NetBSD/sys/dev/pci/if_vge.c

2150 lines
54 KiB
C

/* $NetBSD: if_vge.c,v 1.69 2019/04/11 08:50:59 msaitoh Exp $ */
/*-
* Copyright (c) 2004
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.69 2019/04/11 08:50:59 msaitoh Exp $");
/*
* VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
*
* Written by Bill Paul <wpaul@windriver.com>
* Senior Networking Software Engineer
* Wind River Systems
*/
/*
* The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
* combines a tri-speed ethernet MAC and PHY, with the following
* features:
*
* o Jumbo frame support up to 16K
* o Transmit and receive flow control
* o IPv4 checksum offload
* o VLAN tag insertion and stripping
* o TCP large send
* o 64-bit multicast hash table filter
* o 64 entry CAM filter
* o 16K RX FIFO and 48K TX FIFO memory
* o Interrupt moderation
*
* The VT6122 supports up to four transmit DMA queues. The descriptors
* in the transmit ring can address up to 7 data fragments; frames which
* span more than 7 data buffers must be coalesced, but in general the
* BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
* long. The receive descriptors address only a single buffer.
*
* There are two peculiar design issues with the VT6122. One is that
* receive data buffers must be aligned on a 32-bit boundary. This is
* not a problem where the VT6122 is used as a LOM device in x86-based
* systems, but on architectures that generate unaligned access traps, we
* have to do some copying.
*
* The other issue has to do with the way 64-bit addresses are handled.
* The DMA descriptors only allow you to specify 48 bits of addressing
* information. The remaining 16 bits are specified using one of the
* I/O registers. If you only have a 32-bit system, then this isn't
* an issue, but if you have a 64-bit system and more than 4GB of
* memory, you must have to make sure your network data buffers reside
* in the same 48-bit 'segment.'
*
* Special thanks to Ryan Fu at VIA Networking for providing documentation
* and sample NICs for testing.
*/
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_ether.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <sys/bus.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_vgereg.h>
#define VGE_IFQ_MAXLEN 64
#define VGE_RING_ALIGN 256
#define VGE_NTXDESC 256
#define VGE_NTXDESC_MASK (VGE_NTXDESC - 1)
#define VGE_NEXT_TXDESC(x) ((x + 1) & VGE_NTXDESC_MASK)
#define VGE_PREV_TXDESC(x) ((x - 1) & VGE_NTXDESC_MASK)
#define VGE_NRXDESC 256 /* Must be a multiple of 4!! */
#define VGE_NRXDESC_MASK (VGE_NRXDESC - 1)
#define VGE_NEXT_RXDESC(x) ((x + 1) & VGE_NRXDESC_MASK)
#define VGE_PREV_RXDESC(x) ((x - 1) & VGE_NRXDESC_MASK)
#define VGE_ADDR_LO(y) ((uint64_t)(y) & 0xFFFFFFFF)
#define VGE_ADDR_HI(y) ((uint64_t)(y) >> 32)
#define VGE_BUFLEN(y) ((y) & 0x7FFF)
#define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
#define VGE_POWER_MANAGEMENT 0 /* disabled for now */
/*
* Mbuf adjust factor to force 32-bit alignment of IP header.
* Drivers should pad ETHER_ALIGN bytes when setting up a
* RX mbuf so the upper layers get the IP header properly aligned
* past the 14-byte Ethernet header.
*
* See also comment in vge_encap().
*/
#ifdef __NO_STRICT_ALIGNMENT
#define VGE_RX_BUFSIZE MCLBYTES
#else
#define VGE_RX_PAD sizeof(uint32_t)
#define VGE_RX_BUFSIZE (MCLBYTES - VGE_RX_PAD)
#endif
/*
* Control structures are DMA'd to the vge chip. We allocate them in
* a single clump that maps to a single DMA segment to make several things
* easier.
*/
struct vge_control_data {
/* TX descriptors */
struct vge_txdesc vcd_txdescs[VGE_NTXDESC];
/* RX descriptors */
struct vge_rxdesc vcd_rxdescs[VGE_NRXDESC];
/* dummy data for TX padding */
uint8_t vcd_pad[ETHER_PAD_LEN];
};
#define VGE_CDOFF(x) offsetof(struct vge_control_data, x)
#define VGE_CDTXOFF(x) VGE_CDOFF(vcd_txdescs[(x)])
#define VGE_CDRXOFF(x) VGE_CDOFF(vcd_rxdescs[(x)])
#define VGE_CDPADOFF() VGE_CDOFF(vcd_pad[0])
/*
* Software state for TX jobs.
*/
struct vge_txsoft {
struct mbuf *txs_mbuf; /* head of our mbuf chain */
bus_dmamap_t txs_dmamap; /* our DMA map */
};
/*
* Software state for RX jobs.
