NetBSD/sbin/atactl/atactl.c

1967 lines
49 KiB
C

/* $NetBSD: atactl.c,v 1.85 2020/12/20 10:19:30 jmcneill Exp $ */
/*-
* Copyright (c) 1998, 2019 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Ken Hornstein and Matthew R. Green.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* atactl(8) - a program to control ATA devices.
*/
#include <sys/cdefs.h>
#ifndef lint
__RCSID("$NetBSD: atactl.c,v 1.85 2020/12/20 10:19:30 jmcneill Exp $");
#endif
#include <sys/param.h>
#include <sys/ioctl.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <util.h>
#include <dev/ata/atareg.h>
#include <sys/ataio.h>
#include <dev/scsipi/scsi_spc.h>
#include <sys/scsiio.h>
struct ata_smart_error {
struct {
uint8_t device_control;
uint8_t features;
uint8_t sector_count;
uint8_t sector_number;
uint8_t cylinder_low;
uint8_t cylinder_high;
uint8_t device_head;
uint8_t command;
uint8_t timestamp[4];
} command[5];
struct {
uint8_t reserved;
uint8_t error;
uint8_t sector_count;
uint8_t sector_number;
uint8_t cylinder_low;
uint8_t cylinder_high;
uint8_t device_head;
uint8_t status;
uint8_t extended_error[19];
uint8_t state;
uint8_t lifetime[2];
} error_data;
} __packed;
struct ata_smart_errorlog {
uint8_t data_structure_revision;
uint8_t mostrecenterror;
struct ata_smart_error log_entries[5];
uint16_t device_error_count;
uint8_t reserved[57];
uint8_t checksum;
} __packed;
#define SCSI_ATA_PASS_THROUGH_16 0x85
struct scsi_ata_pass_through_16 {
uint8_t opcode;
uint8_t byte2;
#define SATL_NODATA 0x06
#define SATL_PIO_IN 0x08
#define SATL_PIO_OUT 0x0a
#define SATL_EXTEND 0x01
uint8_t byte3;
#define SATL_CKCOND 0x20
#define SATL_READ 0x08
#define SATL_BLOCKS 0x04
#define SATL_LEN(x) ((x) & 0x03)
uint8_t features[2];
uint8_t sector_count[2];
uint8_t lba[6];
uint8_t device;
uint8_t ata_cmd;
uint8_t control;
} __packed;
#define SCSI_ATA_PASS_THROUGH_12 0xa1
struct scsi_ata_pass_through_12 {
uint8_t opcode;
uint8_t byte2;
uint8_t byte3;
uint8_t features[1];
uint8_t sector_count[1];
uint8_t lba[3];
uint8_t device;
uint8_t ata_cmd;
uint8_t reserved;
uint8_t control;
} __packed;
struct scsi_ata_return_descriptor {
uint8_t descr;
#define SCSI_ATA_RETURN_DESCRIPTOR 9
uint8_t additional_length;
uint8_t extend;
uint8_t error;
uint8_t sector_count[2];
uint8_t lba[6];
uint8_t device;
uint8_t status;
} __packed;
struct command {
const char *cmd_name;
const char *arg_names;
void (*cmd_func)(int, char *[]);
};
struct bitinfo {
u_int bitmask;
const char *string;
};
__dead static void usage(void);
static void ata_command(struct atareq *);
static int satl_command(struct atareq *, int);
static const uint8_t *satl_return_desc(const uint8_t *, size_t, uint8_t);
static void print_bitinfo(const char *, const char *, u_int,
const struct bitinfo *);
static void print_bitinfo2(const char *, const char *, u_int, u_int,
const struct bitinfo *);
static void print_smart_status(void *, void *, const char *);
static void print_error_entry(int, const struct ata_smart_error *);
static void print_selftest_entry(int, const struct ata_smart_selftest *);
static void print_error(const void *);
static void print_selftest(const void *);
static void fillataparams(void);
static int is_smart(void);
static int fd; /* file descriptor for device */
static int use_satl; /* tunnel through SATL */
static const char *dvname; /* device name */
static char dvname_store[MAXPATHLEN]; /* for opendisk(3) */
static const char *cmdname; /* command user issued */
static const struct ataparams *inqbuf; /* inquiry buffer */
static char model[sizeof(inqbuf->atap_model)+1];
static char revision[sizeof(inqbuf->atap_revision)+1];
static char serial[sizeof(inqbuf->atap_serial)+1];
static void device_identify(int, char *[]);
static void device_setidle(int, char *[]);
static void device_idle(int, char *[]);
static void device_apm(int, char *[]);
static void device_checkpower(int, char *[]);
static void device_smart(int, char *[]);
static void device_security(int, char *[]);
static void device_smart_temp(const struct ata_smart_attr *, uint64_t);
static const struct command device_commands[] = {
{ "identify", "", device_identify },
{ "setidle", "idle-timer", device_setidle },
{ "apm", "disable|set #", device_apm },
{ "setstandby", "standby-timer", device_setidle },
{ "idle", "", device_idle },
{ "standby", "", device_idle },
{ "sleep", "", device_idle },
{ "checkpower", "", device_checkpower },
{ "smart",
"enable|disable|status [vendor]|offline #|error-log|selftest-log",
device_smart },
{ "security",
"status|freeze|[setpass|unlock|disable|erase] [user|master]",
device_security },
{ NULL, NULL, NULL },
};
static void bus_reset(int, char *[]);
static const struct command bus_commands[] = {
{ "reset", "", bus_reset },
{ NULL, NULL, NULL },
};
/*
* Tables containing bitmasks used for error reporting and
* device identification.
