NetBSD/sys/arch/arm/s3c2xx0/s3c24x0_lcd.c

819 lines
19 KiB
C

/* $NetBSD: s3c24x0_lcd.c,v 1.15 2020/11/20 18:34:45 thorpej Exp $ */
/*
* Copyright (c) 2004 Genetec Corporation. All rights reserved.
* Written by Hiroyuki Bessho for Genetec Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of Genetec Corporation may not be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Support S3C24[10]0's integrated LCD controller.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: s3c24x0_lcd.c,v 1.15 2020/11/20 18:34:45 thorpej Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/kmem.h>
#include <sys/kernel.h> /* for cold */
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <dev/wscons/wsconsio.h>
#include <dev/wscons/wsdisplayvar.h>
#include <dev/wscons/wscons_callbacks.h>
#include <dev/rasops/rasops.h>
#include <dev/wsfont/wsfont.h>
#include <dev/hpc/hpcfbio.h>
#include <sys/bus.h>
#include <machine/cpu.h>
#include <arm/cpufunc.h>
#include <arm/s3c2xx0/s3c24x0var.h>
#include <arm/s3c2xx0/s3c24x0reg.h>
#include <arm/s3c2xx0/s3c24x0_lcd.h>
#include "wsdisplay.h"
int lcdintr(void *);
static void init_palette(struct s3c24x0_lcd_softc *,
struct s3c24x0_lcd_screen *);
#ifdef LCD_DEBUG
static void
dump_lcdcon(const char *title, bus_space_tag_t iot, bus_space_handle_t ioh)
{
int i;
printf("%s\n", title);
for(i=LCDC_LCDCON1; i <= LCDC_LCDSADDR3; i+=4) {
if (i%16 == 0)
printf("\n%03x: ", i);
printf("%08x ", bus_space_read_4(iot, ioh, i));
}
printf("\n");
}
void draw_test_pattern(struct s3c24x0_lcd_softc *,
struct s3c24x0_lcd_screen *scr);
#endif
void
s3c24x0_set_lcd_panel_info(struct s3c24x0_lcd_softc *sc,
const struct s3c24x0_lcd_panel_info *info)
{
bus_space_tag_t iot = sc->iot;
bus_space_handle_t ioh = sc->ioh;
uint32_t reg;
int clkval;
int tft = s3c24x0_lcd_panel_tft(info);
int hclk = s3c2xx0_softc->sc_hclk;
sc->panel_info = info;
/* Set LCDCON1. BPPMODE and ENVID are set later */
if (tft)
clkval = (hclk / info->pixel_clock / 2) - 1;
else {
/* STN display */
clkval = uimax(2, hclk / info->pixel_clock / 2);
}
reg = (info->lcdcon1 & ~LCDCON1_CLKVAL_MASK) |
(clkval << LCDCON1_CLKVAL_SHIFT);
reg &= ~LCDCON1_ENVID;
bus_space_write_4(iot, ioh, LCDC_LCDCON1, reg);
#if 0
printf("hclk=%d pixel clock=%d, clkval = %x lcdcon1=%x\n",
hclk, info->pixel_clock, clkval, reg);
#endif
bus_space_write_4(iot, ioh, LCDC_LCDCON2, info->lcdcon2);
bus_space_write_4(iot, ioh, LCDC_LCDCON3, info->lcdcon3);
bus_space_write_4(iot, ioh, LCDC_LCDCON4, info->lcdcon4);
bus_space_write_4(iot, ioh, LCDC_LCDCON5, info->lcdcon5);
bus_space_write_4(iot, ioh, LCDC_LPCSEL, info->lpcsel);
}
void
s3c24x0_lcd_attach_sub(struct s3c24x0_lcd_softc *sc,
struct s3c2xx0_attach_args *sa,
const struct s3c24x0_lcd_panel_info *panel_info)
{
bus_space_tag_t iot = sa->sa_iot;
bus_space_handle_t ioh;
int error;