*/
struct vge_rxsoft {
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
bus_dmamap_t rxs_dmamap; /* our DMA map */
};
struct vge_softc {
device_t sc_dev;
bus_space_tag_t sc_bst; /* bus space tag */
bus_space_handle_t sc_bsh; /* bus space handle */
bus_dma_tag_t sc_dmat;
struct ethercom sc_ethercom; /* interface info */
uint8_t sc_eaddr[ETHER_ADDR_LEN];
void *sc_intrhand;
struct mii_data sc_mii;
uint8_t sc_type;
int sc_if_flags;
int sc_link;
int sc_camidx;
callout_t sc_timeout;
bus_dmamap_t sc_cddmamap;
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
struct vge_txsoft sc_txsoft[VGE_NTXDESC];
struct vge_rxsoft sc_rxsoft[VGE_NRXDESC];
struct vge_control_data *sc_control_data;
#define sc_txdescs sc_control_data->vcd_txdescs
#define sc_rxdescs sc_control_data->vcd_rxdescs
int sc_tx_prodidx;
int sc_tx_considx;
int sc_tx_free;
struct mbuf *sc_rx_mhead;
struct mbuf *sc_rx_mtail;
int sc_rx_prodidx;
int sc_rx_consumed;
int sc_suspended; /* 0 = normal 1 = suspended */
uint32_t sc_saved_maps[5]; /* pci data */
uint32_t sc_saved_biosaddr;
uint8_t sc_saved_intline;
uint8_t sc_saved_cachelnsz;
uint8_t sc_saved_lattimer;
};
#define VGE_CDTXADDR(sc, x) ((sc)->sc_cddma + VGE_CDTXOFF(x))
#define VGE_CDRXADDR(sc, x) ((sc)->sc_cddma + VGE_CDRXOFF(x))
#define VGE_CDPADADDR(sc) ((sc)->sc_cddma + VGE_CDPADOFF())
#define VGE_TXDESCSYNC(sc, idx, ops) \
bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap, \
VGE_CDTXOFF(idx), \
offsetof(struct vge_txdesc, td_frag[0]), \
(ops))
#define VGE_TXFRAGSYNC(sc, idx, nsegs, ops) \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
VGE_CDTXOFF(idx) + \
offsetof(struct vge_txdesc, td_frag[0]), \
sizeof(struct vge_txfrag) * (nsegs), \
(ops))
#define VGE_RXDESCSYNC(sc, idx, ops) \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
VGE_CDRXOFF(idx), \
sizeof(struct vge_rxdesc), \
(ops))
/*
* register space access macros
*/
#define CSR_WRITE_4(sc, reg, val) \
bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define CSR_WRITE_2(sc, reg, val) \
bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define CSR_WRITE_1(sc, reg, val) \
bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define CSR_READ_4(sc, reg) \
bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define CSR_READ_2(sc, reg) \
bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define CSR_READ_1(sc, reg) \
bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define CSR_SETBIT_1(sc, reg, x) \
CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
#define CSR_SETBIT_2(sc, reg, x) \
CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
#define CSR_SETBIT_4(sc, reg, x) \
CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
#define CSR_CLRBIT_1(sc, reg, x) \
CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
#define CSR_CLRBIT_2(sc, reg, x) \
CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
#define CSR_CLRBIT_4(sc, reg, x) \
CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
#define VGE_TIMEOUT 10000
#define VGE_PCI_LOIO 0x10
#define VGE_PCI_LOMEM 0x14
static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
static int vge_ifflags_cb(struct ethercom *);
static int vge_match(device_t, cfdata_t, void *);
static void vge_attach(device_t, device_t, void *);
static int vge_encap(struct vge_softc *, struct mbuf *, int);
static int vge_allocmem(struct vge_softc *);
static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
#ifndef __NO_STRICT_ALIGNMENT
static inline void vge_fixup_rx(struct mbuf *);
#endif
static void vge_rxeof(struct vge_softc *);
static void vge_txeof(struct vge_softc *);
static int vge_intr(void *);
static void vge_tick(void *);
static void vge_start(struct ifnet *);
static int vge_ioctl(struct ifnet *, u_long, void *);
static int vge_init(struct ifnet *);
static void vge_stop(struct ifnet *, int);
static void vge_watchdog(struct ifnet *);
#if VGE_POWER_MANAGEMENT
static int vge_suspend(device_t);
static int vge_resume(device_t);
#endif
static bool vge_shutdown(device_t, int);
static uint16_t vge_read_eeprom(struct vge_softc *, int);
static void vge_miipoll_start(struct vge_softc *);
static void vge_miipoll_stop(struct vge_softc *);
static int vge_miibus_readreg(device_t, int, int, uint16_t *);
static int vge_miibus_writereg(device_t, int, int, uint16_t);
static void vge_miibus_statchg(struct ifnet *);
static void vge_cam_clear(struct vge_softc *);
static int vge_cam_set(struct vge_softc *, uint8_t *);
static void vge_setmulti(struct vge_softc *);
static void vge_reset(struct vge_softc *);
CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
vge_match, vge_attach, NULL, NULL);
static inline void
vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
{
f->tf_addrlo = htole32((uint32_t)daddr);
if (sizeof(bus_addr_t) == sizeof(uint64_t))
f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
else
f->tf_addrhi = 0;
}
static inline void
vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
{
rxd->rd_addrlo = htole32((uint32_t)daddr);
if (sizeof(bus_addr_t) == sizeof(uint64_t))
rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
else
rxd->rd_addrhi = 0;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static uint16_t
vge_read_eeprom(struct vge_softc *sc, int addr)
{
int i;
uint16_t word = 0;
/*
* Enter EEPROM embedded programming mode. In order to
* access the EEPROM at all, we first have to set the
* EELOAD bit in the CHIPCFG2 register.