*/
static const struct bitinfo ata_caps[] = {
{ WDC_CAP_DMA, "DMA" },
{ WDC_CAP_LBA, "LBA" },
{ ATA_CAP_STBY, "ATA standby timer values" },
{ WDC_CAP_IORDY, "IORDY operation" },
{ WDC_CAP_IORDY_DSBL, "IORDY disabling" },
{ 0, NULL },
};
static const struct bitinfo ata_vers[] = {
{ WDC_VER_ATA1, "ATA-1" },
{ WDC_VER_ATA2, "ATA-2" },
{ WDC_VER_ATA3, "ATA-3" },
{ WDC_VER_ATA4, "ATA-4" },
{ WDC_VER_ATA5, "ATA-5" },
{ WDC_VER_ATA6, "ATA-6" },
{ WDC_VER_ATA7, "ATA-7" },
{ WDC_VER_ATA8, "ATA-8" },
{ 0, NULL },
};
static const struct bitinfo ata_cmd_set1[] = {
{ WDC_CMD1_NOP, "NOP command" },
{ WDC_CMD1_RB, "READ BUFFER command" },
{ WDC_CMD1_WB, "WRITE BUFFER command" },
{ WDC_CMD1_HPA, "Host Protected Area feature set" },
{ WDC_CMD1_DVRST, "DEVICE RESET command" },
{ WDC_CMD1_SRV, "SERVICE interrupt" },
{ WDC_CMD1_RLSE, "Release interrupt" },
{ WDC_CMD1_AHEAD, "Look-ahead" },
{ WDC_CMD1_CACHE, "Write cache" },
{ WDC_CMD1_PKT, "PACKET command feature set" },
{ WDC_CMD1_PM, "Power Management feature set" },
{ WDC_CMD1_REMOV, "Removable Media feature set" },
{ WDC_CMD1_SEC, "Security Mode feature set" },
{ WDC_CMD1_SMART, "SMART feature set" },
{ 0, NULL },
};
static const struct bitinfo ata_cmd_set2[] = {
{ ATA_CMD2_FCE, "FLUSH CACHE EXT command" },
{ WDC_CMD2_FC, "FLUSH CACHE command" },
{ WDC_CMD2_DCO, "Device Configuration Overlay feature set" },
{ ATA_CMD2_LBA48, "48-bit Address feature set" },
{ WDC_CMD2_AAM, "Automatic Acoustic Management feature set" },
{ WDC_CMD2_SM, "SET MAX security extension" },
{ WDC_CMD2_SFREQ, "SET FEATURES required to spin-up after power-up" },
{ WDC_CMD2_PUIS, "Power-Up In Standby feature set" },
{ WDC_CMD2_RMSN, "Removable Media Status Notification feature set" },
{ ATA_CMD2_APM, "Advanced Power Management feature set" },
{ ATA_CMD2_CFA, "CFA feature set" },
{ ATA_CMD2_RWQ, "READ/WRITE DMA QUEUED commands" },
{ WDC_CMD2_DM, "DOWNLOAD MICROCODE command" },
{ 0, NULL },
};
static const struct bitinfo ata_cmd_ext[] = {
{ ATA_CMDE_TLCONT, "Time-limited R/W feature set R/W Continuous mode" },
{ ATA_CMDE_TL, "Time-limited Read/Write" },
{ ATA_CMDE_URGW, "URG bit for WRITE STREAM DMA/PIO" },
{ ATA_CMDE_URGR, "URG bit for READ STREAM DMA/PIO" },
{ ATA_CMDE_WWN, "World Wide Name" },
{ ATA_CMDE_WQFE, "WRITE DMA QUEUED FUA EXT command" },
{ ATA_CMDE_WFE, "WRITE DMA/MULTIPLE FUA EXT commands" },
{ ATA_CMDE_GPL, "General Purpose Logging feature set" },
{ ATA_CMDE_STREAM, "Streaming feature set" },
{ ATA_CMDE_MCPTC, "Media Card Pass Through Command feature set" },
{ ATA_CMDE_MS, "Media serial number" },
{ ATA_CMDE_SST, "SMART self-test" },
{ ATA_CMDE_SEL, "SMART error logging" },
{ 0, NULL },
};
static const struct bitinfo ata_sata_caps[] = {
{ SATA_SIGNAL_GEN1, "1.5Gb/s signaling" },
{ SATA_SIGNAL_GEN2, "3.0Gb/s signaling" },
{ SATA_SIGNAL_GEN3, "6.0Gb/s signaling" },
{ SATA_NATIVE_CMDQ, "Native Command Queuing" },
{ SATA_HOST_PWR_MGMT, "Host-Initiated Interface Power Management" },
{ SATA_PHY_EVNT_CNT, "PHY Event Counters" },
{ 0, NULL },
};
static const struct bitinfo ata_sata_feat[] = {
{ SATA_NONZERO_OFFSETS, "Non-zero Offset DMA" },
{ SATA_DMA_SETUP_AUTO, "DMA Setup Auto Activate" },
{ SATA_DRIVE_PWR_MGMT, "Device-Initiated Interface Power Management" },
{ SATA_IN_ORDER_DATA, "In-order Data Delivery" },
{ SATA_SW_STTNGS_PRS, "Software Settings Preservation" },
{ 0, NULL },
};
/*
* Global SMART attribute table. All known attributes should be defined
* here with overrides outside of the standard in a vendor specific table.
*
* XXX Some of these should be duplicated to vendor-specific tables now that
* XXX they exist and have non generic names.
*/
static const struct attr_table {
const unsigned id;
const char *name;
void (*special)(const struct ata_smart_attr *, uint64_t);
} smart_attrs[] = {
{ 1, "Raw read error rate", NULL },
{ 2, "Throughput performance", NULL },
{ 3, "Spin-up time", NULL },
{ 4, "Start/stop count", NULL },
{ 5, "Reallocated sector count", NULL },
{ 6, "Read channel margin", NULL },
{ 7, "Seek error rate", NULL },
{ 8, "Seek time performance", NULL },
{ 9, "Power-on hours count", NULL },
{ 10, "Spin retry count", NULL },
{ 11, "Calibration retry count", NULL },
{ 12, "Device power cycle count", NULL },
{ 13, "Soft read error rate", NULL },
{ 100, "Erase/Program Cycles", NULL },
{ 103, "Translation Table Rebuild", NULL },
{ 170, "Reserved Block Count", NULL },
{ 171, "Program Fail Count", NULL },
{ 172, "Erase Fail Count", NULL },
{ 173, "Wear Leveller Worst Case Erase Count", NULL },
{ 174, "Unexpected Power Loss Count", NULL },
{ 175, "Program Fail Count", NULL },
{ 176, "Erase Fail Count", NULL },
{ 177, "Wear Leveling Count", NULL },
{ 178, "Used Reserved Block Count", NULL },
{ 179, "Used Reserved Block Count", NULL },
{ 180, "Unused Reserved Block Count", NULL },
{ 181, "Program Fail Count", NULL },
{ 182, "Erase Fail Count", NULL },
{ 183, "Runtime Bad Block", NULL },
{ 184, "End-to-end error", NULL },
{ 185, "Head Stability", NULL },
{ 186, "Induced Op-Vibration Detection", NULL },
{ 187, "Reported Uncorrectable Errors", NULL },
{ 188, "Command Timeout", NULL },
{ 189, "High Fly Writes", NULL },
{ 190, "Airflow Temperature", device_smart_temp },
{ 191, "G-sense error rate", NULL },
{ 192, "Power-off retract count", NULL },
{ 193, "Load cycle count", NULL },
{ 194, "Temperature", device_smart_temp},
{ 195, "Hardware ECC Recovered", NULL },
{ 196, "Reallocated event count", NULL },
{ 197, "Current pending sector", NULL },
{ 198, "Offline uncorrectable", NULL },
{ 199, "Ultra DMA CRC error count", NULL },
{ 200, "Write error rate", NULL },
{ 201, "Soft read error rate", NULL },
{ 202, "Data address mark errors", NULL },
{ 203, "Run out cancel", NULL },
{ 204, "Soft ECC correction", NULL },
{ 205, "Thermal asperity check", NULL },
{ 206, "Flying height", NULL },
{ 207, "Spin high current", NULL },
{ 208, "Spin buzz", NULL },
{ 209, "Offline seek performance", NULL },
{ 210, "Successful RAIN Recovery Count", NULL },
{ 220, "Disk shift", NULL },
{ 221, "G-Sense error rate", NULL },
{ 222, "Loaded hours", NULL },
{ 223, "Load/unload retry count", NULL },
{ 224, "Load friction", NULL },
{ 225, "Load/unload cycle count", NULL },
{ 226, "Load-in time", NULL },
{ 227, "Torque amplification count", NULL },
{ 228, "Power-off retract count", NULL },
{ 230, "GMR head amplitude", NULL },
{ 231, "Temperature", device_smart_temp },
{ 232, "Available reserved space", NULL },
{ 233, "Media wearout indicator", NULL },
{ 240, "Head flying hours", NULL },
{ 241, "Total LBAs Written", NULL },
{ 242, "Total LBAs Read", NULL },
{ 246, "Total Host Sector Writes", NULL },
{ 247, "Host Program NAND Pages Count", NULL },
{ 248, "FTL Program Pages Count", NULL },
{ 249, "Total Raw NAND Writes (1GiB units)", NULL },
{ 250, "Read error retry rate", NULL },
{ 254, "Free Fall Sensor", NULL },
{ 0, "Unknown", NULL },
};
/*
* Micron specific SMART attributes published by Micron in:
* "TN-FD-22: Client SATA SSD SMART Attribute Reference"
*/
static const struct attr_table micron_smart_names[] = {
{ 5, "Reallocated NAND block count", NULL },
{ 173, "Average block erase count", NULL },
{ 181, "Non 4K aligned access count", NULL },
{ 183, "SATA Downshift Error Count", NULL },
{ 184, "Error correction count", NULL },
{ 189, "Factory bad block count", NULL },
{ 197, "Current pending ECC count", NULL },
{ 198, "SMART offline scan uncorrectable error count", NULL },
{ 202, "Percent lifetime used", NULL },
{ 206, "Write error rate", NULL },
{ 247, "Number of NAND pages of data written by the host", NULL },
{ 248, "Number of NAND pages written by the FTL", NULL },
{ 0, "Unknown", NULL },
};
/*
* Intel specific SMART attributes. Fill me in with more.