sc->n_screens = 0;
LIST_INIT(&sc->screens);
/* map controller registers */
error = bus_space_map(iot, sa->sa_addr, S3C24X0_LCDC_SIZE, 0, &ioh);
if (error) {
printf(": failed to map registers %d", error);
return;
}
sc->iot = iot;
sc->ioh = ioh;
sc->dma_tag = sa->sa_dmat;
#ifdef notyet
sc->ih = s3c24x0_intr_establish(sa->sa_intr, IPL_BIO, lcdintr, sc);
if (sc->ih == NULL)
printf("%s: unable to establish interrupt at irq %d",
device_xname(sc->dev), sa->sa_intr);
#endif
/* mask LCD interrupts */
bus_space_write_4(iot, ioh, LCDC_LCDINTMSK, LCDINT_FICNT|LCDINT_FRSYN);
/* Initialize controller registers based on panel geometry*/
s3c24x0_set_lcd_panel_info(sc, panel_info);
/* XXX: enable clock to LCD controller */
}
#ifdef notyet
int
lcdintr(void *arg)
{
struct s3c24x0_lcd_softc *sc = arg;
bus_space_tag_t iot = sc->iot;
bus_space_handle_t ioh = sc->ioh;
static uint32_t status;
return 1;
}
#endif
int
s3c24x0_lcd_start_dma(struct s3c24x0_lcd_softc *sc,
struct s3c24x0_lcd_screen *scr)
{
bus_space_tag_t iot = sc->iot;
bus_space_handle_t ioh = sc->ioh;
const struct s3c24x0_lcd_panel_info *info = sc->panel_info;
int tft = s3c24x0_lcd_panel_tft(info);
int dual_panel =
(info->lcdcon1 & LCDCON1_PNRMODE_MASK) == LCDCON1_PNRMODE_DUALSTN4;
uint32_t lcdcon1, val;
paddr_t pa;
int depth = scr->depth;
int stride = scr->stride;
int panel_height = info->panel_height;
int panel_width = info->panel_width;
int offsize;
switch (depth) {
case 1: val = LCDCON1_BPPMODE_STN1; break;
case 2: val = LCDCON1_BPPMODE_STN2; break;
case 4: val = LCDCON1_BPPMODE_STN4; break;
case 8: val = LCDCON1_BPPMODE_STN8; break;
case 12:
if (tft)
return -1;
val = LCDCON1_BPPMODE_STN12;
break;
case 16:
if (!tft)
return -1;
val = LCDCON1_BPPMODE_TFT16;
break;
case 24:
if (!tft)
return -1;
val = LCDCON1_BPPMODE_TFT24;
break;
default:
return -1;
}
if (tft)
val |= LCDCON1_BPPMODE_TFTX;
lcdcon1 = bus_space_read_4(iot, ioh, LCDC_LCDCON1);
lcdcon1 &= ~(LCDCON1_BPPMODE_MASK|LCDCON1_ENVID);
lcdcon1 |= val;
bus_space_write_4(iot, ioh, LCDC_LCDCON1, lcdcon1);
/* Adjust LCDCON3.HOZVAL to meet with restriction */
val = roundup(panel_width, 16 / depth);
bus_space_write_4(iot, ioh, LCDC_LCDCON3,
(info->lcdcon3 & ~LCDCON3_HOZVAL_MASK) |
(val - 1) << LCDCON3_HOZVAL_SHIFT);
pa = scr->segs[0].ds_addr;
bus_space_write_4(iot, ioh, LCDC_LCDSADDR1, pa >> 1);
if (dual_panel) {
/* XXX */
}
else {
pa += stride * panel_height;
bus_space_write_4(iot, ioh, LCDC_LCDSADDR2, pa >> 1);
}
offsize = stride / sizeof (uint16_t) - (panel_width * depth / 16);
bus_space_write_4(iot, ioh, LCDC_LCDSADDR3,
(offsize << LCDSADDR3_OFFSIZE_SHIFT) |
(panel_width * depth / 16));
/* set byte- or halfword- swap based on the depth */
val = bus_space_read_4(iot, ioh, LCDC_LCDCON5);
val &= ~(LCDCON5_BSWP|LCDCON5_HWSWP);
switch(depth) {
case 2:
case 4:
case 8:
val |= LCDCON5_BSWP;
break;
case 16:
val |= LCDCON5_HWSWP;
break;
}
bus_space_write_4(iot, ioh, LCDC_LCDCON5, val);
init_palette(sc, scr);
#if 0
bus_space_write_4(iot, ioh, LCDC_TPAL, TPAL_TPALEN|
(0xff<<TPAL_BLUE_SHIFT));
#endif
/* Enable LCDC */
bus_space_write_4(iot, ioh, LCDC_LCDCON1, lcdcon1 | LCDCON1_ENVID);
sc->lcd_on = 1;
#ifdef LCD_DEBUG
dump_lcdcon(__func__, iot, ioh);
#endif
return 0;
}
void
s3c24x0_lcd_power(struct s3c24x0_lcd_softc *sc, int on)
{
bus_space_tag_t iot = sc->iot;
bus_space_handle_t ioh = sc->ioh;
uint32_t reg;
reg = bus_space_read_4(iot, ioh, LCDC_LCDCON5);
if (on)
reg |= LCDCON5_PWREN;
else
reg &= ~LCDCON5_PWREN;
bus_space_write_4(iot, ioh, LCDC_LCDCON5, reg);
}
struct s3c24x0_lcd_screen *
s3c24x0_lcd_new_screen(struct s3c24x0_lcd_softc *sc,
int virtual_width, int virtual_height, int depth)
{
struct s3c24x0_lcd_screen *scr = NULL;
bus_size_t size;
int error;
int busdma_flag = (cold ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
BUS_DMA_WRITE;
paddr_t align;
#if 0 /* Does this make any sense? */
#ifdef DIAGNOSTIC
if (size > 1 << 22) {
aprint_error_dev(sc->dev, "too big screen size\n");
return NULL;
}
#endif
#endif
switch (depth) {
case 1: case 2: case 4: case 8:
virtual_width = roundup(virtual_width, 16 / depth);
break;
case 16:
break;
case 12: case 24:
default:
aprint_error("%s: Unknown depth (%d)\n",
device_xname(sc->sc_dev), depth);
return NULL;
}
scr = kmem_zalloc(sizeof *scr, KM_SLEEP);
scr->nsegs = 0;
scr->depth = depth;
scr->stride = virtual_width * depth / 8;
scr->buf_size = size = scr->stride * virtual_height;
scr->buf_va = NULL;
/* calculate the alignment for LCD frame buffer.
the buffer can't across 4MB boundary */
align = 1 << 20;
while (align < size)
align <<= 1;
printf("%s: Allocating LCD frame buffer of size %ld\n",
device_xname(sc->sc_dev), size);
error = bus_dmamem_alloc(sc->dma_tag, size, align, 0,
scr->segs, 1, &(scr->nsegs), busdma_flag);
if (error || scr->nsegs != 1)
goto bad;
error = bus_dmamem_map(sc->dma_tag, scr->segs, scr->nsegs,
size, (void **)&(scr->buf_va), busdma_flag | BUS_DMA_COHERENT);
if (error)
goto bad;
memset (scr->buf_va, 0, scr->buf_size);
/* map memory for DMA */
if (bus_dmamap_create(sc->dma_tag, 1024*1024*2, 1,
1024*1024*2, 0, busdma_flag, &scr->dma))
goto bad;
error = bus_dmamap_load(sc->dma_tag, scr->dma,
scr->buf_va, size, NULL, busdma_flag);
if (error)
goto bad;
LIST_INSERT_HEAD(&(sc->screens), scr, link);
sc->n_screens++;
#ifdef LCD_DEBUG
draw_test_pattern(sc, scr);
dump_lcdcon(__func__, sc->iot, sc->ioh);
#endif
return scr;
bad:
if (scr) {
if (scr->buf_va)
bus_dmamem_unmap(sc->dma_tag, scr->buf_va, size);
if (scr->nsegs)
bus_dmamem_free(sc->dma_tag, scr->segs, scr->nsegs);
kmem_free(scr, sizeof(*scr));
}
return NULL;
}
#define _rgb(r,g,b) (((r)<<11) | ((g)<<5) | b)