*/
CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
/* Select the address of the word we want to read */
CSR_WRITE_1(sc, VGE_EEADDR, addr);
/* Issue read command */
CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
/* Wait for the done bit to be set. */
for (i = 0; i < VGE_TIMEOUT; i++) {
if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
break;
}
if (i == VGE_TIMEOUT) {
printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
return 0;
}
/* Read the result */
word = CSR_READ_2(sc, VGE_EERDDAT);
/* Turn off EEPROM access mode. */
CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
return word;
}
static void
vge_miipoll_stop(struct vge_softc *sc)
{
int i;
CSR_WRITE_1(sc, VGE_MIICMD, 0);
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
break;
}
if (i == VGE_TIMEOUT) {
printf("%s: failed to idle MII autopoll\n",
device_xname(sc->sc_dev));
}
}
static void
vge_miipoll_start(struct vge_softc *sc)
{
int i;
/* First, make sure we're idle. */
CSR_WRITE_1(sc, VGE_MIICMD, 0);
CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
break;
}
if (i == VGE_TIMEOUT) {
printf("%s: failed to idle MII autopoll\n",
device_xname(sc->sc_dev));
return;
}
/* Now enable auto poll mode. */
CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
/* And make sure it started. */
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
break;
}
if (i == VGE_TIMEOUT) {
printf("%s: failed to start MII autopoll\n",
device_xname(sc->sc_dev));
}
}
static int
vge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
{
struct vge_softc *sc;
int i, s;
int rv = 0;
sc = device_private(dev);
if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
return -1;
s = splnet();
vge_miipoll_stop(sc);
/* Specify the register we want to read. */
CSR_WRITE_1(sc, VGE_MIIADDR, reg);
/* Issue read command. */
CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
/* Wait for the read command bit to self-clear. */
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
break;
}
if (i == VGE_TIMEOUT) {
printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
rv = ETIMEDOUT;
} else
*val = CSR_READ_2(sc, VGE_MIIDATA);
vge_miipoll_start(sc);
splx(s);
return rv;
}
static int
vge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
{
struct vge_softc *sc;
int i, s, rv = 0;
sc = device_private(dev);
if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
return -1;
s = splnet();
vge_miipoll_stop(sc);
/* Specify the register we want to write. */
CSR_WRITE_1(sc, VGE_MIIADDR, reg);
/* Specify the data we want to write. */
CSR_WRITE_2(sc, VGE_MIIDATA, val);
/* Issue write command. */
CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
/* Wait for the write command bit to self-clear. */
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
break;
}
if (i == VGE_TIMEOUT) {
printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
rv = ETIMEDOUT;
}
vge_miipoll_start(sc);
splx(s);
return rv;
}
static void
vge_cam_clear(struct vge_softc *sc)
{
int i;
/*
* Turn off all the mask bits. This tells the chip
* that none of the entries in the CAM filter are valid.
* desired entries will be enabled as we fill the filter in.
*/
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
for (i = 0; i < 8; i++)
CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
/* Clear the VLAN filter too. */
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
for (i = 0; i < 8; i++)
CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
CSR_WRITE_1(sc, VGE_CAMADDR, 0);
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
sc->sc_camidx = 0;
}
static int
vge_cam_set(struct vge_softc *sc, uint8_t *addr)
{
int i, error;
error = 0;
if (sc->sc_camidx == VGE_CAM_MAXADDRS)
return ENOSPC;
/* Select the CAM data page. */
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
/* Set the filter entry we want to update and enable writing. */
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
/* Write the address to the CAM registers */
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
/* Issue a write command. */
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
/* Wake for it to clear. */
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
break;
}
if (i == VGE_TIMEOUT) {
printf("%s: setting CAM filter failed\n",
device_xname(sc->sc_dev));
error = EIO;
goto fail;
}
/* Select the CAM mask page. */
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
/* Set the mask bit that enables this filter. */
CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
1 << (sc->sc_camidx & 7));
sc->sc_camidx++;
fail:
/* Turn off access to CAM. */
CSR_WRITE_1(sc, VGE_CAMADDR, 0);
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
return error;
}
/*
* Program the multicast filter. We use the 64-entry CAM filter
* for perfect filtering. If there's more than 64 multicast addresses,
* we use the hash filter instead.
*/
static void
vge_setmulti(struct vge_softc *sc)
{
struct ifnet *ifp;
int error;
uint32_t h, hashes[2] = { 0, 0 };
struct ether_multi *enm;
struct ether_multistep step;
error = 0;
ifp = &sc->sc_ethercom.ec_if;
/* First, zot all the multicast entries. */
vge_cam_clear(sc);
CSR_WRITE_4(sc, VGE_MAR0, 0);
CSR_WRITE_4(sc, VGE_MAR1, 0);
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* If the user wants allmulti or promisc mode, enable reception
* of all multicast frames.
*/
if (ifp->if_flags & IFF_PROMISC) {
allmulti:
CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
ifp->if_flags |= IFF_ALLMULTI;
return;
}
/* Now program new ones */
ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
while (enm != NULL) {
/*
* If multicast range, fall back to ALLMULTI.
*/
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0)
goto allmulti;
error = vge_cam_set(sc, enm->enm_addrlo);
if (error)
break;
ETHER_NEXT_MULTI(step, enm);
}
/* If there were too many addresses, use the hash filter. */
if (error) {
vge_cam_clear(sc);
ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
while (enm != NULL) {
/*
* If multicast range, fall back to ALLMULTI.
*/
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0)
goto allmulti;
h = ether_crc32_be(enm->enm_addrlo,
ETHER_ADDR_LEN) >> 26;
hashes[h >> 5] |= 1 << (h & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
}
}
static void
vge_reset(struct vge_softc *sc)
{
int i;
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(5);
if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
break;
}
if (i == VGE_TIMEOUT) {
printf("%s: soft reset timed out", device_xname(sc->sc_dev));
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
DELAY(2000);
}
DELAY(5000);
CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(5);
if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
break;
}
if (i == VGE_TIMEOUT) {
printf("%s: EEPROM reload timed out\n",
device_xname(sc->sc_dev));
return;
}
/*
* On some machine, the first read data from EEPROM could be
* messed up, so read one dummy data here to avoid the mess.
