/* $NetBSD: lfs_vfsops.c,v 1.267 2008/06/28 15:50:20 rumble Exp $ */ /*- * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007 * The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Konrad E. Schroder . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1989, 1991, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95 */ #include __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.267 2008/06/28 15:50:20 rumble Exp $"); #if defined(_KERNEL_OPT) #include "opt_lfs.h" #include "opt_quota.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE(MODULE_CLASS_VFS, lfs, NULL); static int lfs_gop_write(struct vnode *, struct vm_page **, int, int); static bool lfs_issequential_hole(const struct ufsmount *, daddr_t, daddr_t); static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *); void lfs_sysctl_setup(struct sysctllog *); static struct sysctllog *lfs_sysctl_log; extern const struct vnodeopv_desc lfs_vnodeop_opv_desc; extern const struct vnodeopv_desc lfs_specop_opv_desc; extern const struct vnodeopv_desc lfs_fifoop_opv_desc; pid_t lfs_writer_daemon = 0; int lfs_do_flush = 0; #ifdef LFS_KERNEL_RFW int lfs_do_rfw = 0; #endif const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = { &lfs_vnodeop_opv_desc, &lfs_specop_opv_desc, &lfs_fifoop_opv_desc, NULL, }; struct vfsops lfs_vfsops = { MOUNT_LFS, sizeof (struct ufs_args), lfs_mount, ufs_start, lfs_unmount, ufs_root, ufs_quotactl, lfs_statvfs, lfs_sync, lfs_vget, lfs_fhtovp, lfs_vptofh, lfs_init, lfs_reinit, lfs_done, lfs_mountroot, (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp, vfs_stdextattrctl, (void *)eopnotsupp, /* vfs_suspendctl */ genfs_renamelock_enter, genfs_renamelock_exit, (void *)eopnotsupp, lfs_vnodeopv_descs, 0, { NULL, NULL }, }; const struct genfs_ops lfs_genfsops = { .gop_size = lfs_gop_size, .gop_alloc = ufs_gop_alloc, .gop_write = lfs_gop_write, .gop_markupdate = ufs_gop_markupdate, }; static const struct ufs_ops lfs_ufsops = { .uo_itimes = NULL, .uo_update = lfs_update, .uo_truncate = lfs_truncate, .uo_valloc = lfs_valloc, .uo_vfree = lfs_vfree, .uo_balloc = lfs_balloc, }; struct shortlong { const char *sname; const char *lname; }; static int sysctl_lfs_dostats(SYSCTLFN_ARGS) { extern struct lfs_stats lfs_stats; extern int lfs_dostats; int error; error = sysctl_lookup(SYSCTLFN_CALL(rnode)); if (error || newp == NULL) return (error); if (lfs_dostats == 0) memset(&lfs_stats, 0, sizeof(lfs_stats)); return (0); } void lfs_sysctl_setup(struct sysctllog *clog) { int i; extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead, lfs_fs_pagetrip, lfs_ignore_lazy_sync; #ifdef DEBUG extern int lfs_debug_log_subsys[DLOG_MAX]; struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */ { "rollforward", "Debug roll-forward code" }, { "alloc", "Debug inode allocation and free list" }, { "avail", "Debug space-available-now accounting" }, { "flush", "Debug flush triggers" }, { "lockedlist", "Debug locked list accounting" }, { "vnode_verbose", "Verbose per-vnode-written debugging" }, { "vnode", "Debug vnode use during segment write" }, { "segment", "Debug segment writing" }, { "seguse", "Debug segment used-bytes accounting" }, { "cleaner", "Debug cleaning routines" }, { "mount", "Debug mount/unmount routines" }, { "pagecache", "Debug UBC interactions" }, { "dirop", "Debug directory-operation accounting" }, { "malloc", "Debug private malloc accounting" }, }; #endif /* DEBUG */ struct shortlong stat_names[] = { /* Must match lfs.h! */ { "segsused", "Number of new segments allocated" }, { "psegwrites", "Number of partial-segment writes" }, { "psyncwrites", "Number of synchronous partial-segment" " writes" }, { "pcleanwrites", "Number of partial-segment writes by the" " cleaner" }, { "blocktot", "Number of blocks written" }, { "cleanblocks", "Number of blocks written by the cleaner" }, { "ncheckpoints", "Number of checkpoints made" }, { "nwrites", "Number of whole writes" }, { "nsync_writes", "Number of synchronous writes" }, { "wait_exceeded", "Number of times writer waited for" " cleaner" }, { "write_exceeded", "Number of times writer invoked flush" }, { "flush_invoked", "Number of times flush was invoked" }, { "vflush_invoked", "Number of time vflush was