NetBSD/sys/dev/mm.c

449 lines
10 KiB
C

/* $NetBSD: mm.c,v 1.24 2019/02/05 11:33:13 mrg Exp $ */
/*-
* Copyright (c) 2002, 2008, 2010 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Christos Zoulas, Joerg Sonnenberger and Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Special /dev/{mem,kmem,zero,null} memory devices.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: mm.c,v 1.24 2019/02/05 11:33:13 mrg Exp $");
#include "opt_compat_netbsd.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/uio.h>
#include <sys/termios.h>
#include <dev/mm.h>
#include <uvm/uvm_extern.h>
static void * dev_zero_page __read_mostly;
static kmutex_t dev_mem_lock __cacheline_aligned;
static vaddr_t dev_mem_addr __read_mostly;
static dev_type_open(mm_open);
static dev_type_read(mm_readwrite);
static dev_type_ioctl(mm_ioctl);
static dev_type_mmap(mm_mmap);
static dev_type_ioctl(mm_ioctl);
const struct cdevsw mem_cdevsw = {
.d_open = mm_open,
.d_close = nullclose,
.d_read = mm_readwrite,
.d_write = mm_readwrite,
.d_ioctl = mm_ioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = mm_mmap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_MPSAFE
};
#ifdef pmax /* XXX */
const struct cdevsw mem_ultrix_cdevsw = {
.d_open = nullopen,
.d_close = nullclose,
.d_read = mm_readwrite,
.d_write = mm_readwrite,
.d_ioctl = mm_ioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = mm_mmap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_MPSAFE
};
#endif
static int
mm_open(dev_t dev, int flag, int mode, struct lwp *l)
{
#ifdef __HAVE_MM_MD_OPEN
int error;
if ((error = mm_md_open(dev, flag, mode, l)) != 0)
return error;
#endif
l->l_proc->p_flag |= PK_KMEM;
return 0;
}
/*
* mm_init: initialize memory device driver.
*/
void
mm_init(void)
{
vaddr_t pg;
mutex_init(&dev_mem_lock, MUTEX_DEFAULT, IPL_NONE);
/* Read-only zero-page. */
pg = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
KASSERT(pg != 0);
pmap_protect(pmap_kernel(), pg, pg + PAGE_SIZE, VM_PROT_READ);
pmap_update(pmap_kernel());
dev_zero_page = (void *)pg;
#ifndef __HAVE_MM_MD_CACHE_ALIASING
/* KVA for mappings during I/O. */
dev_mem_addr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
UVM_KMF_VAONLY|UVM_KMF_WAITVA);
KASSERT(dev_mem_addr != 0);
#else
dev_mem_addr = 0;
#endif
}
/*
* dev_mem_getva: get a special virtual address. If architecture requires,
* allocate VA according to PA, which avoids cache-aliasing issues. Use a
* constant, general mapping address otherwise.
*/
static inline vaddr_t
dev_mem_getva(paddr_t pa, int color)
{
#ifdef __HAVE_MM_MD_CACHE_ALIASING
return uvm_km_alloc(kernel_map, PAGE_SIZE,
color & uvmexp.colormask,
UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
#else
return dev_mem_addr;
#endif
}
static inline void
dev_mem_relva(paddr_t pa, vaddr_t va)
{
#ifdef __HAVE_MM_MD_CACHE_ALIASING
uvm_km_free(kernel_map, va, PAGE_SIZE, UVM_KMF_VAONLY);
#else
KASSERT(dev_mem_addr == va);
#endif
}
/*
* dev_kmem_readwrite: helper for DEV_MEM (/dev/mem) case of R/W.
*/
static int
dev_mem_readwrite(struct uio *uio, struct iovec *iov)
{
paddr_t paddr;
vaddr_t vaddr;
vm_prot_t prot;
size_t len, offset;
bool have_direct;
int error;
int color = 0;
/* Check for wrap around. */
if ((uintptr_t)uio->uio_offset != uio->uio_offset) {
return EFAULT;
}
paddr = uio->uio_offset & ~PAGE_MASK;
prot = (uio->uio_rw == UIO_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
error = mm_md_physacc(paddr, prot);
if (error) {
return error;
}
offset = uio->uio_offset & PAGE_MASK;
len = MIN(uio->uio_resid, PAGE_SIZE - offset);
#ifdef __HAVE_MM_MD_CACHE_ALIASING
have_direct = mm_md_page_color(paddr, &color);
#else
have_direct = true;
color = 0;
#endif
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
/* Is physical address directly mapped? Return VA. */
if (have_direct)
have_direct = mm_md_direct_mapped_phys(paddr, &vaddr);
#else
vaddr = 0;
have_direct = false;
#endif
if (!have_direct) {
/* Get a special virtual address. */
const vaddr_t va = dev_mem_getva(paddr, color);
/* Map selected KVA to physical address. */
mutex_enter(&dev_mem_lock);
pmap_kenter_pa(va, paddr, prot, 0);
pmap_update(pmap_kernel());
/* Perform I/O. */
vaddr = va + offset;
error = uiomove((void *)vaddr, len, uio);
/* Unmap, flush before unlock. */
pmap_kremove(va, PAGE_SIZE);
pmap_update(pmap_kernel());
mutex_exit(&dev_mem_lock);
/* "Release" the virtual address. */
dev_mem_relva(paddr, va);
} else {
/* Direct map, just perform I/O. */
vaddr += offset;
error = uiomove((void *)vaddr, len, uio);
}
return error;
}
/*
* dev_kmem_readwrite: helper for DEV_KMEM (/dev/kmem) case of R/W.