*/
(void)vge_read_eeprom(sc, 0);
CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
}
/*
* Probe for a VIA gigabit chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
vge_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
&& PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
return 1;
return 0;
}
static int
vge_allocmem(struct vge_softc *sc)
{
int error;
int nseg;
int i;
bus_dma_segment_t seg;
/*
* Allocate memory for control data.
*/
error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev,
"could not allocate control data dma memory\n");
goto fail_1;
}
/* Map the memory to kernel VA space */
error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev,
"could not map control data dma memory\n");
goto fail_2;
}
memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
/*
* Create map for control data.
*/
error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct vge_control_data), 1,
sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
&sc->sc_cddmamap);
if (error) {
aprint_error_dev(sc->sc_dev,
"could not create control data dmamap\n");
goto fail_3;
}
/* Load the map for the control data. */
error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct vge_control_data), NULL,
BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev,
"could not load control data dma memory\n");
goto fail_4;
}
/* Create DMA maps for TX buffers */
for (i = 0; i < VGE_NTXDESC; i++) {
error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
&sc->sc_txsoft[i].txs_dmamap);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't create DMA map for TX descs\n");
goto fail_5;
}
}
/* Create DMA maps for RX buffers */
for (i = 0; i < VGE_NRXDESC; i++) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1, MCLBYTES, 0, BUS_DMA_NOWAIT,
&sc->sc_rxsoft[i].rxs_dmamap);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't create DMA map for RX descs\n");
goto fail_6;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
return 0;
fail_6:
for (i = 0; i < VGE_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxsoft[i].rxs_dmamap);
}
fail_5:
for (i = 0; i < VGE_NTXDESC; i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_4:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
sizeof(struct vge_control_data));
fail_2:
bus_dmamem_free(sc->sc_dmat, &seg, nseg);
fail_1:
return ENOMEM;
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static void
vge_attach(device_t parent, device_t self, void *aux)
{
uint8_t *eaddr;
struct vge_softc *sc = device_private(self);
struct ifnet *ifp;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
const char *intrstr;
pci_intr_handle_t ih;
uint16_t val;
char intrbuf[PCI_INTRSTR_LEN];
sc->sc_dev = self;
pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);
/* Make sure bus-mastering is enabled */
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
PCI_COMMAND_MASTER_ENABLE);
/*
* Map control/status registers.
*/
if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
&sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
aprint_error_dev(self, "couldn't map memory\n");
return;
}
/*
* Map and establish our interrupt.
*/
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(self, "unable to map interrupt\n");
return;
}
intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
sc->sc_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, vge_intr,
sc, device_xname(self));
if (sc->sc_intrhand == NULL) {
aprint_error_dev(self, "unable to establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
/* Reset the adapter. */
vge_reset(sc);
/*
* Get station address from the EEPROM.
*/
eaddr = sc->sc_eaddr;
val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
eaddr[0] = val & 0xff;
eaddr[1] = val >> 8;
val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
eaddr[2] = val & 0xff;
eaddr[3] = val >> 8;
val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
eaddr[4] = val & 0xff;
eaddr[5] = val >> 8;
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(eaddr));
/*
* Use the 32bit tag. Hardware supports 48bit physical addresses,
* but we don't use that for now.
*/
sc->sc_dmat = pa->pa_dmat;
if (vge_allocmem(sc) != 0)
return;
ifp = &sc->sc_ethercom.ec_if;
ifp->if_softc = sc;
strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
ifp->if_mtu = ETHERMTU;
ifp->if_baudrate = IF_Gbps(1);
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = vge_ioctl;
ifp->if_start = vge_start;
ifp->if_init = vge_init;
ifp->if_stop = vge_stop;
/*
* We can support 802.1Q VLAN-sized frames and jumbo
* Ethernet frames.
*/
sc->sc_ethercom.ec_capabilities |=
ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
ETHERCAP_VLAN_HWTAGGING;
/*
* We can do IPv4/TCPv4/UDPv4 checksums in hardware.
*/
ifp->if_capabilities |=
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
#ifdef DEVICE_POLLING
#ifdef IFCAP_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
#endif
ifp->if_watchdog = vge_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, uimax(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
IFQ_SET_READY(&ifp->if_snd);
/*
* Initialize our media structures and probe the MII.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = vge_miibus_readreg;
sc->sc_mii.mii_writereg = vge_miibus_writereg;
sc->sc_mii.mii_statchg = vge_miibus_statchg;
sc->sc_ethercom.ec_mii = &sc->sc_mii;
ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
ether_mediastatus);
mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, MIIF_DOPAUSE);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
/*
* Attach the interface.
*/
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, eaddr);
ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
callout_init(&sc->sc_timeout, 0);
callout_setfunc(&sc->sc_timeout, vge_tick, sc);
/*
* Make sure the interface is shutdown during reboot.
*/
if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
}
static int
vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
{
struct mbuf *m_new;
struct vge_rxdesc *rxd;
struct vge_rxsoft *rxs;
bus_dmamap_t map;
int i;
#ifdef DIAGNOSTIC
uint32_t rd_sts;
#endif
m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return ENOBUFS;
MCLGET(m_new, M_DONTWAIT);
if ((m_new->m_flags & M_EXT) == 0) {
m_freem(m_new);
return ENOBUFS;
}
m = m_new;
} else
m->m_data = m->m_ext.ext_buf;
/*
* This is part of an evil trick to deal with non-x86 platforms.