#define rgb(r,g,b) _rgb((r)>>1,g,(b)>>1)
#define L 0x30 /* low intensity */
#define H 0x3f /* hight intensity */
static const uint16_t basic_color_map[] = {
rgb( 0, 0, 0), /* black */
rgb( L, 0, 0), /* red */
rgb( 0, L, 0), /* green */
rgb( L, L, 0), /* brown */
rgb( 0, 0, L), /* blue */
rgb( L, 0, L), /* magenta */
rgb( 0, L, L), /* cyan */
_rgb(0x1c,0x38,0x1c), /* white */
rgb( L, L, L), /* black */
rgb( H, 0, 0), /* red */
rgb( 0, H, 0), /* green */
rgb( H, H, 0), /* brown */
rgb( 0, 0, H), /* blue */
rgb( H, 0, H), /* magenta */
rgb( 0, H, H), /* cyan */
rgb( H, H, H), /* white */
};
#define COLORMAP_LEN (sizeof basic_color_map / sizeof basic_color_map[0])
#undef H
#undef L
static void
init_palette(struct s3c24x0_lcd_softc *sc, struct s3c24x0_lcd_screen *scr)
{
int depth = scr->depth;
bus_space_tag_t iot = sc->iot;
bus_space_handle_t ioh = sc->ioh;
int i;
i = 0;
switch(depth) {
default:
case 16: /* not using palette */
return;
case 8:
while (i < COLORMAP_LEN) {
bus_space_write_4(iot, ioh, LCDC_PALETTE + 4*i,
basic_color_map[i]);
++i;
}
break;
case 4:
case 2:
/* XXX */
break;
case 1:
bus_space_write_4(iot, ioh, LCDC_PALETTE + 4 * i,
basic_color_map[i]); /* black */
++i;
bus_space_write_4(iot, ioh, LCDC_PALETTE + 4 * i,
basic_color_map[7]); /* white */
break;
}
#ifdef DIAGNOSTIC
/* Fill unused entries */
for ( ; i < 256; ++i )
bus_space_write_4(iot, ioh, LCDC_PALETTE + 4 * i,
basic_color_map[1]); /* red */
#endif
}
#if NWSDISPLAY > 0
static void
s3c24x0_lcd_stop_dma(struct s3c24x0_lcd_softc *sc)
{
/* Stop LCD output */
bus_space_write_4(sc->iot, sc->ioh, LCDC_LCDCON1,
~LCDCON1_ENVID &
bus_space_read_4(sc->iot, sc->ioh, LCDC_LCDCON1));
sc->lcd_on = 0;
}
int
s3c24x0_lcd_show_screen(void *v, void *cookie, int waitok,
void (*cb)(void *, int, int), void *cbarg)
{
struct s3c24x0_lcd_softc *sc = v;
struct s3c24x0_lcd_screen *scr = cookie, *old;
/* XXX: make sure the clock is provided for LCD controller */
old = sc->active;
if (old == scr && sc->lcd_on)
return 0;
if (old)
s3c24x0_lcd_stop_dma(sc);
s3c24x0_lcd_start_dma(sc, scr);
sc->active = scr;
s3c24x0_lcd_power(sc, 1);
/* XXX: callback */
return 0;
}
int
s3c24x0_lcd_alloc_screen(void *v, const struct wsscreen_descr *_type,
void **cookiep, int *curxp, int *curyp, long *attrp)
{
struct s3c24x0_lcd_softc *sc = v;
struct s3c24x0_lcd_screen *scr;
const struct s3c24x0_wsscreen_descr *type =
(const struct s3c24x0_wsscreen_descr *)_type;
int width, height;
width = type->c.ncols * type->c.fontwidth;
height = type->c.nrows * type->c.fontwidth;
if (width < sc->panel_info->panel_width)
width = sc->panel_info->panel_width;
if (height < sc->panel_info->panel_height)
height = sc->panel_info->panel_height;
scr = s3c24x0_lcd_new_screen(sc, width, height, type->depth);
if (scr == NULL)
return -1;
/*
* initialize raster operation for this screen.