called" }, { "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" }, { "clean_vnlocked", "Number of vnodes skipped for vget failure" }, { "segs_reclaimed", "Number of segments reclaimed" }, }; sysctl_createv(&clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "vfs", NULL, NULL, 0, NULL, 0, CTL_VFS, CTL_EOL); sysctl_createv(&clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "lfs", SYSCTL_DESCR("Log-structured file system"), NULL, 0, NULL, 0, CTL_VFS, 5, CTL_EOL); /* * XXX the "5" above could be dynamic, thereby eliminating one * more instance of the "number to vfs" mapping problem, but * "5" is the order as taken from sys/mount.h */ sysctl_createv(&clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "flushindir", NULL, NULL, 0, &lfs_writeindir, 0, CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL); sysctl_createv(&clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "clean_vnhead", NULL, NULL, 0, &lfs_clean_vnhead, 0, CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL); sysctl_createv(&clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "dostats", SYSCTL_DESCR("Maintain statistics on LFS operations"), sysctl_lfs_dostats, 0, &lfs_dostats, 0, CTL_VFS, 5, LFS_DOSTATS, CTL_EOL); sysctl_createv(&clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "pagetrip", SYSCTL_DESCR("How many dirty pages in fs triggers" " a flush"), NULL, 0, &lfs_fs_pagetrip, 0, CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL); sysctl_createv(&clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "ignore_lazy_sync", SYSCTL_DESCR("Lazy Sync is ignored entirely"), NULL, 0, &lfs_ignore_lazy_sync, 0, CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL); #ifdef LFS_KERNEL_RFW sysctl_createv(&clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "rfw", SYSCTL_DESCR("Use in-kernel roll-forward on mount"), NULL, 0, &lfs_do_rfw, 0, CTL_VFS, 5, LFS_DO_RFW, CTL_EOL); #endif sysctl_createv(&clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "stats", SYSCTL_DESCR("Debugging options"), NULL, 0, NULL, 0, CTL_VFS, 5, LFS_STATS, CTL_EOL); for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) { sysctl_createv(&clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, stat_names[i].sname, SYSCTL_DESCR(stat_names[i].lname), NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]), 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL); } #ifdef DEBUG sysctl_createv(&clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "debug", SYSCTL_DESCR("Debugging options"), NULL, 0, NULL, 0, CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL); for (i = 0; i < DLOG_MAX; i++) { sysctl_createv(&clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, dlog_names[i].sname, SYSCTL_DESCR(dlog_names[i].lname), NULL, 0, &(lfs_debug_log_subsys[i]), 0, CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL); } #endif } static int lfs_modcmd(modcmd_t cmd, void *arg) { int error; switch (cmd) { case MODULE_CMD_INIT: error = vfs_attach(&lfs_vfsops); if (error != 0) break; lfs_sysctl_setup(lfs_sysctl_log); break; case MODULE_CMD_FINI: error = vfs_detach(&lfs_vfsops); if (error != 0) break; sysctl_teardown(&lfs_sysctl_log); break; default: error = ENOTTY; break; } return (error); } /* * XXX Same structure as FFS inodes? Should we share a common pool? */ struct pool lfs_inode_pool; struct pool lfs_dinode_pool; struct pool lfs_inoext_pool; struct pool lfs_lbnentry_pool; /* * The writer daemon. UVM keeps track of how many dirty pages we are holding * in lfs_subsys_pages; the daemon flushes the filesystem when this value * crosses the (user-defined) threshhold LFS_MAX_PAGES. */ static void lfs_writerd(void *arg) { struct mount *mp, *nmp; struct lfs *fs; int fsflags; int loopcount; lfs_writer_daemon = curproc->p_pid; mutex_enter(&lfs_lock); for (;;) { mtsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10, &lfs_lock); /* * Look through the list of LFSs to see if any of them * have requested pageouts. */ mutex_enter(&mountlist_lock); for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist; mp = nmp) { if (vfs_busy(mp, &nmp)) { continue; } if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS, sizeof(mp->mnt_stat.f_fstypename)) == 0) { fs = VFSTOUFS(mp)->um_lfs; mutex_enter(&lfs_lock); fsflags = 0; if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) || lfs_dirvcount > LFS_MAX_DIROP) && fs->lfs_dirops == 0) fsflags |= SEGM_CKP; if (fs->lfs_pdflush) { DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n")); fs->lfs_pdflush = 0; lfs_flush_fs(fs, fsflags); mutex_exit(&lfs_lock); } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) { DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n")); mutex_exit(&lfs_lock); lfs_writer_enter(fs, "wrdirop"); lfs_flush_pchain(fs); lfs_writer_leave(fs); } else mutex_exit(&lfs_lock); } vfs_unbusy(mp, false, &nmp); } mutex_exit(&mountlist_lock); /* * If global state wants a flush, flush everything. */ mutex_enter(&lfs_lock); loopcount = 0; if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS || locked_queue_bytes > LFS_MAX_BYTES || lfs_subsys_pages > LFS_MAX_PAGES) { if (lfs_do_flush) { DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n")); } if (locked_queue_count > LFS_MAX_BUFS) { DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n", locked_queue_count, LFS_MAX_BUFS)); } if (locked_queue_bytes > LFS_MAX_BYTES) { DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n", locked_queue_bytes, LFS_MAX_BYTES)); } if (lfs_subsys_pages > LFS_MAX_PAGES) { DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n", lfs_subsys_pages, LFS_MAX_PAGES)); } lfs_flush(NULL, SEGM_WRITERD, 0); lfs_do_flush = 0; } } /* NOTREACHED */ } /* * Initialize the filesystem, most work done by ufs_init. */ void lfs_init() { malloc_type_attach(M_SEGMENT); pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0, "lfsinopl", &pool_allocator_nointr, IPL_NONE); pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0, "lfsdinopl", &pool_allocator_nointr, IPL_NONE); pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0, "lfsinoextpl", &pool_allocator_nointr, IPL_NONE); pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0, "lfslbnpool", &pool_allocator_nointr, IPL_NONE); ufs_init(); #ifdef DEBUG memset(lfs_log, 0, sizeof(lfs_log)); #endif mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&locked_queue_cv, "lfsbuf"); cv_init(&lfs_writing_cv, "lfsflush"); } void lfs_reinit() { ufs_reinit(); } void lfs_done() { ufs_done(); mutex_destroy(&lfs_lock); cv_destroy(&locked_queue_cv); cv_destroy(&lfs_writing_cv); pool_destroy(&lfs_inode_pool); pool_destroy(&lfs_dinode_pool); pool_destroy(&lfs_inoext_pool); pool_destroy(&lfs_lbnentry_pool); malloc_type_detach(M_SEGMENT); } /* * Called by main() when ufs is going to be mounted as root. */ int lfs_mountroot() { extern struct vnode *rootvp; struct mount *mp; struct lwp *l = curlwp; int error; if (device_class(root_device) != DV_DISK) return (ENODEV); if (rootdev == NODEV) return (ENODEV); if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) { vrele(rootvp); return (error); } if ((error = lfs_mountfs(rootvp, mp, l))) { vfs_unbusy(mp, false, NULL); vfs_destroy(mp); return (error); } mutex_enter(&mountlist_lock); CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list); mutex_exit(&mountlist_lock); (void)lfs_statvfs(mp, &mp->mnt_stat); vfs_unbusy(mp, false, NULL); setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp)); return (0); } /* * VFS Operations. * * mount system call */ int lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len) { struct lwp *l = curlwp; struct nameidata nd; struct vnode *devvp; struct ufs_args *args = data; struct ufsmount *ump = NULL; struct lfs *fs = NULL; /* LFS */ int error = 0, update; mode_t accessmode; if (*data_len < sizeof *args) return EINVAL; if (mp->mnt_flag & MNT_GETARGS) { ump = VFSTOUFS(mp); if (ump == NULL) return EIO; args->fspec = NULL; *data_len = sizeof *args; return 0; } update = mp->mnt_flag & MNT_UPDATE; /* Check arguments */ if (args->fspec != NULL) { /* * Look up the name and verify that it's sane. */ NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, args->fspec); if ((error = namei(&nd)) != 0) return (error); devvp = nd.ni_vp; if (!update) { /* * Be sure this is a valid block device */ if (devvp->v_type != VBLK) error = ENOTBLK; else if (bdevsw_lookup(devvp->v_rdev) == NULL) error = ENXIO; } else { /* * Be sure we're still naming the same device * used for our initial mount */ ump = VFSTOUFS(mp); if (devvp != ump->um_devvp) error = EINVAL; } } else { if (!update) { /* New mounts must have a filename for the device */ return (EINVAL); } else { /* Use the extant mount */ ump = VFSTOUFS(mp); devvp = ump->um_devvp; vref(devvp); } } /* * If mount by non-root, then verify that user has necessary * permissions on the device. */ if (error == 0 && kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) { accessmode = VREAD; if (update ? (mp->mnt_iflag & IMNT_WANTRDWR) != 0 : (mp->mnt_flag & MNT_RDONLY) == 0) accessmode |= VWRITE; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_ACCESS(devvp, accessmode, l->l_cred); VOP_UNLOCK(devvp, 0); } if (error) { vrele(devvp); return (error); } if (!update) { int flags; if (mp->mnt_flag & MNT_RDONLY) flags = FREAD; else flags = FREAD|FWRITE; error = VOP_OPEN(devvp, flags, FSCRED); if (error) goto fail; error = lfs_mountfs(devvp, mp, l); /* LFS */ if (error) { vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); (void)VOP_CLOSE(devvp, flags, NOCRED); VOP_UNLOCK(devvp, 0); goto fail; } ump = VFSTOUFS(mp); fs = ump->um_lfs; } else { /* * Update the mount. */ /* * The initial mount got a reference on this * device, so drop the one obtained via * namei(), above. */ vrele(devvp); ump = VFSTOUFS(mp); fs = ump->um_lfs; if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) { /* * Changing from read-only to read/write. * Note in the superblocks that we're writing. */ fs->lfs_ronly = 0; if (fs->lfs_pflags & LFS_PF_CLEAN) { fs->lfs_pflags &= ~LFS_PF_CLEAN; lfs_writesuper(fs, fs->lfs_sboffs[0]); lfs_writesuper(fs, fs->lfs_sboffs[1]); } } if (args->fspec == NULL) return EINVAL; } error = set_statvfs_info(path, UIO_USERSPACE, args->fspec, UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l); if (error == 0) (void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname, sizeof(fs->lfs_fsmnt)); return error; fail: vrele(devvp); return (error); } /* * Common code for mount and mountroot * LFS specific */ int lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l) { struct dlfs *tdfs, *dfs, *adfs; struct lfs *fs; struct ufsmount *ump; struct vnode *vp; struct buf *bp, *abp; struct partinfo dpart; dev_t dev; int error, i, ronly, secsize, fsbsize; kauth_cred_t cred; CLEANERINFO *cip; SEGUSE *sup; daddr_t sb_addr; cred = l ? l->l_cred : NOCRED; /* * Flush out any old buffers remaining from a previous use. */ vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0); VOP_UNLOCK(devvp, 0); if (error) return (error); ronly = (mp->mnt_flag & MNT_RDONLY) != 0; if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) != 0) secsize = DEV_BSIZE; else secsize = dpart.disklab->d_secsize; /* Don't free random space on error. */ bp = NULL; abp = NULL; ump = NULL; sb_addr = LFS_LABELPAD / secsize; while (1) { /* Read in the superblock. */ error = bread(devvp, sb_addr, LFS_SBPAD, cred, 0, &bp); if (error) goto out; dfs = (struct dlfs *)bp->b_data; /* Check the basics. */ if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE || dfs->dlfs_version > LFS_VERSION || dfs->dlfs_bsize < sizeof(struct dlfs)) { DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n")); error = EINVAL; /* XXX needs translation */ goto out; } if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) { DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n", dfs->dlfs_inodefmt)); error = EINVAL; goto out; } if (dfs->dlfs_version == 1) fsbsize = secsize; else { fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb + dfs->dlfs_fsbtodb); /* * Could be, if the frag size is large enough, that we * don't have the "real" primary superblock. If that's * the case, get the real one, and try again. */ if (sb_addr != dfs->dlfs_sboffs[0] << dfs->dlfs_fsbtodb) { DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr" " 0x%llx is not right, trying 0x%llx\n", (long long)sb_addr, (long long)(dfs->dlfs_sboffs[0] << dfs->dlfs_fsbtodb))); sb_addr = dfs->dlfs_sboffs[0] << dfs->dlfs_fsbtodb; brelse(bp, 0); continue; } } break; } /* * Check the second superblock to see which is newer; then mount * using the older of the two. This is necessary to ensure that * the filesystem is valid if it was not unmounted cleanly. */ if (dfs->dlfs_sboffs[1] && dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize) { error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize), LFS_SBPAD, cred, 0, &abp); if (error) goto out; adfs = (struct dlfs *)abp->b_data; if (dfs->dlfs_version == 1) { /* 1s resolution comparison */ if (adfs->dlfs_tstamp < dfs->dlfs_tstamp) tdfs = adfs; else tdfs = dfs; } else { /* monotonic infinite-resolution comparison */ if (adfs->dlfs_serial < dfs->dlfs_serial) tdfs = adfs; else tdfs = dfs; } /* Check the basics. */ if (tdfs->dlfs_magic != LFS_MAGIC || tdfs->dlfs_bsize > MAXBSIZE || tdfs->dlfs_version > LFS_VERSION || tdfs->dlfs_bsize < sizeof(struct dlfs)) { DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock" " sanity failed\n")); error = EINVAL; /* XXX needs translation */ goto out; } } else { DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock" " daddr=0x%x\n", dfs->dlfs_sboffs[1])); error = EINVAL; goto out; } /* Allocate the mount structure, copy the superblock into it. */ fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO); memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs)); /* Compatibility */ if (fs->lfs_version < 2) { fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE; fs->lfs_ibsize = fs->lfs_bsize; fs->lfs_start = fs->lfs_sboffs[0]; fs->lfs_tstamp = fs->lfs_otstamp; fs->lfs_fsbtodb = 0; } if (fs->lfs_resvseg == 0) fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \ MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1)); /* * If we aren't going to be able to write meaningfully to this * filesystem, and were not mounted readonly, bomb out now. */ if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) { DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write," " we need BUFPAGES >= %lld\n", (long long)((bufmem_hiwater / bufmem_lowater) * LFS_INVERSE_MAX_BYTES( fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT))); free(fs, M_UFSMNT); error = EFBIG; /* XXX needs translation */ goto out; } /* Before rolling forward, lock so vget will sleep for other procs */ if (l != NULL) { fs->lfs_flags = LFS_NOTYET; fs->lfs_rfpid = l->l_proc->p_pid; } ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO); ump->um_lfs = fs; ump->um_ops = &lfs_ufsops; ump->um_fstype = UFS1; if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */ brelse(bp, BC_INVAL); brelse(abp, BC_INVAL); } else { brelse(bp, 0); brelse(abp, 0); } bp = NULL; abp = NULL; /* Set up the I/O information */ fs->lfs_devbsize = secsize; fs->lfs_iocount = 0; fs->lfs_diropwait = 0; fs->lfs_activesb = 0; fs->lfs_uinodes = 0; fs->lfs_ravail = 0; fs->lfs_favail = 0; fs->lfs_sbactive = 0; /* Set up the ifile and lock aflags */ fs->lfs_doifile = 0; fs->lfs_writer = 0; fs->lfs_dirops = 0; fs->lfs_nadirop = 0; fs->lfs_seglock = 0; fs->lfs_pdflush = 0; fs->lfs_sleepers = 0; fs->lfs_pages = 0; rw_init(&fs->lfs_fraglock); rw_init(&fs->lfs_iflock); cv_init(&fs->lfs_stopcv, "lfsstop"); /* Set the file system readonly/modify bits. */ fs->lfs_ronly = ronly; if (ronly == 0) fs->lfs_fmod = 1; /* Initialize the mount structure. */ dev = devvp->v_rdev; mp->mnt_data = ump; mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev; mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS); mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0]; mp->mnt_stat.f_namemax = LFS_MAXNAMLEN; mp->mnt_stat.f_iosize = fs->lfs_bsize; mp->mnt_flag |= MNT_LOCAL; mp->mnt_fs_bshift = fs->lfs_bshift; ump->um_flags = 0; ump->um_mountp = mp; ump->um_dev = dev; ump->um_devvp = devvp; ump->um_bptrtodb = fs->lfs_fsbtodb; ump->um_seqinc = fragstofsb(fs, fs->lfs_frag); ump->um_nindir = fs->lfs_nindir; ump->um_lognindir = ffs(fs->lfs_nindir) - 1; for (i = 0; i < MAXQUOTAS; i++) ump->um_quotas[i] = NULLVP; ump->um_maxsymlinklen = fs->lfs_maxsymlinklen; ump->um_dirblksiz = DIRBLKSIZ; ump->um_maxfilesize = fs->lfs_maxfilesize; if (ump->um_maxsymlinklen > 0) mp->mnt_iflag |= IMNT_DTYPE; devvp->v_specmountpoint = mp; /* Set up reserved memory for pageout */ lfs_setup_resblks(fs); /* Set up vdirop tailq */ TAILQ_INIT(&fs->lfs_dchainhd); /* and paging tailq */ TAILQ_INIT(&fs->lfs_pchainhd); /* and delayed segment accounting for truncation list */ LIST_INIT(&fs->lfs_segdhd); /* * We use the ifile vnode for almost every operation. Instead of * retrieving it from