* The VIA chip requires RX buffers to be aligned on 32-bit
* boundaries, but that will hose non-x86 machines. To get around
* this, we leave some empty space at the start of each buffer
* and for non-x86 hosts, we copy the buffer back two bytes
* to achieve word alignment. This is slightly more efficient
* than allocating a new buffer, copying the contents, and
* discarding the old buffer.
*/
m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
#ifndef __NO_STRICT_ALIGNMENT
m->m_data += VGE_RX_PAD;
#endif
rxs = &sc->sc_rxsoft[idx];
map = rxs->rxs_dmamap;
if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
goto out;
rxd = &sc->sc_rxdescs[idx];
#ifdef DIAGNOSTIC
/* If this descriptor is still owned by the chip, bail. */
VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
rd_sts = le32toh(rxd->rd_sts);
VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
if (rd_sts & VGE_RDSTS_OWN) {
panic("%s: tried to map busy RX descriptor",
device_xname(sc->sc_dev));
}
#endif
rxs->rxs_mbuf = m;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREREAD);
rxd->rd_buflen =
htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
rxd->rd_sts = 0;
rxd->rd_ctl = 0;
VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Note: the manual fails to document the fact that for
* proper opration, the driver needs to replentish the RX
* DMA ring 4 descriptors at a time (rather than one at a
* time, like most chips). We can allocate the new buffers
* but we should not set the OWN bits until we're ready
* to hand back 4 of them in one shot.
*/
#define VGE_RXCHUNK 4
sc->sc_rx_consumed++;
if (sc->sc_rx_consumed == VGE_RXCHUNK) {
for (i = idx; i != idx - VGE_RXCHUNK; i--) {
KASSERT(i >= 0);
sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
VGE_RXDESCSYNC(sc, i,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
sc->sc_rx_consumed = 0;
}
return 0;
out:
if (m_new != NULL)
m_freem(m_new);
return ENOMEM;
}
#ifndef __NO_STRICT_ALIGNMENT
static inline void
vge_fixup_rx(struct mbuf *m)
{
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - 1;
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= ETHER_ALIGN;
}
#endif
/*
* RX handler. We support the reception of jumbo frames that have
* been fragmented across multiple 2K mbuf cluster buffers.
*/
static void
vge_rxeof(struct vge_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
int idx, total_len, lim;
struct vge_rxdesc *cur_rxd;
struct vge_rxsoft *rxs;
uint32_t rxstat, rxctl;
ifp = &sc->sc_ethercom.ec_if;
lim = 0;
/* Invalidate the descriptor memory */
for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
cur_rxd = &sc->sc_rxdescs[idx];
VGE_RXDESCSYNC(sc, idx,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
rxstat = le32toh(cur_rxd->rd_sts);
if ((rxstat & VGE_RDSTS_OWN) != 0) {
VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
break;
}
rxctl = le32toh(cur_rxd->rd_ctl);
rxs = &sc->sc_rxsoft[idx];
m = rxs->rxs_mbuf;
total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
/* Invalidate the RX mbuf and unload its map */
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
/*
* If the 'start of frame' bit is set, this indicates
* either the first fragment in a multi-fragment receive,
* or an intermediate fragment. Either way, we want to
* accumulate the buffers.
*/
if (rxstat & VGE_RXPKT_SOF) {
m->m_len = VGE_RX_BUFSIZE;
if (sc->sc_rx_mhead == NULL)
sc->sc_rx_mhead = sc->sc_rx_mtail = m;
else {
m->m_flags &= ~M_PKTHDR;
sc->sc_rx_mtail->m_next = m;
sc->sc_rx_mtail = m;
}
vge_newbuf(sc, idx, NULL);
continue;
}
/*
* Bad/error frames will have the RXOK bit cleared.
* However, there's one error case we want to allow:
* if a VLAN tagged frame arrives and the chip can't
* match it against the CAM filter, it considers this
* a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
* We don't want to drop the frame though: our VLAN
* filtering is done in software.
*/
if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
(rxstat & VGE_RDSTS_VIDM) == 0 &&
(rxstat & VGE_RDSTS_CSUMERR) == 0) {
ifp->if_ierrors++;
/*
* If this is part of a multi-fragment packet,
* discard all the pieces.
*/
if (sc->sc_rx_mhead != NULL) {
m_freem(sc->sc_rx_mhead);
sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
}
vge_newbuf(sc, idx, m);
continue;
}
/*
* If allocating a replacement mbuf fails,
* reload the current one.
*/
if (vge_newbuf(sc, idx, NULL)) {
ifp->if_ierrors++;
if (sc->sc_rx_mhead != NULL) {
m_freem(sc->sc_rx_mhead);
sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
}
vge_newbuf(sc, idx, m);
continue;
}
if (sc->sc_rx_mhead != NULL) {
m->m_len = total_len % VGE_RX_BUFSIZE;
/*
* Special case: if there's 4 bytes or less
* in this buffer, the mbuf can be discarded:
* the last 4 bytes is the CRC, which we don't
* care about anyway.