*/
scr->rinfo.ri_flg = 0;
scr->rinfo.ri_depth = type->depth;
scr->rinfo.ri_bits = scr->buf_va;
scr->rinfo.ri_width = width;
scr->rinfo.ri_height = height;
scr->rinfo.ri_stride = scr->stride;
if (type->c.fontwidth || type->c.fontheight) {
/*
* find a font with specified size
*/
int cookie;
wsfont_init();
cookie = wsfont_find(NULL, type->c.fontwidth,
type->c.fontheight, 0, WSDISPLAY_FONTORDER_L2R,
WSDISPLAY_FONTORDER_L2R, WSFONT_FIND_BITMAP);
if (cookie > 0) {
if (wsfont_lock(cookie, &scr->rinfo.ri_font))
scr->rinfo.ri_wsfcookie = cookie;
}
}
rasops_init(&scr->rinfo, type->c.nrows, type->c.ncols);
(* scr->rinfo.ri_ops.allocattr)(&scr->rinfo, 0, 0, 0, attrp);
if (type->c.nrows != scr->rinfo.ri_rows ||
type->c.ncols != scr->rinfo.ri_cols) {
aprint_error("%s: can't allocate a screen with requested size:"
"%d x %d -> %d x %d\n",
device_xname(sc->sc_dev),
type->c.ncols, type->c.nrows,
scr->rinfo.ri_cols, scr->rinfo.ri_rows);
}
*cookiep = scr;
*curxp = 0;
*curyp = 0;
return 0;
}
void
s3c24x0_lcd_free_screen(void *v, void *cookie)
{
struct s3c24x0_lcd_softc *sc = v;
struct s3c24x0_lcd_screen *scr = cookie;
LIST_REMOVE(scr, link);
sc->n_screens--;
if (scr == sc->active) {
sc->active = NULL;
/* XXX: We need a good procedure to shutdown the LCD. */
s3c24x0_lcd_stop_dma(sc);
s3c24x0_lcd_power(sc, 0);
}
if (scr->buf_va)
bus_dmamem_unmap(sc->dma_tag, scr->buf_va, scr->map_size);
if (scr->nsegs > 0)
bus_dmamem_free(sc->dma_tag, scr->segs, scr->nsegs);
kmem_free(scr, sizeof(*scr));
}
int
s3c24x0_lcd_ioctl(void *v, void *vs, u_long cmd, void *data, int flag,
struct lwp *l)
{
struct s3c24x0_lcd_softc *sc = v;
struct wsdisplay_fbinfo *wsdisp_info;
struct s3c24x0_lcd_screen *scr;
switch (cmd) {
case WSDISPLAYIO_GTYPE:
*(u_int *)data = WSDISPLAY_TYPE_UNKNOWN; /* XXX */
return 0;
case WSDISPLAYIO_GINFO:
wsdisp_info = (struct wsdisplay_fbinfo *)data;
wsdisp_info->height = sc->panel_info->panel_height;
wsdisp_info->width = sc->panel_info->panel_width;
wsdisp_info->depth = 16; /* XXX */
wsdisp_info->cmsize = 0;
return 0;
case WSDISPLAYIO_LINEBYTES:
*(u_int *)data = sc->panel_info->panel_width * (16/8);
return 0;
case WSDISPLAYIO_GETCMAP:
case WSDISPLAYIO_PUTCMAP:
return EPASSTHROUGH; /* XXX Colormap */
case WSDISPLAYIO_SVIDEO:
if (*(int *)data == WSDISPLAYIO_VIDEO_ON) {
scr = sc->active;
if (scr == NULL)
scr = LIST_FIRST(&sc->screens);
if (scr == NULL)
return ENXIO;
s3c24x0_lcd_show_screen(sc, scr, 1, NULL, NULL);
}
else {
s3c24x0_lcd_stop_dma(sc);
s3c24x0_lcd_power(sc, 0);
}
return 0;
case WSDISPLAYIO_GVIDEO:
*(u_int *)data = sc->lcd_on;
return 0;
/* XXX: Hack to support /usr/sbin/tpctl */
case HPCFBIO_GCONF:
{
struct hpcfb_fbconf *fbconf = (struct hpcfb_fbconf*)data;
if (fbconf->hf_conf_index != 0 &&
fbconf->hf_conf_index != HPCFB_CURRENT_CONFIG)
return EINVAL;
fbconf->hf_nconfs = 1;
fbconf->hf_class = HPCFB_CLASS_RGBCOLOR;
strncpy(fbconf->hf_name, "S3C24X0 LCD", HPCFB_MAXNAMELEN);
strncpy(fbconf->hf_conf_name, "default", HPCFB_MAXNAMELEN);
fbconf->hf_height = sc->panel_info->panel_height;
fbconf->hf_width = sc->panel_info->panel_width;