*/
static const struct attr_table intel_smart_names[] = {
{ 183, "SATA Downshift Error Count", NULL },
};
/*
* Samsung specific SMART attributes. Fill me in with more.
*/
static const struct attr_table samsung_smart_names[] = {
{ 235, "POR Recovery Count", NULL },
{ 243, "SATA Downshift Count", NULL },
{ 244, "Thermal Throttle Status", NULL },
{ 245, "Timed Workload Media Wear", NULL },
{ 251, "NAND Writes", NULL },
};
/*
* Vendor-specific SMART attribute table. Can be used to override
* a particular attribute name and special printer function, with the
* default is the main table.
*/
static const struct vendor_name_table {
const char *name;
const struct attr_table *table;
} vendor_smart_names[] = {
{ "Micron", micron_smart_names },
{ "Intel", intel_smart_names },
{ "Samsung", samsung_smart_names },
};
/*
* Global model -> vendor table. Extend this to regexp.
*/
static const struct model_to_vendor_table {
const char *model;
const char *vendor;
} model_to_vendor[] = {
{ "Crucial", "Micron" },
{ "Micron", "Micron" },
{ "C300-CT", "Micron" },
{ "C400-MT", "Micron" },
{ "M4-CT", "Micron" },
{ "M500", "Micron" },
{ "M510", "Micron" },
{ "M550", "Micron" },
{ "MTFDDA", "Micron" },
{ "EEFDDA", "Micron" },
{ "INTEL", "Intel" },
{ "SAMSUNG", "Samsung" },
};
static const struct bitinfo ata_sec_st[] = {
{ WDC_SEC_SUPP, "supported" },
{ WDC_SEC_EN, "enabled" },
{ WDC_SEC_LOCKED, "locked" },
{ WDC_SEC_FROZEN, "frozen" },
{ WDC_SEC_EXP, "expired" },
{ WDC_SEC_ESE_SUPP, "enhanced erase support" },
{ WDC_SEC_LEV_MAX, "maximum level" },
{ 0, NULL },
};
int
main(int argc, char *argv[])
{
int i;
const struct command *commands = NULL;
/* Must have at least: device command */
if (argc < 3)
usage();
/* Skip program name, get and skip device name and command. */
dvname = argv[1];
cmdname = argv[2];
argv += 3;
argc -= 3;
/*
* Open the device
*/
fd = opendisk(dvname, O_RDWR, dvname_store, sizeof(dvname_store), 0);
if (fd == -1) {
if (errno == ENOENT) {
/*
* Device doesn't exist. Probably trying to open
* a device which doesn't use disk semantics for
* device name. Try again, specifying "cooked",
* which leaves off the "r" in front of the device's
* name.
*/
fd = opendisk(dvname, O_RDWR, dvname_store,
sizeof(dvname_store), 1);
if (fd == -1)
err(1, "%s", dvname);
} else
err(1, "%s", dvname);
}
/*
* Point the dvname at the actual device name that opendisk() opened.
*/
dvname = dvname_store;
/* Look up and call the command. */
for (i = 0; device_commands[i].cmd_name != NULL; i++) {
if (strcmp(cmdname, device_commands[i].cmd_name) == 0) {
commands = &device_commands[i];
break;
}
}
if (commands == NULL) {
for (i = 0; bus_commands[i].cmd_name != NULL; i++) {
if (strcmp(cmdname, bus_commands[i].cmd_name) == 0) {
commands = &bus_commands[i];
break;
}
}
}
if (commands == NULL)
errx(1, "unknown command: %s", cmdname);
(*commands->cmd_func)(argc, argv);
exit(0);
}
static void
usage(void)
{
int i;
fprintf(stderr, "usage: %s device command [arg [...]]\n",
getprogname());
fprintf(stderr, " Available device commands:\n");
for (i=0; device_commands[i].cmd_name != NULL; i++)
fprintf(stderr, "\t%s %s\n", device_commands[i].cmd_name,
device_commands[i].arg_names);
fprintf(stderr, " Available bus commands:\n");
for (i=0; bus_commands[i].cmd_name != NULL; i++)
fprintf(stderr, "\t%s %s\n", bus_commands[i].cmd_name,
bus_commands[i].arg_names);
exit(1);
}
/*
* Wrapper that calls ATAIOCCOMMAND and checks for errors
*/
static void
ata_command(struct atareq *req)
{
int error;
switch (use_satl) {
case 0:
error = ioctl(fd, ATAIOCCOMMAND, req);
if (error == 0)
break;
if (errno != ENOTTY)
err(1, "ATAIOCCOMMAND failed");
use_satl = 1;
/* FALLTHROUGH */
case 1:
error = satl_command(req, 16);
if (error == 0)
return;
use_satl = 2;
/* FALLTHROUGH */
case 2:
(void) satl_command(req, 12);
return;
}
switch (req->retsts) {
case ATACMD_OK:
return;
case ATACMD_TIMEOUT:
fprintf(stderr, "ATA command timed out\n");
exit(1);
case ATACMD_DF:
fprintf(stderr, "ATA device returned a Device Fault\n");
exit(1);
case ATACMD_ERROR:
if (req->error & WDCE_ABRT)
fprintf(stderr, "ATA device returned Aborted "
"Command\n");
else
fprintf(stderr, "ATA device returned error register "
"%0x\n", req->error);
exit(1);
default:
fprintf(stderr, "ATAIOCCOMMAND returned unknown result code "
"%d\n", req->retsts);
exit(1);
}
}
/*
* Wrapper that calls SCIOCCOMMAND for a tunneled ATA command
*/
static int
satl_command(struct atareq *req, int cmdlen)
{
scsireq_t sreq;
int error;
union {
struct scsi_ata_pass_through_12 cmd12;
struct scsi_ata_pass_through_16 cmd16;
} c;
uint8_t b2, b3;
const uint8_t *desc;
b2 = SATL_NODATA;
if (req->datalen > 0) {
if (req->flags & ATACMD_READ)
b2 = SATL_PIO_IN;
else
b2 = SATL_PIO_OUT;
}
b3 = SATL_BLOCKS;
if (req->datalen > 0) {
b3 |= 2; /* sector count holds count */
} else {
b3 |= SATL_CKCOND;
}
if (req->datalen == 0 || req->flags & ATACMD_READ)
b3 |= SATL_READ;
switch (cmdlen) {
case 16:
c.cmd16.opcode = SCSI_ATA_PASS_THROUGH_16;
c.cmd16.byte2 = b2;
c.cmd16.byte3 = b3;
c.cmd16.features[0] = 0;
c.cmd16.features[1] = req->features;
c.cmd16.sector_count[0] = 0;
c.cmd16.sector_count[1] = req->sec_count;
c.cmd16.lba[0] = 0;
c.cmd16.lba[1] = req->sec_num;
c.cmd16.lba[2] = 0;
c.cmd16.lba[3] = req->cylinder;
c.cmd16.lba[4] = 0;
c.cmd16.lba[5] = req->cylinder >> 8;
c.cmd16.device = 0;
c.cmd16.ata_cmd = req->command;
c.cmd16.control = 0;
break;
case 12:
c.cmd12.opcode = SCSI_ATA_PASS_THROUGH_12;
c.cmd12.byte2 = b2;
c.cmd12.byte3 = b3;
c.cmd12.features[0] = req->features;