*/
if (m->m_len <= ETHER_CRC_LEN) {
sc->sc_rx_mtail->m_len -=
(ETHER_CRC_LEN - m->m_len);
m_freem(m);
} else {
m->m_len -= ETHER_CRC_LEN;
m->m_flags &= ~M_PKTHDR;
sc->sc_rx_mtail->m_next = m;
}
m = sc->sc_rx_mhead;
sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
} else
m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
#ifndef __NO_STRICT_ALIGNMENT
vge_fixup_rx(m);
#endif
m_set_rcvif(m, ifp);
/* Do RX checksumming if enabled */
if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
/* Check IP header checksum */
if (rxctl & VGE_RDCTL_IPPKT)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
}
if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
/* Check UDP checksum */
if (rxctl & VGE_RDCTL_TCPPKT)
m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
}
if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
/* Check UDP checksum */
if (rxctl & VGE_RDCTL_UDPPKT)
m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
}
if (rxstat & VGE_RDSTS_VTAG) {
/*
* We use bswap16() here because:
* On LE machines, tag is stored in BE as stream data.
* On BE machines, tag is stored in BE as stream data
* but it was already swapped by le32toh() above.
*/
vlan_set_tag(m, bswap16(rxctl & VGE_RDCTL_VLANID));
}
if_percpuq_enqueue(ifp->if_percpuq, m);
lim++;
if (lim == VGE_NRXDESC)
break;
}
sc->sc_rx_prodidx = idx;
CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
}
static void
vge_txeof(struct vge_softc *sc)
{
struct ifnet *ifp;
struct vge_txsoft *txs;
uint32_t txstat;
int idx;
ifp = &sc->sc_ethercom.ec_if;
for (idx = sc->sc_tx_considx;
sc->sc_tx_free < VGE_NTXDESC;
idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
VGE_TXDESCSYNC(sc, idx,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
txstat = le32toh(sc->sc_txdescs[idx].td_sts);
VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
if (txstat & VGE_TDSTS_OWN) {
break;
}
txs = &sc->sc_txsoft[idx];
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
ifp->if_collisions++;
if (txstat & VGE_TDSTS_TXERR)
ifp->if_oerrors++;
else
ifp->if_opackets++;
}
sc->sc_tx_considx = idx;
if (sc->sc_tx_free > 0) {
ifp->if_flags &= ~IFF_OACTIVE;
}
/*
* If not all descriptors have been released reaped yet,
* reload the timer so that we will eventually get another
* interrupt that will cause us to re-enter this routine.
* This is done in case the transmitter has gone idle.
*/
if (sc->sc_tx_free < VGE_NTXDESC)
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
else
ifp->if_timer = 0;
}
static void
vge_tick(void *arg)
{
struct vge_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
int s;
sc = arg;
ifp = &sc->sc_ethercom.ec_if;
mii = &sc->sc_mii;
s = splnet();
callout_schedule(&sc->sc_timeout, hz);
mii_tick(mii);
if (sc->sc_link) {
if ((mii->mii_media_status & IFM_ACTIVE) == 0)
sc->sc_link = 0;
} else {
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->sc_link = 1;
if (!IFQ_IS_EMPTY(&ifp->if_snd))
vge_start(ifp);
}
}
splx(s);
}
static int
vge_intr(void *arg)
{
struct vge_softc *sc;
struct ifnet *ifp;
uint32_t status;
int claim;
sc = arg;
claim = 0;
if (sc->sc_suspended) {
return claim;
}
ifp = &sc->sc_ethercom.ec_if;
if ((ifp->if_flags & IFF_UP) == 0) {
return claim;
}
/* Disable interrupts */
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
for (;;) {
status = CSR_READ_4(sc, VGE_ISR);
/* If the card has gone away the read returns 0xffffffff. */
if (status == 0xFFFFFFFF)
break;
if (status) {
claim = 1;
CSR_WRITE_4(sc, VGE_ISR, status);
}
if ((status & VGE_INTRS) == 0)
break;
if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
vge_rxeof(sc);
if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
vge_rxeof(sc);
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
}
if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
vge_txeof(sc);
if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
vge_init(ifp);
if (status & VGE_ISR_LINKSTS)
vge_tick(sc);
}
/* Re-enable interrupts */
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
if (claim)
if_schedule_deferred_start(ifp);
return claim;
}
static int
vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
{
struct vge_txsoft *txs;
struct vge_txdesc *txd;
struct vge_txfrag *f;
struct mbuf *m_new;
bus_dmamap_t map;
int m_csumflags, seg, error, flags;
size_t sz;
uint32_t td_sts, td_ctl;
KASSERT(sc->sc_tx_free > 0);
txd = &sc->sc_txdescs[idx];
#ifdef DIAGNOSTIC
/* If this descriptor is still owned by the chip, bail. */
VGE_TXDESCSYNC(sc, idx,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
td_sts = le32toh(txd->td_sts);
VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
if (td_sts & VGE_TDSTS_OWN) {
return ENOBUFS;
}
#endif
/*
* Preserve m_pkthdr.csum_flags here since m_head might be
* updated by m_defrag()
*/
m_csumflags = m_head->m_pkthdr.csum_flags;
txs = &sc->sc_txsoft[idx];
map = txs->txs_dmamap;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
/* If too many segments to map, coalesce */
if (error == EFBIG ||
(m_head->m_pkthdr.len < ETHER_PAD_LEN &&
map->dm_nsegs == VGE_TX_FRAGS)) {
m_new = m_defrag(m_head, M_DONTWAIT);
if (m_new == NULL)
return EFBIG;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
m_new, BUS_DMA_NOWAIT);
if (error) {
m_freem(m_new);
return error;
}
m_head = m_new;
} else if (error)
return error;
txs->txs_mbuf = m_head;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
}
/* Argh. This chip does not autopad short frames */
sz = m_head->m_pkthdr.len;
if (sz < ETHER_PAD_LEN) {
f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
vge_set_txaddr(f, VGE_CDPADADDR(sc));
sz = ETHER_PAD_LEN;
seg++;
}
VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
/*
* When telling the chip how many segments there are, we
* must use nsegs + 1 instead of just nsegs. Darned if I
* know why.