fbconf->hf_baseaddr = 0x0;
fbconf->hf_offset = 0x0;
fbconf->hf_bytes_per_line = sc->panel_info->panel_width * (16/8);
fbconf->hf_nplanes = 0;
fbconf->hf_bytes_per_plane = 0;
fbconf->hf_pack_width = 16;
fbconf->hf_pixels_per_pack = 1;
fbconf->hf_pixel_width = 16;
fbconf->hf_access_flags = 0;
fbconf->hf_order_flags = HPCFB_REVORDER_WORD;
fbconf->hf_reg_offset = 0x0;
fbconf->hf_u.hf_rgb.hf_red_width = 5;
fbconf->hf_u.hf_rgb.hf_red_shift = 11;
fbconf->hf_u.hf_rgb.hf_green_width = 6;
fbconf->hf_u.hf_rgb.hf_green_shift = 5;
fbconf->hf_u.hf_rgb.hf_blue_width = 5;
fbconf->hf_u.hf_rgb.hf_blue_shift = 0;
fbconf->hf_ext_size = 0;
fbconf->hf_ext_data = NULL;
return 0;
}
case WSDISPLAYIO_GCURPOS:
case WSDISPLAYIO_SCURPOS:
case WSDISPLAYIO_GCURMAX:
case WSDISPLAYIO_GCURSOR:
case WSDISPLAYIO_SCURSOR:
return EPASSTHROUGH; /* XXX */
}
return EPASSTHROUGH;
}
paddr_t
s3c24x0_lcd_mmap(void *v, void *vs, off_t offset, int prot)
{
struct s3c24x0_lcd_softc *sc = v;
struct s3c24x0_lcd_screen *screen = sc->active; /* ??? */
paddr_t ret;
/* printf("s3c24x0_lcd_mmap: screen: %p, offset: %ld\n", screen, (long)offset);*/
if (screen == NULL)
return -1;
ret = bus_dmamem_mmap(sc->dma_tag, screen->segs, screen->nsegs,
offset, prot, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
/* printf("s3c24x0_lcd_mmap: ret: %lx\n", ret);*/
return ret;
}
static void
s3c24x0_lcd_cursor(void *cookie, int on, int row, int col)
{
struct s3c24x0_lcd_screen *scr = cookie;
(* scr->rinfo.ri_ops.cursor)(&scr->rinfo, on, row, col);
}
static int
s3c24x0_lcd_mapchar(void *cookie, int c, unsigned int *cp)
{
struct s3c24x0_lcd_screen *scr = cookie;
return (* scr->rinfo.ri_ops.mapchar)(&scr->rinfo, c, cp);
}
static void
s3c24x0_lcd_putchar(void *cookie, int row, int col, u_int uc, long attr)
{
struct s3c24x0_lcd_screen *scr = cookie;
(* scr->rinfo.ri_ops.putchar)(&scr->rinfo,
row, col, uc, attr);
}
static void
s3c24x0_lcd_copycols(void *cookie, int row, int src, int dst, int num)
{
struct s3c24x0_lcd_screen *scr = cookie;
(* scr->rinfo.ri_ops.copycols)(&scr->rinfo,
row, src, dst, num);
}
static void
s3c24x0_lcd_erasecols(void *cookie, int row, int col, int num, long attr)
{
struct s3c24x0_lcd_screen *scr = cookie;
(* scr->rinfo.ri_ops.erasecols)(&scr->rinfo,
row, col, num, attr);
}
static void
s3c24x0_lcd_copyrows(void *cookie, int src, int dst, int num)
{
struct s3c24x0_lcd_screen *scr = cookie;
(* scr->rinfo.ri_ops.copyrows)(&scr->rinfo,
src, dst, num);
}
static void
s3c24x0_lcd_eraserows(void *cookie, int row, int num, long attr)
{
struct s3c24x0_lcd_screen *scr = cookie;
(* scr->rinfo.ri_ops.eraserows)(&scr->rinfo,
row, num, attr);
}
static int
s3c24x0_lcd_alloc_attr(void *cookie, int fg, int bg, int flg, long *attr)
{
struct s3c24x0_lcd_screen *scr = cookie;
return (* scr->rinfo.ri_ops.allocattr)(&scr->rinfo,
fg, bg, flg, attr);
}
const struct wsdisplay_emulops s3c24x0_lcd_emulops = {
s3c24x0_lcd_cursor,
s3c24x0_lcd_mapchar,
s3c24x0_lcd_putchar,
s3c24x0_lcd_copycols,
s3c24x0_lcd_erasecols,
s3c24x0_lcd_copyrows,
s3c24x0_lcd_eraserows,
s3c24x0_lcd_alloc_attr
};
#endif /* NWSDISPLAY > 0 */