c.cmd12.sector_count[0] = req->sec_count;
c.cmd12.lba[0] = req->sec_num;
c.cmd12.lba[1] = req->cylinder;
c.cmd12.lba[2] = req->cylinder >> 8;
c.cmd12.device = 0;
c.cmd12.reserved = 0;
c.cmd12.ata_cmd = req->command;
c.cmd12.control = 0;
break;
default:
fprintf(stderr, "ATA command with bad length\n");
exit(1);
}
memset(&sreq, 0, sizeof(sreq));
memcpy(sreq.cmd, &c, cmdlen);
sreq.cmdlen = cmdlen;
sreq.databuf = req->databuf;
sreq.datalen = req->datalen;
sreq.senselen = sizeof(sreq.sense);
sreq.timeout = req->timeout;
if (sreq.datalen > 0) {
if (req->flags & ATACMD_READ)
sreq.flags |= SCCMD_READ;
if (req->flags & ATACMD_WRITE)
sreq.flags |= SCCMD_WRITE;
}
error = ioctl(fd, SCIOCCOMMAND, &sreq);
if (error == -1)
err(1, "SCIOCCOMMAND failed");
req->datalen = sreq.datalen_used;
req->retsts = ATACMD_OK;
req->error = 0;
switch (sreq.retsts) {
case SCCMD_OK:
return 0;
case SCCMD_TIMEOUT:
fprintf(stderr, "SATL command timed out\n");
exit(1);
case SCCMD_BUSY:
fprintf(stderr, "SATL command returned busy\n");
exit(1);
case SCCMD_SENSE:
desc = NULL;
switch (SSD_RCODE(sreq.sense[0])) {
case 0x00:
return 0;
case 0x70:
if (sreq.sense[2] == SKEY_NO_SENSE)
return 0;
if (sreq.sense[2] == SKEY_ILLEGAL_REQUEST)
return 1;
break;
case 0x72:
case 0x73:
desc = satl_return_desc(sreq.sense, sreq.senselen_used,
SCSI_ATA_RETURN_DESCRIPTOR);
break;
default:
break;
}
if (desc && desc[1] >= 12) {
req->sec_count = desc[5];
req->sec_num = desc[7];
req->head = (desc[12] & 0xf0) |
((desc[7] >> 24) & 0x0f);
req->cylinder = desc[11] << 8 | desc[9];
req->retsts = desc[13];
req->error = desc[3];
return 0;
}
fprintf(stderr, "SATL command error: rcode %02x key %u\n",
SSD_RCODE(sreq.sense[0]),
SSD_SENSE_KEY(sreq.sense[2]));
if (desc) {
int i, n;
n = desc[1]+2;
printf("ATA Return Descriptor:");
for (i=0; i<n; ++i)
printf(" %02x",desc[i]);
printf("\n");
}
exit(1);
default:
fprintf(stderr, "SCSIIOCCOMMAND returned unknown result code "
"%d\n", sreq.retsts);
exit(1);
}
}
static const uint8_t *
satl_return_desc(const uint8_t *sense, size_t len, uint8_t type)
{
const uint8_t *p, *endp;
size_t l, extra;
if (len < 8)
return NULL;
extra = sense[7];
len -= 8;
if (extra < len)
len = extra;
if (len < 2)
return NULL;
switch (sense[0]) {
case 0x72:
case 0x73:
p = &sense[8];
endp = &p[len-1];
while (p < endp) {
if (p[0] == type)
return p;
l = p[1];
p += l + 2;
}
break;
}
return NULL;
}
/*
* Print out strings associated with particular bitmasks
*/
static void
print_bitinfo(const char *bf, const char *af, u_int bits,
const struct bitinfo *binfo)
{
for (; binfo->bitmask != 0; binfo++)
if (bits & binfo->bitmask)
printf("%s%s%s", bf, binfo->string, af);
}
static void
print_bitinfo2(const char *bf, const char *af, u_int bits, u_int enables,
const struct bitinfo *binfo)
{
for (; binfo->bitmask != 0; binfo++)
if (bits & binfo->bitmask)
printf("%s%s (%s)%s", bf, binfo->string,
(enables & binfo->bitmask) ? "enabled" : "disabled",
af);
}
/*
* Try to print SMART temperature field
*/
static void
device_smart_temp(const struct ata_smart_attr *attr, uint64_t raw_value)
{
printf("%" PRIu8, attr->raw[0]);
if (attr->raw[0] != raw_value)
printf(" Lifetime min/max %" PRIu8 "/%" PRIu8,
attr->raw[2], attr->raw[4]);
}
/*
* Print out SMART attribute thresholds and values
*/
static void
print_smart_status(void *vbuf, void *tbuf, const char *vendor)
{
const struct ata_smart_attributes *value_buf = vbuf;
const struct ata_smart_thresholds *threshold_buf = tbuf;
const struct ata_smart_attr *attr;
uint64_t raw_value;
int flags;
unsigned i, j;
unsigned aid, vid;
uint8_t checksum;
const struct attr_table *vendor_table = NULL;
void (*special)(const struct ata_smart_attr *, uint64_t);
if (vendor) {
for (i = 0; i < __arraycount(vendor_smart_names); i++) {
if (strcasecmp(vendor,
vendor_smart_names[i].name) == 0) {
vendor_table = vendor_smart_names[i].table;
break;
}
}
if (vendor_table == NULL)
fprintf(stderr,
"SMART vendor '%s' has no special table\n", vendor);
}
for (i = checksum = 0; i < 512; i++)
checksum += ((const uint8_t *) value_buf)[i];
if (checksum != 0) {
fprintf(stderr, "SMART attribute values checksum error\n");
return;
}
for (i = checksum = 0; i < 512; i++)
checksum += ((const uint8_t *) threshold_buf)[i];
if (checksum != 0) {
fprintf(stderr, "SMART attribute thresholds checksum error\n");
return;
}
printf("id value thresh crit collect reliability description"
" raw\n");
for (i = 0; i < 256; i++) {
int thresh = 0;
const char *name = NULL;
attr = NULL;
for (j = 0; j < 30; j++) {
if (value_buf->attributes[j].id == i)
attr = &value_buf->attributes[j];
if (threshold_buf->thresholds[j].id == i)
thresh = threshold_buf->thresholds[j].value;
}
if (thresh && attr == NULL)
errx(1, "threshold but not attr %d", i);
if (attr == NULL)
continue;
if (attr->value == 0||attr->value == 0xFE||attr->value == 0xFF)
continue;
for (aid = 0;
smart_attrs[aid].id != i && smart_attrs[aid].id != 0;
aid++)
;
if (vendor_table) {
for (vid = 0;
vendor_table[vid].id != i && vendor_table[vid].id != 0;
vid++)
;
if (vendor_table[vid].id != 0) {
name = vendor_table[vid].name;
special = vendor_table[vid].special;
}
}
if (name == NULL) {
name = smart_attrs[aid].name;
special = smart_attrs[aid].special;
}
flags = le16toh(attr->flags);
printf("%3d %3d %3d %-3s %-7s %stive %-27s ",
i, attr->value, thresh,
flags & WDSM_ATTR_ADVISORY ? "yes" : "no",
flags & WDSM_ATTR_COLLECTIVE ? "online" : "offline",
attr->value > thresh ? "posi" : "nega", name);
for (j = 0, raw_value = 0; j < 6; j++)
raw_value += ((uint64_t)attr->raw[j]) << (8*j);
if (special)
(*special)(attr, raw_value);
