;
else
val |= c->c_disable_val;
error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
}
iic_release_bus(sc->sc_i2c, flags);
return error;
}
static int
axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
{
struct axpreg_softc *sc = device_private(dev);
const struct axppmic_ctrl *c = sc->sc_ctrl;
return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
min_uvol / 1000, max_uvol / 1000);
}
static int
axpreg_get_voltage(device_t dev, u_int *puvol)
{
struct axpreg_softc *sc = device_private(dev);
const struct axppmic_ctrl *c = sc->sc_ctrl;
int error;
u_int vol;
error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
if (error)
return error;
*puvol = vol * 1000;
return 0;
}
static struct fdtbus_regulator_controller_func axpreg_funcs = {
.acquire = axpreg_acquire,
.release = axpreg_release,
.enable = axpreg_enable,
.set_voltage = axpreg_set_voltage,
.get_voltage = axpreg_get_voltage,
};
static int
axpreg_match(device_t parent, cfdata_t match, void *aux)
{
return 1;
}
static void
axpreg_attach(device_t parent, device_t self, void *aux)
{
struct axpreg_softc *sc = device_private(self);
struct axpreg_attach_args *aaa = aux;
const int phandle = aaa->reg_phandle;
const char *name;
u_int uvol, min_uvol, max_uvol;
sc->sc_dev = self;
sc->sc_i2c = aaa->reg_i2c;
sc->sc_addr = aaa->reg_addr;
sc->sc_ctrl = aaa->reg_ctrl;
fdtbus_register_regulator_controller(self, phandle,
&axpreg_funcs);
aprint_naive("\n");
name = fdtbus_get_string(phandle, "regulator-name");
if (name)
aprint_normal(": %s\n", name);
else
aprint_normal("\n");
int error = axpreg_get_voltage(self, &uvol);
if (error)
return;
if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
if (uvol < min_uvol || uvol > max_uvol) {
aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
uvol, min_uvol, max_uvol);
axpreg_set_voltage(self, min_uvol, max_uvol);
}
}
if (of_hasprop(phandle, "regulator-always-on") ||
of_hasprop(phandle, "regulator-boot-on")) {
axpreg_enable(self, true);
}
}
CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
axppmic_match, axppmic_attach, NULL, NULL);
CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
axpreg_match, axpreg_attach, NULL, NULL);