*/
seg++;
flags = 0;
if (m_csumflags & M_CSUM_IPv4)
flags |= VGE_TDCTL_IPCSUM;
if (m_csumflags & M_CSUM_TCPv4)
flags |= VGE_TDCTL_TCPCSUM;
if (m_csumflags & M_CSUM_UDPv4)
flags |= VGE_TDCTL_UDPCSUM;
td_sts = sz << 16;
td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
if (sz > ETHERMTU + ETHER_HDR_LEN)
td_ctl |= VGE_TDCTL_JUMBO;
/*
* Set up hardware VLAN tagging.
*/
if (vlan_has_tag(m_head)) {
/*
* No need htons() here since vge(4) chip assumes
* that tags are written in little endian and
* we already use htole32() here.
*/
td_ctl |= vlan_get_tag(m_head) | VGE_TDCTL_VTAG;
}
txd->td_ctl = htole32(td_ctl);
txd->td_sts = htole32(td_sts);
VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_tx_free--;
return 0;
}
/*
* Main transmit routine.
*/
static void
vge_start(struct ifnet *ifp)
{
struct vge_softc *sc;
struct vge_txsoft *txs;
struct mbuf *m_head;
int idx, pidx, ofree, error;
sc = ifp->if_softc;
if (!sc->sc_link ||
(ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
return;
}
m_head = NULL;
idx = sc->sc_tx_prodidx;
pidx = VGE_PREV_TXDESC(idx);
ofree = sc->sc_tx_free;
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
for (;;) {
/* Grab a packet off the queue. */
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (sc->sc_tx_free == 0) {
/*
* All slots used, stop for now.
*/
ifp->if_flags |= IFF_OACTIVE;
break;
}
txs = &sc->sc_txsoft[idx];
KASSERT(txs->txs_mbuf == NULL);
if ((error = vge_encap(sc, m_head, idx))) {
if (error == EFBIG) {
printf("%s: Tx packet consumes too many "
"DMA segments, dropping...\n",
device_xname(sc->sc_dev));
IFQ_DEQUEUE(&ifp->if_snd, m_head);
m_freem(m_head);
continue;
}
/*
* Short on resources, just stop for now.
*/
if (error == ENOBUFS)
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m_head);
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
htole16(VGE_TXDESC_Q);
VGE_TXFRAGSYNC(sc, pidx, 1,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
if (txs->txs_mbuf != m_head) {
m_freem(m_head);
m_head = txs->txs_mbuf;
}
pidx = idx;
idx = VGE_NEXT_TXDESC(idx);
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
bpf_mtap(ifp, m_head, BPF_D_OUT);
}
if (sc->sc_tx_free < ofree) {
/* TX packet queued */
sc->sc_tx_prodidx = idx;
/* Issue a transmit command. */
CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
/*
* Use the countdown timer for interrupt moderation.
* 'TX done' interrupts are disabled. Instead, we reset the
* countdown timer, which will begin counting until it hits
* the value in the SSTIMER register, and then trigger an
* interrupt. Each time we set the TIMER0_ENABLE bit, the
* the timer count is reloaded. Only when the transmitter
* is idle will the timer hit 0 and an interrupt fire.
*/
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
}
static int
vge_init(struct ifnet *ifp)
{
struct vge_softc *sc;
int i, rc = 0;
sc = ifp->if_softc;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
vge_stop(ifp, 0);
vge_reset(sc);
/* Initialize the RX descriptors and mbufs. */
memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
sc->sc_rx_consumed = 0;
for (i = 0; i < VGE_NRXDESC; i++) {
if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
printf("%s: unable to allocate or map rx buffer\n",
device_xname(sc->sc_dev));
return 1; /* XXX */
}
}
sc->sc_rx_prodidx = 0;
sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
/* Initialize the TX descriptors and mbufs. */
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
for (i = 0; i < VGE_NTXDESC; i++)
sc->sc_txsoft[i].txs_mbuf = NULL;
sc->sc_tx_prodidx = 0;
sc->sc_tx_considx = 0;
sc->sc_tx_free = VGE_NTXDESC;
/* Set our station address */
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
/*
* Set receive FIFO threshold. Also allow transmission and
* reception of VLAN tagged frames.
*/
CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
/* Set DMA burst length */
CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
/* Set collision backoff algorithm */
CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
/* Disable LPSEL field in priority resolution */
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
/*
* Load the addresses of the DMA queues into the chip.
* Note that we only use one transmit queue.
*/
CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
/* Enable and wake up the RX descriptor queue */
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
/* Enable the TX descriptor queue */
CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
/* Set up the receive filter -- allow large frames for VLANs. */
CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
}
/* Set capture broadcast bit to capture broadcast frames. */
if (ifp->if_flags & IFF_BROADCAST) {
CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
}
/* Set multicast bit to capture multicast frames. */
if (ifp->if_flags & IFF_MULTICAST) {
CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
}
/* Init the cam filter. */
vge_cam_clear(sc);
/* Init the multicast filter. */
vge_setmulti(sc);
/* Enable flow control */
CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
/* Enable jumbo frame reception (if desired) */
/* Start the MAC. */
CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
CSR_WRITE_1(sc, VGE_CRS0,
VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
/*
* Configure one-shot timer for microsecond
* resulution and load it for 500 usecs.