else
printf("%" PRIu64, raw_value);
printf("\n");
}
}
static const struct {
int number;
const char *name;
} selftest_name[] = {
{ 0, "Off-line" },
{ 1, "Short off-line" },
{ 2, "Extended off-line" },
{ 127, "Abort off-line test" },
{ 129, "Short captive" },
{ 130, "Extended captive" },
{ 256, "Unknown test" }, /* larger than uint8_t */
{ 0, NULL }
};
static const char *selftest_status[] = {
"No error",
"Aborted by the host",
"Interrupted by the host by reset",
"Fatal error or unknown test error",
"Unknown test element failed",
"Electrical test element failed",
"The Servo (and/or seek) test element failed",
"Read element of test failed",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Reserved",
"Self-test in progress"
};
static void
print_error_entry(int num, const struct ata_smart_error *le)
{
int i;
printf("Log entry: %d\n", num);
for (i = 0; i < 5; i++)
printf("\tCommand %d: dc=%02x sf=%02x sc=%02x sn=%02x cl=%02x "
"ch=%02x dh=%02x cmd=%02x time=%02x%02x%02x%02x\n", i,
le->command[i].device_control,
le->command[i].features,
le->command[i].sector_count,
le->command[i].sector_number,
le->command[i].cylinder_low,
le->command[i].cylinder_high,
le->command[i].device_head,
le->command[i].command,
le->command[i].timestamp[3],
le->command[i].timestamp[2],
le->command[i].timestamp[1],
le->command[i].timestamp[0]);
printf("\tError: err=%02x sc=%02x sn=%02x cl=%02x ch=%02x dh=%02x "
"status=%02x state=%02x lifetime=%02x%02x\n",
le->error_data.error,
le->error_data.sector_count,
le->error_data.sector_number,
le->error_data.cylinder_low,
le->error_data.cylinder_high,
le->error_data.device_head,
le->error_data.status,
le->error_data.state,
le->error_data.lifetime[1],
le->error_data.lifetime[0]);
printf("\tExtended: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
le->error_data.extended_error[0],
le->error_data.extended_error[1],
le->error_data.extended_error[2],
le->error_data.extended_error[3],
le->error_data.extended_error[4],
le->error_data.extended_error[5],
le->error_data.extended_error[6],
le->error_data.extended_error[7],
le->error_data.extended_error[8],
le->error_data.extended_error[9],
le->error_data.extended_error[10],
le->error_data.extended_error[11],
le->error_data.extended_error[12],
le->error_data.extended_error[13],
le->error_data.extended_error[14],
le->error_data.extended_error[15],
le->error_data.extended_error[15],
le->error_data.extended_error[17],
le->error_data.extended_error[18]);
}
static void
print_error(const void *buf)
{
const struct ata_smart_errorlog *erlog = buf;
uint8_t checksum;
int i;
for (i = checksum = 0; i < 512; i++)
checksum += ((const uint8_t *) buf)[i];
if (checksum != 0) {
fprintf(stderr, "SMART error log checksum error\n");
return;
}
if (erlog->data_structure_revision != 1) {
fprintf(stderr, "Error log revision not 1 (found 0x%04x)\n",
erlog->data_structure_revision);
return;
}
if (erlog->mostrecenterror == 0) {
printf("No errors have been logged\n");
return;
}
if (erlog->mostrecenterror > 5) {
fprintf(stderr, "Most recent error is too large\n");
return;
}
for (i = erlog->mostrecenterror; i < 5; i++)
print_error_entry(i, &erlog->log_entries[i]);
for (i = 0; i < erlog->mostrecenterror; i++)
print_error_entry(i, &erlog->log_entries[i]);
printf("device error count: %d\n", erlog->device_error_count);
}
static void
print_selftest_entry(int num, const struct ata_smart_selftest *le)
{
const unsigned char *p;
size_t i;
/* check if all zero */
for (p = (const void *)le, i = 0; i < sizeof(*le); i++)
if (p[i] != 0)
break;
if (i == sizeof(*le))
return;
printf("Log entry: %d\n", num);
/* Get test name */
for (i = 0; selftest_name[i].name != NULL; i++)
if (selftest_name[i].number == le->number)
break;
if (selftest_name[i].name == NULL)
printf("\tName: (%d)\n", le->number);
else
printf("\tName: %s\n", selftest_name[i].name);
printf("\tStatus: %s\n", selftest_status[le->status >> 4]);
/* XXX This generally should not be set when a self-test is completed,
and at any rate is useless. - mycroft */
if (le->status >> 4 == 15)
printf("\tPercent of test remaining: %1d0\n", le->status & 0xf);
else if (le->status >> 4 != 0)
printf("\tLBA first error: %d\n", le32toh(le->lba_first_error));
}
static void
print_selftest(const void *buf)
{
const struct ata_smart_selftestlog *stlog = buf;
uint8_t checksum;
int i;
for (i = checksum = 0; i < 512; i++)
checksum += ((const uint8_t *) buf)[i];
if (checksum != 0) {
fprintf(stderr, "SMART selftest log checksum error\n");
return;
}
if (le16toh(stlog->data_structure_revision) != 1) {
fprintf(stderr, "Self-test log revision not 1 (found 0x%04x)\n",
le16toh(stlog->data_structure_revision));
return;
}
if (stlog->mostrecenttest == 0) {
printf("No self-tests have been logged\n");
return;
}
if (stlog->mostrecenttest > 22) {
fprintf(stderr, "Most recent test is too large\n");
return;
}
for (i = stlog->mostrecenttest; i < 22; i++)
print_selftest_entry(i, &stlog->log_entries[i]);
for (i = 0; i < stlog->mostrecenttest; i++)
print_selftest_entry(i, &stlog->log_entries[i]);
}
static void
fillataparams(void)
{
struct atareq req;
static union {
unsigned char inbuf[DEV_BSIZE];
struct ataparams inqbuf;
} inbuf;
static int first = 1;
if (!first)
return;
first = 0;
memset(&inbuf, 0, sizeof(inbuf));
memset(&req, 0, sizeof(req));
req.flags = ATACMD_READ;
req.command = WDCC_IDENTIFY;
req.databuf = &inbuf;
req.datalen = sizeof(inbuf);
req.timeout = 1000;
ata_command(&req);
inqbuf = &inbuf.inqbuf;
}
/*
* is_smart:
*
* Detect whether device supports SMART and SMART is enabled.