*/
static int
dev_kmem_readwrite(struct uio *uio, struct iovec *iov)
{
void *addr;
size_t len, offset;
vm_prot_t prot;
int error;
bool md_kva;
/* Check for wrap around. */
addr = (void *)(intptr_t)uio->uio_offset;
if ((uintptr_t)addr != uio->uio_offset) {
return EFAULT;
}
/*
* Handle non-page aligned offset.
* Otherwise, we operate in page-by-page basis.
*/
offset = uio->uio_offset & PAGE_MASK;
len = MIN(uio->uio_resid, PAGE_SIZE - offset);
prot = (uio->uio_rw == UIO_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
md_kva = false;
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_IO
paddr_t paddr;
/* MD case: is this is a directly mapped address? */
if (mm_md_direct_mapped_io(addr, &paddr)) {
/* If so, validate physical address. */
error = mm_md_physacc(paddr, prot);
if (error) {
return error;
}
md_kva = true;
}
#endif
if (!md_kva) {
bool checked = false;
#ifdef __HAVE_MM_MD_KERNACC
/* MD check for the address. */
error = mm_md_kernacc(addr, prot, &checked);
if (error) {
return error;
}
#endif
/* UVM check for the address (unless MD indicated to not). */
if (!checked && !uvm_kernacc(addr, len, prot)) {
return EFAULT;
}
}
error = uiomove(addr, len, uio);
return error;
}
/*
* dev_zero_readwrite: helper for DEV_ZERO (/dev/null) case of R/W.
*/
static inline int
dev_zero_readwrite(struct uio *uio, struct iovec *iov)
{
size_t len;
/* Nothing to do for the write case. */
if (uio->uio_rw == UIO_WRITE) {
uio->uio_resid = 0;
return 0;
}
/*
* Read in page-by-page basis, caller will continue.
* Cut appropriately for a single/last-iteration cases.
*/
len = MIN(iov->iov_len, PAGE_SIZE);
return uiomove(dev_zero_page, len, uio);
}
/*
* mm_readwrite: general memory R/W function.
*/
static int
mm_readwrite(dev_t dev, struct uio *uio, int flags)
{
struct iovec *iov;
int error;
#ifdef __HAVE_MM_MD_READWRITE
/* If defined - there are extra MD cases. */
switch (minor(dev)) {
case DEV_MEM:
case DEV_KMEM:
case DEV_NULL:
case DEV_ZERO:
#if defined(COMPAT_16) && defined(__arm)
case _DEV_ZERO_oARM:
#endif
break;
default:
return mm_md_readwrite(dev, uio);
}
#endif
error = 0;
while (uio->uio_resid > 0 && error == 0) {
iov = uio->uio_iov;
if (iov->iov_len == 0) {
/* Processed; next I/O vector. */
uio->uio_iov++;
uio->uio_iovcnt--;
KASSERT(uio->uio_iovcnt >= 0);
continue;
}
/* Helper functions will process in page-by-page basis. */
switch (minor(dev)) {
case DEV_MEM:
error = dev_mem_readwrite(uio, iov);
break;
case DEV_KMEM:
error = dev_kmem_readwrite(uio, iov);
break;
case DEV_NULL:
if (uio->uio_rw == UIO_WRITE) {
uio->uio_resid = 0;
}
/* Break directly out of the loop. */
return 0;
case DEV_FULL:
if (uio->uio_rw == UIO_WRITE) {
return ENOSPC;
}
#if defined(COMPAT_16) && defined(__arm)
/* FALLTHROUGH */
case _DEV_ZERO_oARM:
#endif
/* FALLTHROUGH */
case DEV_ZERO:
error = dev_zero_readwrite(uio, iov);
break;
default:
error = ENXIO;
break;
}
}
return error;
}
/*
* mm_mmap: general mmap() handler.
*/
static paddr_t
mm_mmap(dev_t dev, off_t off, int acc)
{
vm_prot_t prot;
#ifdef __HAVE_MM_MD_MMAP
/* If defined - there are extra mmap() MD cases. */
switch (minor(dev)) {
case DEV_MEM:
case DEV_KMEM:
case DEV_NULL:
#if defined(COMPAT_16) && defined(__arm)
case _DEV_ZERO_oARM:
#endif
case DEV_ZERO:
break;
default:
return mm_md_mmap(dev, off, acc);
}
#endif
/*
* /dev/null does not make sense, /dev/kmem is volatile and
* /dev/zero is handled in mmap already.
*/
if (minor(dev) != DEV_MEM) {
return -1;
}
prot = 0;
if (acc & PROT_EXEC)
prot |= VM_PROT_EXECUTE;
if (acc & PROT_READ)
prot |= VM_PROT_READ;
if (acc & PROT_WRITE)
prot |= VM_PROT_WRITE;
/* Validate the physical address. */
if (mm_md_physacc(off, prot) != 0) {
return -1;
}
return off >> PGSHIFT;
}
static int
mm_ioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
{
switch (cmd) {
case FIONBIO:
/* We never block anyway. */
return 0;
case FIOSETOWN:
case FIOGETOWN:
case TIOCGPGRP:
case TIOCSPGRP:
case TIOCGETA:
return ENOTTY;
case FIOASYNC:
if ((*(int *)data) == 0) {
return 0;
}
/* FALLTHROUGH */
default:
return EOPNOTSUPP;
}
}