*/
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
CSR_WRITE_2(sc, VGE_SSTIMER, 400);
/*
* Configure interrupt moderation for receive. Enable
* the holdoff counter and load it, and set the RX
* suppression count to the number of descriptors we
* want to allow before triggering an interrupt.
* The holdoff timer is in units of 20 usecs.
*/
#ifdef notyet
CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
/* Select the interrupt holdoff timer page. */
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
/* Enable use of the holdoff timer. */
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
/* Select the RX suppression threshold page. */
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
/* Restore the page select bits. */
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
#endif
#ifdef DEVICE_POLLING
/*
* Disable interrupts if we are polling.
*/
if (ifp->if_flags & IFF_POLLING) {
CSR_WRITE_4(sc, VGE_IMR, 0);
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
} else /* otherwise ... */
#endif /* DEVICE_POLLING */
{
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
CSR_WRITE_4(sc, VGE_ISR, 0);
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
}
if ((rc = ether_mediachange(ifp)) != 0)
goto out;
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->sc_if_flags = 0;
sc->sc_link = 0;
callout_schedule(&sc->sc_timeout, hz);
out:
return rc;
}
static void
vge_miibus_statchg(struct ifnet *ifp)
{
struct vge_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
/*
* If the user manually selects a media mode, we need to turn
* on the forced MAC mode bit in the DIAGCTL register. If the
* user happens to choose a full duplex mode, we also need to
* set the 'force full duplex' bit. This applies only to
* 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
* mode is disabled, and in 1000baseT mode, full duplex is
* always implied, so we turn on the forced mode bit but leave
* the FDX bit cleared.
*/
switch (IFM_SUBTYPE(ife->ifm_media)) {
case IFM_AUTO:
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
break;
case IFM_1000_T:
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
break;
case IFM_100_TX:
case IFM_10_T:
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
if ((ife->ifm_media & IFM_FDX) != 0) {
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
} else {
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
}
break;
default:
printf("%s: unknown media type: %x\n",
device_xname(sc->sc_dev),
IFM_SUBTYPE(ife->ifm_media));
break;
}
}
static int
vge_ifflags_cb(struct ethercom *ec)
{
struct ifnet *ifp = &ec->ec_if;
struct vge_softc *sc = ifp->if_softc;
int change = ifp->if_flags ^ sc->sc_if_flags;
if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
return ENETRESET;
else if ((change & IFF_PROMISC) == 0)
return 0;
if ((ifp->if_flags & IFF_PROMISC) == 0)
CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
else
CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
vge_setmulti(sc);
return 0;
}
static int
vge_ioctl(struct ifnet *ifp, u_long command, void *data)
{
struct vge_softc *sc;
int s, error;
sc = ifp->if_softc;
error = 0;
s = splnet();
if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
error = 0;
if (command != SIOCADDMULTI && command != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
vge_setmulti(sc);
}
}
sc->sc_if_flags = ifp->if_flags;
splx(s);
return error;
}
static void
vge_watchdog(struct ifnet *ifp)
{
struct vge_softc *sc;
int s;
sc = ifp->if_softc;
s = splnet();
printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
ifp->if_oerrors++;
vge_txeof(sc);
vge_rxeof(sc);
vge_init(ifp);
splx(s);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
vge_stop(struct ifnet *ifp, int disable)
{
struct vge_softc *sc = ifp->if_softc;
struct vge_txsoft *txs;
struct vge_rxsoft *rxs;
int i, s;
s = splnet();
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
#ifdef DEVICE_POLLING
ether_poll_deregister(ifp);
#endif /* DEVICE_POLLING */
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
if (sc->sc_rx_mhead != NULL) {
m_freem(sc->sc_rx_mhead);
sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
}
/* Free the TX list buffers. */
for (i = 0; i < VGE_NTXDESC; i++) {
txs = &sc->sc_txsoft[i];
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
}
/* Free the RX list buffers. */
for (i = 0; i < VGE_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
splx(s);
}
#if VGE_POWER_MANAGEMENT
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
vge_suspend(device_t dev)
{
struct vge_softc *sc;
int i;
sc = device_get_softc(dev);
vge_stop(sc);
for (i = 0; i < 5; i++)
sc->sc_saved_maps[i] =
pci_read_config(dev, PCIR_MAPS + i * 4, 4);
sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
sc->suspended = 1;
return 0;
}
/*
* Device resume routine. Restore some PCI settings in case the BIOS
* doesn't, re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
vge_resume(device_t dev)
{
struct vge_softc *sc;
struct ifnet *ifp;
int i;
sc = device_private(dev);
ifp = &sc->sc_ethercom.ec_if;
/* better way to do this? */
for (i = 0; i < 5; i++)
pci_write_config(dev, PCIR_MAPS + i * 4,
sc->sc_saved_maps[i], 4);
pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
/* reenable busmastering */
pci_enable_busmaster(dev);
pci_enable_io(dev, SYS_RES_MEMORY);
/* reinitialize interface if necessary */
if (ifp->if_flags & IFF_UP)
vge_init(sc);
sc->suspended = 0;
return 0;
}
#endif
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static bool
vge_shutdown(device_t self, int howto)
{
struct vge_softc *sc;
sc = device_private(self);
vge_stop(&sc->sc_ethercom.ec_if, 1);
return true;
}