*/
static int
is_smart(void)
{
int retval = 0;
const char *status;
fillataparams();
if (inqbuf->atap_cmd_def != 0 && inqbuf->atap_cmd_def != 0xffff) {
if (!(inqbuf->atap_cmd_set1 & WDC_CMD1_SMART)) {
fprintf(stderr, "SMART unsupported\n");
} else {
if (inqbuf->atap_ata_major <= WDC_VER_ATA5 ||
inqbuf->atap_cmd_set2 == 0xffff ||
inqbuf->atap_cmd_set2 == 0x0000) {
status = "status unknown";
retval = 2;
} else {
if (inqbuf->atap_cmd1_en & WDC_CMD1_SMART) {
status = "enabled";
retval = 1;
} else {
status = "disabled";
retval = 3;
}
}
printf("SMART supported, SMART %s\n", status);
}
}
return retval;
}
/*
* extract_string: copy a block of bytes out of ataparams and make
* a proper string out of it, truncating trailing spaces and preserving
* strict typing. And also, not doing unaligned accesses.
*/
static void
extract_string(char *buf, size_t bufmax,
const uint8_t *bytes, size_t numbytes,
int needswap)
{
unsigned i;
size_t j;
unsigned char ch1, ch2;
for (i = 0, j = 0; i < numbytes; i += 2) {
ch1 = bytes[i];
ch2 = bytes[i+1];
if (needswap && j < bufmax-1) {
buf[j++] = ch2;
}
if (j < bufmax-1) {
buf[j++] = ch1;
}
if (!needswap && j < bufmax-1) {
buf[j++] = ch2;
}
}
while (j > 0 && buf[j-1] == ' ') {
j--;
}
buf[j] = '\0';
}
static void
compute_capacity(uint64_t *capacityp, uint64_t *sectorsp, uint32_t *secsizep)
{
uint64_t capacity;
uint64_t sectors;
uint32_t secsize;
if (inqbuf->atap_cmd2_en != 0 && inqbuf->atap_cmd2_en != 0xffff &&
inqbuf->atap_cmd2_en & ATA_CMD2_LBA48) {
sectors =
((uint64_t)inqbuf->atap_max_lba[3] << 48) |
((uint64_t)inqbuf->atap_max_lba[2] << 32) |
((uint64_t)inqbuf->atap_max_lba[1] << 16) |
((uint64_t)inqbuf->atap_max_lba[0] << 0);
} else if (inqbuf->atap_capabilities1 & WDC_CAP_LBA) {
sectors = (inqbuf->atap_capacity[1] << 16) |
inqbuf->atap_capacity[0];
} else {
sectors = inqbuf->atap_cylinders *
inqbuf->atap_heads * inqbuf->atap_sectors;
}
secsize = 512;
if ((inqbuf->atap_secsz & ATA_SECSZ_VALID_MASK) == ATA_SECSZ_VALID) {
if (inqbuf->atap_secsz & ATA_SECSZ_LLS) {
secsize = 2 * /* words to bytes */
(inqbuf->atap_lls_secsz[1] << 16 |
inqbuf->atap_lls_secsz[0] << 0);
}
}
capacity = sectors * secsize;
if (capacityp)
*capacityp = capacity;
if (sectorsp)
*sectorsp = sectors;
if (secsizep)
*secsizep = secsize;
}
/*
* Inspect the inqbuf and guess what vendor to use. This list is fairly
* basic, and probably should be converted into a regexp scheme.
*/
static const char *
guess_vendor(void)
{
unsigned i;
for (i = 0; i < __arraycount(model_to_vendor); i++)
if (strncasecmp(model, model_to_vendor[i].model,
strlen(model_to_vendor[i].model)) == 0)
return model_to_vendor[i].vendor;
return NULL;
}
/*
* identify_fixup() - Given an obtained ataparams, fix up the endian and
* other issues before using them.
*/
static void
identify_fixup(void)
{
int needswap = 0;
if ((inqbuf->atap_integrity & WDC_INTEGRITY_MAGIC_MASK) ==
WDC_INTEGRITY_MAGIC) {
int i;
uint8_t checksum;
for (i = checksum = 0; i < 512; i++)
checksum += ((const uint8_t *)inqbuf)[i];
if (checksum != 0)
puts("IDENTIFY DEVICE data checksum invalid\n");
}
#if BYTE_ORDER == LITTLE_ENDIAN
/*
* On little endian machines, we need to shuffle the string
* byte order. However, we don't have to do this for NEC or
* Mitsumi ATAPI devices
*/
if (!(inqbuf->atap_config != WDC_CFG_CFA_MAGIC &&
(inqbuf->atap_config & WDC_CFG_ATAPI) &&
((inqbuf->atap_model[0] == 'N' &&
inqbuf->atap_model[1] == 'E') ||
(inqbuf->atap_model[0] == 'F' &&
inqbuf->atap_model[1] == 'X')))) {
needswap = 1;
}
#endif
/*
* Copy the info strings out, stripping off blanks.
*/
extract_string(model, sizeof(model),
inqbuf->atap_model, sizeof(inqbuf->atap_model),
needswap);
extract_string(revision, sizeof(revision),
inqbuf->atap_revision, sizeof(inqbuf->atap_revision),
needswap);
extract_string(serial, sizeof(serial),
inqbuf->atap_serial, sizeof(inqbuf->atap_serial),
needswap);
}
/*
* DEVICE COMMANDS
*/
/*
* device_identify:
*
* Display the identity of the device
*/
static void
device_identify(int argc, char *argv[])
{
char hnum[12];
uint64_t capacity;
uint64_t sectors;
uint32_t secsize;
int lb_per_pb;
/* No arguments. */
if (argc != 0)
usage();
fillataparams();
identify_fixup();
printf("Model: %s, Rev: %s, Serial #: %s\n",
model, revision, serial);
if (inqbuf->atap_cmd_ext != 0 && inqbuf->atap_cmd_ext != 0xffff &&
inqbuf->atap_cmd_ext & ATA_CMDE_WWN)
printf("World Wide Name: %016" PRIX64 "\n",
((uint64_t)inqbuf->atap_wwn[0] << 48) |
((uint64_t)inqbuf->atap_wwn[1] << 32) |
((uint64_t)inqbuf->atap_wwn[2] << 16) |
((uint64_t)inqbuf->atap_wwn[3] << 0));
printf("Device type: %s",
inqbuf->atap_config == WDC_CFG_CFA_MAGIC ? "CF-ATA" :
(inqbuf->atap_config & WDC_CFG_ATAPI ? "ATAPI" : "ATA"));
if (inqbuf->atap_config != WDC_CFG_CFA_MAGIC)
printf(", %s",
inqbuf->atap_config & ATA_CFG_FIXED ? "fixed" : "removable");
printf("\n");
compute_capacity(&capacity, &sectors, &secsize);
humanize_number(hnum, sizeof(hnum), capacity, "bytes",
HN_AUTOSCALE, HN_DIVISOR_1000);
printf("Capacity %s, %" PRIu64 " sectors, %" PRIu32 " bytes/sector\n",
hnum, sectors, secsize);
printf("Cylinders: %d, heads: %d, sec/track: %d\n",
inqbuf->atap_cylinders, inqbuf->atap_heads,
inqbuf->atap_sectors);
lb_per_pb = 1;
if ((inqbuf->atap_secsz & ATA_SECSZ_VALID_MASK) == ATA_SECSZ_VALID) {
if (inqbuf->atap_secsz & ATA_SECSZ_LPS) {
lb_per_pb <<= inqbuf->atap_secsz & ATA_SECSZ_LPS_SZMSK;
printf("Physical sector size: %d bytes\n",
lb_per_pb * secsize);
if ((inqbuf->atap_logical_align &
ATA_LA_VALID_MASK) == ATA_LA_VALID) {
printf("First physically aligned sector: %d\n",
lb_per_pb - (inqbuf->atap_logical_align &
ATA_LA_MASK));
}
}
}
if (((inqbuf->atap_sata_caps & SATA_NATIVE_CMDQ) ||
(inqbuf->atap_cmd_set2 & ATA_CMD2_RWQ)) &&
(inqbuf->atap_queuedepth & WDC_QUEUE_DEPTH_MASK))
printf("Command queue depth: %d\n",
(inqbuf->atap_queuedepth & WDC_QUEUE_DEPTH_MASK) + 1);
printf("Device capabilities:\n");
print_bitinfo("\t", "\n", inqbuf->atap_capabilities1, ata_caps);
if (inqbuf->atap_ata_major != 0 && inqbuf->atap_ata_major != 0xffff) {
printf("Device supports following standards:\n");
print_bitinfo("", " ", inqbuf->atap_ata_major, ata_vers);
printf("\n");
}
if (inqbuf->atap_cmd_set1 != 0 && inqbuf->atap_cmd_set1 != 0xffff &&
inqbuf->atap_cmd_set2 != 0 && inqbuf->atap_cmd_set2 != 0xffff) {
printf("Command set support:\n");
if (inqbuf->atap_cmd1_en != 0 && inqbuf->atap_cmd1_en != 0xffff)
print_bitinfo2("\t", "\n", inqbuf->atap_cmd_set1,
inqbuf->atap_cmd1_en, ata_cmd_set1);
else
print_bitinfo("\t", "\n", inqbuf->atap_cmd_set1,
ata_cmd_set1);
if (inqbuf->atap_cmd2_en != 0 && inqbuf->atap_cmd2_en != 0xffff)
print_bitinfo2("\t", "\n", inqbuf->atap_cmd_set2,
inqbuf->atap_cmd2_en, ata_cmd_set2);
else
print_bitinfo("\t", "\n", inqbuf->atap_cmd_set2,
ata_cmd_set2);
if (inqbuf->atap_cmd_ext != 0 && inqbuf->atap_cmd_ext != 0xffff)
print_bitinfo("\t", "\n", inqbuf->atap_cmd_ext,
ata_cmd_ext);
}
if (inqbuf->atap_sata_caps != 0 && inqbuf->atap_sata_caps != 0xffff) {
printf("Serial ATA capabilities:\n");
print_bitinfo("\t", "\n",
inqbuf->atap_sata_caps, ata_sata_caps);
}
if (inqbuf->atap_sata_features_supp != 0 &&
inqbuf->atap_sata_features_supp != 0xffff) {
printf("Serial ATA features:\n");
if (inqbuf->atap_sata_features_en != 0 &&
inqbuf->atap_sata_features_en != 0xffff)
print_bitinfo2("\t", "\n",
inqbuf->atap_sata_features_supp,
inqbuf->atap_sata_features_en, ata_sata_feat);
else
print_bitinfo("\t", "\n",
inqbuf->atap_sata_features_supp, ata_sata_feat);
}
if ((inqbuf->atap_ata_major & WDC_VER_ATA7) &&
(inqbuf->support_dsm & ATA_SUPPORT_DSM_TRIM))
printf("TRIM supported\n");
return;
}
/*
* device idle:
*
* issue the IDLE IMMEDIATE command to the drive
*/
static void
device_idle(int argc, char *argv[])
{
struct atareq req;
/* No arguments. */
if (argc != 0)
usage();
memset(&req, 0, sizeof(req));
if (strcmp(cmdname, "idle") == 0)
req.command = WDCC_IDLE_IMMED;
else if (strcmp(cmdname, "standby") == 0)
req.command = WDCC_STANDBY_IMMED;
else
req.command = WDCC_SLEEP;
req.timeout = 1000;
ata_command(&req);
return;
}
/*
* device apm:
*
* enable/disable/control the APM feature of the drive
*/
static void
device_apm(int argc, char *argv[])
{
struct atareq req;
long l;
memset(&req, 0, sizeof(req));
if (argc >= 1) {
req.command = SET_FEATURES;
req.timeout = 1000;
if (strcmp(argv[0], "disable") == 0)
req.features = WDSF_APM_DS;
else if (strcmp(argv[0], "set") == 0 && argc >= 2 &&
(l = strtol(argv[1], NULL, 0)) >= 0 && l <= 253) {
req.features = WDSF_APM_EN;
req.sec_count = l + 1;
} else
usage();
} else
usage();
ata_command(&req);
}
/*
* Set the idle timer on the disk. Set it for either idle mode or
* standby mode, depending on how we were invoked.
*/
static void
device_setidle(int argc, char *argv[])
{
unsigned long idle;
struct atareq req;
char *end;
/* Only one argument */
if (argc != 1)
usage();
idle = strtoul(argv[0], &end, 0);
if (*end != '\0') {
fprintf(stderr, "Invalid idle time: \"%s\"\n", argv[0]);
exit(1);
}
if (idle > 19800) {
fprintf(stderr, "Idle time has a maximum value of 5.5 "
"hours\n");
exit(1);
}
if (idle != 0 && idle < 5) {
fprintf(stderr, "Idle timer must be at least 5 seconds\n");
exit(1);
}
memset(&req, 0, sizeof(req));
if (idle <= 240*5)
req.sec_count = idle / 5;
else
req.sec_count = idle / (30*60) + 240;
req.command = cmdname[3] == 's' ? WDCC_STANDBY : WDCC_IDLE;
req.timeout = 1000;
ata_command(&req);
return;
}
/*
* Query the device for the current power mode
*/
static void
device_checkpower(int argc, char *argv[])
{
struct atareq req;
/* No arguments. */
if (argc != 0)
usage();
memset(&req, 0, sizeof(req));
req.command = WDCC_CHECK_PWR;
req.timeout = 1000;
req.flags = ATACMD_READREG;
ata_command(&req);
printf("Current power status: ");
switch (req.sec_count) {
case 0x00:
printf("Standby mode\n");
break;
case 0x80:
printf("Idle mode\n");
break;
case 0xff:
printf("Active mode\n");
break;
default:
printf("Unknown power code (%02x)\n", req.sec_count);
}
return;
}
/*
* device_smart:
*
* Display SMART status
*/
static void
device_smart(int argc, char *argv[])
{
struct atareq req;
unsigned char inbuf[DEV_BSIZE];
unsigned char inbuf2[DEV_BSIZE];
if (argc < 1)
usage();
if (strcmp(argv[0], "enable") == 0) {
memset(&req, 0, sizeof(req));
req.features = WDSM_ENABLE_OPS;
req.command = WDCC_SMART;
req.cylinder = WDSMART_CYL;
req.timeout = 1000;
ata_command(&req);
is_smart();
} else if (strcmp(argv[0], "disable") == 0) {
memset(&req, 0, sizeof(req));
req.features = WDSM_DISABLE_OPS;
req.command = WDCC_SMART;
req.cylinder = WDSMART_CYL;
req.timeout = 1000;
ata_command(&req);
is_smart();
} else if (strcmp(argv[0], "status") == 0) {
int rv;
const char *vendor = argc > 1 ? argv[1] : NULL;
rv = is_smart();
if (!rv) {
fprintf(stderr, "SMART not supported\n");
return;
} else if (rv == 3)
return;
memset(&inbuf, 0, sizeof(inbuf));
memset(&req, 0, sizeof(req));
req.features = WDSM_STATUS;
req.command = WDCC_SMART;
req.cylinder = WDSMART_CYL;
req.timeout = 1000;
ata_command(&req);
if (req.cylinder != WDSMART_CYL) {
fprintf(stderr, "Threshold exceeds condition\n");
}
/* WDSM_RD_DATA and WDSM_RD_THRESHOLDS are optional
* features, the following ata_command()'s may error
* and exit().
*/
memset(&inbuf, 0, sizeof(inbuf));
memset(&req, 0, sizeof(req));
req.flags = ATACMD_READ;
req.features = WDSM_RD_DATA;
req.command = WDCC_SMART;
req.databuf = (caddr_t) inbuf;
req.datalen = sizeof(inbuf);
req.cylinder = WDSMART_CYL;
req.timeout = 1000;
ata_command(&req);
memset(&inbuf2, 0, sizeof(inbuf2));
memset(&req, 0, sizeof(req));
req.flags = ATACMD_READ;
req.features = WDSM_RD_THRESHOLDS;
req.command = WDCC_SMART;
req.databuf = (caddr_t) inbuf2;
req.datalen = sizeof(inbuf2);
req.cylinder = WDSMART_CYL;
req.timeout = 1000;
ata_command(&req);
if (!vendor || strcmp(vendor, "noauto") == 0) {
fillataparams();
identify_fixup();
vendor = guess_vendor();
}
print_smart_status(inbuf, inbuf2, vendor);
} else if (strcmp(argv[0], "offline") == 0) {
if (argc != 2)
usage();
if (!is_smart()) {
fprintf(stderr, "SMART not supported\n");
return;
}
memset(&req, 0, sizeof(req));
req.features = WDSM_EXEC_OFFL_IMM;
req.command = WDCC_SMART;
req.cylinder = WDSMART_CYL;
req.sec_num = atol(argv[1]);
req.timeout = 10000;
ata_command(&req);
} else if (strcmp(argv[0], "error-log") == 0) {
if (!is_smart()) {
fprintf(stderr, "SMART not supported\n");
return;
}
memset(&inbuf, 0, sizeof(inbuf));
memset(&req, 0, sizeof(req));
req.flags = ATACMD_READ;
req.features = WDSM_RD_LOG;
req.sec_count = 1;
req.sec_num = 1;
req.command = WDCC_SMART;
req.databuf = (caddr_t) inbuf;
req.datalen = sizeof(inbuf);
req.cylinder = WDSMART_CYL;
req.timeout = 1000;
ata_command(&req);
print_error(inbuf);
} else if (strcmp(argv[0], "selftest-log") == 0) {
if (!is_smart()) {
fprintf(stderr, "SMART not supported\n");
return;
}
memset(&inbuf, 0, sizeof(inbuf));
memset(&req, 0, sizeof(req));
req.flags = ATACMD_READ;
req.features = WDSM_RD_LOG;
req.sec_count = 1;
req.sec_num = 6;
req.command = WDCC_SMART;
req.databuf = (caddr_t) inbuf;
req.datalen = sizeof(inbuf);
req.cylinder = WDSMART_CYL;
req.timeout = 1000;
ata_command(&req);
print_selftest(inbuf);
} else {
usage();
}
return;
}
static void
device_security(int argc, char *argv[])
{
struct atareq req;
unsigned char data[DEV_BSIZE];
char *pass;
/* need subcommand */
if (argc < 1)
usage();
memset(&req, 0, sizeof(req));
if (strcmp(argv[0], "status") == 0) {
fillataparams();
print_bitinfo("\t", "\n", inqbuf->atap_sec_st, ata_sec_st);
} else if (strcmp(argv[0], "freeze") == 0) {
req.command = WDCC_SECURITY_FREEZE;
req.timeout = 1000;
ata_command(&req);
} else if ((strcmp(argv[0], "setpass") == 0) ||
(strcmp(argv[0], "unlock") == 0) ||
(strcmp(argv[0], "disable") == 0) ||
(strcmp(argv[0], "erase") == 0)) {
if (argc != 2)
usage();
if (strcmp(argv[1], "user") != 0) {
if (strcmp(argv[1], "master") == 0) {
fprintf(stderr,
"Master passwords not supported\n");
exit(1);
} else {
usage();
}
}
pass = getpass("Password:");
if (strlen(pass) > 32) {
fprintf(stderr, "Password must be <=32 characters\n");
exit(1);
}
req.flags |= ATACMD_WRITE;
req.timeout = 1000;
req.databuf = data;
req.datalen = sizeof(data);
memset(data, 0, sizeof(data));
strlcpy((void *)&data[2], pass, 32 + 1);
if (strcmp(argv[0], "setpass") == 0) {
char orig[32 + 1];
strlcpy(orig, pass, 32 + 1);
pass = getpass("Confirm password:");
if (0 != strcmp(orig, pass)) {
fprintf(stderr, "Passwords do not match\n");
exit(1);
}
req.command = WDCC_SECURITY_SET_PASSWORD;
} else if (strcmp(argv[0], "unlock") == 0) {
req.command = WDCC_SECURITY_UNLOCK;
} else if (strcmp(argv[0], "disable") == 0) {
req.command = WDCC_SECURITY_DISABLE_PASSWORD;
} else if (strcmp(argv[0], "erase") == 0) {
struct atareq prepare;
fillataparams();
/*
* XXX Any way to lock the device to make sure
* this really is the command preceding the
* SECURITY ERASE UNIT command? This would
* probably have to be moved into the kernel to
* do that.
*/
memset(&prepare, 0, sizeof(prepare));
prepare.command = WDCC_SECURITY_ERASE_PREPARE;
prepare.timeout = 1000;
ata_command(&prepare);
req.command = WDCC_SECURITY_ERASE_UNIT;
/*
* Enable enhanced erase if it's supported.
*
* XXX should be a command-line option
*/
if (inqbuf->atap_sec_st & WDC_SEC_ESE_SUPP) {
data[0] |= 0x2;
req.timeout = (inqbuf->atap_eseu_time & 0xff)
* 2 * 60 * 1000;
} else {
req.timeout = (inqbuf->atap_seu_time & 0xff)
* 2 * 60 * 1000;
}
/*
* If the estimated time was 0xff (* 2 * 60 *
* 1000 = 30600000), that means `>508 minutes'.
* Estimate that we can handle 16 MB/sec, a
* rate I just pulled out of my arse.
*/
if (req.timeout == 30600000) {
uint64_t bytes, timeout;
compute_capacity(&bytes, NULL, NULL);
timeout = (bytes / (16 * 1024 * 1024)) * 1000;
if (timeout > (uint64_t)INT_MAX)
req.timeout = INT_MAX;
else
req.timeout = timeout;
}
printf("Erasing may take up to %dh %dm %ds...\n",
(req.timeout / 1000 / 60) / 60,
(req.timeout / 1000 / 60) % 60,
req.timeout % 60);
} else {
abort();
}
ata_command(&req);
} else {
usage();
}
}
/*
* bus_reset:
* Reset an ATA bus (will reset all devices on the bus)
*/
static void
bus_reset(int argc, char *argv[])
{
int error;
/* no args */
if (argc != 0)
usage();
error = ioctl(fd, ATABUSIORESET, NULL);
if (error == -1)
err(1, "ATABUSIORESET failed");
}