the hash table each time we retrieve it here, * artificially increment the reference count and keep a pointer * to it in the incore copy of the superblock. */ if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) { DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error)); goto out; } fs->lfs_ivnode = vp; VREF(vp); /* Set up inode bitmap and order free list */ lfs_order_freelist(fs); /* Set up segment usage flags for the autocleaner. */ fs->lfs_nactive = 0; fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *), M_SEGMENT, M_WAITOK); fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t), M_SEGMENT, M_WAITOK); fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t), M_SEGMENT, M_WAITOK); memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t)); for (i = 0; i < fs->lfs_nseg; i++) { int changed; LFS_SEGENTRY(sup, fs, i, bp); changed = 0; if (!ronly) { if (sup->su_nbytes == 0 && !(sup->su_flags & SEGUSE_EMPTY)) { sup->su_flags |= SEGUSE_EMPTY; ++changed; } else if (!(sup->su_nbytes == 0) && (sup->su_flags & SEGUSE_EMPTY)) { sup->su_flags &= ~SEGUSE_EMPTY; ++changed; } if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) { sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL); ++changed; } } fs->lfs_suflags[0][i] = sup->su_flags; if (changed) LFS_WRITESEGENTRY(sup, fs, i, bp); else brelse(bp, 0); } #ifdef LFS_KERNEL_RFW lfs_roll_forward(fs, mp, l); #endif /* If writing, sb is not clean; record in case of immediate crash */ if (!fs->lfs_ronly) { fs->lfs_pflags &= ~LFS_PF_CLEAN; lfs_writesuper(fs, fs->lfs_sboffs[0]); lfs_writesuper(fs, fs->lfs_sboffs[1]); } /* Allow vget now that roll-forward is complete */ fs->lfs_flags &= ~(LFS_NOTYET); wakeup(&fs->lfs_flags); /* * Initialize the ifile cleaner info with information from * the superblock. */ LFS_CLEANERINFO(cip, fs, bp); cip->clean = fs->lfs_nclean; cip->dirty = fs->lfs_nseg - fs->lfs_nclean; cip->avail = fs->lfs_avail; cip->bfree = fs->lfs_bfree; (void) LFS_BWRITE_LOG(bp); /* Ifile */ /* * Mark the current segment as ACTIVE, since we're going to * be writing to it. */ LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; fs->lfs_nactive++; LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); /* Ifile */ /* Now that roll-forward is done, unlock the Ifile */ vput(vp); /* Start the pagedaemon-anticipating daemon */ if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL, lfs_writerd, NULL, NULL, "lfs_writer") != 0) panic("fork lfs_writer"); printf("WARNING: the log-structured file system is experimental and " "may be unstable\n"); return (0); out: if (bp) brelse(bp, 0); if (abp) brelse(abp, 0); if (ump) { free(ump->um_lfs, M_UFSMNT); free(ump, M_UFSMNT); mp->mnt_data = NULL; } return (error); } /* * unmount system call */ int lfs_unmount(struct mount *mp, int mntflags) { struct lwp *l = curlwp; struct ufsmount *ump; struct lfs *fs; int error, flags, ronly; vnode_t *vp; flags = 0; if (mntflags & MNT_FORCE) flags |= FORCECLOSE; ump = VFSTOUFS(mp); fs = ump->um_lfs; /* Two checkpoints */ lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC); lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC); /* wake up the cleaner so it can die */ lfs_wakeup_cleaner(fs); mutex_enter(&lfs_lock); while (fs->lfs_sleepers) mtsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0, &lfs_lock); mutex_exit(&lfs_lock); #ifdef QUOTA if (mp->mnt_flag & MNT_QUOTA) { int i; error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags); if (error) return (error); for (i = 0; i < MAXQUOTAS; i++) { if (ump->um_quotas[i] == NULLVP) continue; quotaoff(l, mp, i); } /* * Here we fall through to vflush again to ensure * that we have gotten rid of all the system vnodes. */ } #endif if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0) return (error); if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0) return (error); vp = fs->lfs_ivnode; mutex_enter(&vp->v_interlock); if (LIST_FIRST(&vp->v_dirtyblkhd)) panic("lfs_unmount: still dirty blocks on ifile vnode"); mutex_exit(&vp->v_interlock); /* Explicitly write the superblock, to update serial and pflags */ fs->lfs_pflags |= LFS_PF_CLEAN; lfs_writesuper(fs, fs->lfs_sboffs[0]); lfs_writesuper(fs, fs->lfs_sboffs[1]); mutex_enter(&lfs_lock); while (fs->lfs_iocount) mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0, &lfs_lock); mutex_exit(&lfs_lock); /* Finish with the Ifile, now that we're done with it */ vgone(fs->lfs_ivnode); ronly = !fs->lfs_ronly; if (ump->um_devvp->v_type != VBAD) ump->um_devvp->v_specmountpoint = NULL; vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_CLOSE(ump->um_devvp, ronly ? FREAD : FREAD|FWRITE, NOCRED); vput(ump->um_devvp); /* Complain about page leakage */ if (fs->lfs_pages > 0) printf("lfs_unmount: still claim %d pages (%d in subsystem)\n", fs->lfs_pages, lfs_subsys_pages); /* Free per-mount data structures */ free(fs->lfs_ino_bitmap, M_SEGMENT); free(fs->lfs_suflags[0], M_SEGMENT); free(fs->lfs_suflags[1], M_SEGMENT); free(fs->lfs_suflags, M_SEGMENT); lfs_free_resblks(fs); cv_destroy(&fs->lfs_stopcv); rw_destroy(&fs->lfs_fraglock); rw_destroy(&fs->lfs_iflock); free(fs, M_UFSMNT); free(ump, M_UFSMNT); mp->mnt_data = NULL; mp->mnt_flag &= ~MNT_LOCAL; return (error); } /* * Get file system statistics. * * NB: We don't lock to access the superblock here, because it's not * really that important if we get it wrong. */ int lfs_statvfs(struct mount *mp, struct statvfs *sbp) { struct lfs *fs; struct ufsmount *ump; ump = VFSTOUFS(mp); fs = ump->um_lfs; if (fs->lfs_magic != LFS_MAGIC) panic("lfs_statvfs: magic"); sbp->f_bsize = fs->lfs_bsize; sbp->f_frsize = fs->lfs_fsize; sbp->f_iosize = fs->lfs_bsize; sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks); sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs)); KASSERT(sbp->f_bfree <= fs->lfs_dsize); #if 0 if (sbp->f_bfree < 0) sbp->f_bfree = 0; #endif sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs)); if (sbp->f_bfree > sbp->f_bresvd) sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd; else sbp->f_bavail = 0; sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs); sbp->f_ffree = sbp->f_files - fs->lfs_nfiles; sbp->f_favail = sbp->f_ffree; sbp->f_fresvd = 0; copy_statvfs_info(sbp, mp); return (0); } /* * Go through the disk queues to initiate sandbagged IO; * go through the inodes to write those that have been modified; * initiate the writing of the super block if it has been modified. * * Note: we are always called with the filesystem marked `MPBUSY'. */ int lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred) { int error; struct lfs *fs; fs = VFSTOUFS(mp)->um_lfs; if (fs->lfs_ronly) return 0; /* Snapshots should not hose the syncer */ /* * XXX Sync can block here anyway, since we don't have a very * XXX good idea of how much data is pending. If it's more * XXX than a segment and lfs_nextseg is close to the end of * XXX the log, we'll likely block. */ mutex_enter(&lfs_lock); if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) { mutex_exit(&lfs_lock); return 0; } mutex_exit(&lfs_lock); lfs_writer_enter(fs, "lfs_dirops"); /* All syncs must be checkpoints until roll-forward is implemented. */ DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset)); error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0)); lfs_writer_leave(fs); #ifdef QUOTA qsync(mp); #endif return (error); } extern kmutex_t ufs_hashlock; /* * Look up an LFS dinode number to find its incore vnode. If not already * in core, read it in from the specified device. Return the inode locked. * Detection and handling of mount points must be done by the calling routine. */ int lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp) { struct lfs *fs; struct ufs1_dinode *dip; struct inode *ip; struct buf *bp; struct ifile *ifp; struct vnode *vp; struct ufsmount *ump; daddr_t daddr; dev_t dev; int error, retries; struct timespec ts; memset(&ts, 0, sizeof ts); /* XXX gcc */ ump = VFSTOUFS(mp); dev = ump->um_dev; fs = ump->um_lfs; /* * If the filesystem is not completely mounted yet, suspend * any access requests (wait for roll-forward to complete). */ mutex_enter(&lfs_lock); while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid) mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0, &lfs_lock); mutex_exit(&lfs_lock); retry: if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL) return (0); if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) { *vpp = NULL; return (error); } mutex_enter(&ufs_hashlock); if (ufs_ihashget(dev, ino, 0) != NULL) { mutex_exit(&ufs_hashlock); ungetnewvnode(vp); goto retry; } /* Translate the inode number to a disk address. */ if (ino == LFS_IFILE_INUM) daddr = fs->lfs_idaddr; else { /* XXX bounds-check this too */ LFS_IENTRY(ifp, fs, ino, bp); daddr = ifp->if_daddr; if (fs->lfs_version > 1) { ts.tv_sec = ifp->if_atime_sec; ts.tv_nsec = ifp->if_atime_nsec; } brelse(bp, 0); if (daddr == LFS_UNUSED_DADDR) { *vpp = NULLVP; mutex_exit(&ufs_hashlock); ungetnewvnode(vp); return (ENOENT); } } /* Allocate/init new vnode/inode. */ lfs_vcreate(mp, ino, vp); /* * Put it onto its hash chain and lock it so that other requests for * this inode will block if they arrive while we are sleeping waiting * for old data structures to be purged or for the contents of the * disk portion of this inode to be read. */ ip = VTOI(vp); ufs_ihashins(ip); mutex_exit(&ufs_hashlock); /* * XXX * This may not need to be here, logically it should go down with * the i_devvp initialization. * Ask Kirk. */ ip->i_lfs = ump->um_lfs; /* Read in the disk contents for the inode, copy into the inode. */ retries = 0; again: error = bread(ump->um_devvp, fsbtodb(fs, daddr), (fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize), NOCRED, 0, &bp); if (error) { /* * The inode does not contain anything useful, so it would * be misleading to leave it on its hash chain. With mode * still zero, it will be unlinked and returned to the free * list by vput(). */ vput(vp); brelse(bp, 0); *vpp = NULL; return (error); } dip = lfs_ifind(fs, ino, bp); if (dip == NULL) { /* Assume write has not completed yet; try again */ brelse(bp, BC_INVAL); ++retries; if (retries > LFS_IFIND_RETRIES) { #ifdef DEBUG /* If the seglock is held look at the bpp to see what is there anyway */ mutex_enter(&lfs_lock); if (fs->lfs_seglock > 0) { struct buf **bpp; struct ufs1_dinode *dp; int i; for (bpp = fs->lfs_sp->bpp; bpp != fs->lfs_sp->cbpp; ++bpp) { if ((*bpp)->b_vp == fs->lfs_ivnode && bpp != fs->lfs_sp->bpp) { /* Inode block */ printf("lfs_vget: block 0x%" PRIx64 ": ", (*bpp)->b_blkno); dp = (struct ufs1_dinode *)(*bpp)->b_data; for (i = 0; i < INOPB(fs); i++) if (dp[i].di_u.inumber) printf("%d ", dp[i].di_u.inumber); printf("\n"); } } } mutex_exit(&lfs_lock); #endif /* DEBUG */ panic("lfs_vget: dinode not found"); } mutex_enter(&lfs_lock); if (fs->lfs_iocount) { DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino)); (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs ifind", 1, &lfs_lock); } else retries = LFS_IFIND_RETRIES; mutex_exit(&lfs_lock); goto again; } *ip->i_din.ffs1_din = *dip; brelse(bp, 0); if (fs->lfs_version > 1) { ip->i_ffs1_atime = ts.tv_sec; ip->i_ffs1_atimensec = ts.tv_nsec; } lfs_vinit(mp, &vp); *vpp = vp; KASSERT(VOP_ISLOCKED(vp)); return (0); } /* * File handle to vnode */ int lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp) { struct lfid lfh; struct buf *bp; IFILE *ifp; int32_t daddr; struct lfs *fs; vnode_t *vp; if (fhp->fid_len != sizeof(struct lfid)) return EINVAL; memcpy(&lfh, fhp, sizeof(lfh)); if (lfh.lfid_ino < LFS_IFILE_INUM) return ESTALE; fs = VFSTOUFS(mp)->um_lfs; if (lfh.lfid_ident != fs->lfs_ident) return ESTALE; if (lfh.lfid_ino > ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) - fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb) return ESTALE; mutex_enter(&ufs_ihash_lock); vp = ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino); mutex_exit(&ufs_ihash_lock); if (vp == NULL) { LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp); daddr = ifp->if_daddr; brelse(bp, 0); if (daddr == LFS_UNUSED_DADDR) return ESTALE; } return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp)); } /* * Vnode pointer to File handle */ /* ARGSUSED */ int lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size) { struct inode *ip; struct lfid lfh; if (*fh_size < sizeof(struct lfid)) { *fh_size = sizeof(struct lfid); return E2BIG; } *fh_size = sizeof(struct lfid); ip = VTOI(vp); memset(&lfh, 0, sizeof(lfh)); lfh.lfid_len = sizeof(struct lfid); lfh.lfid_ino = ip->i_number; lfh.lfid_gen = ip->i_gen; lfh.lfid_ident = ip->i_lfs->lfs_ident; memcpy(fhp, &lfh, sizeof(lfh)); return (0); } /* * ufs_bmaparray callback function for writing. * * Since blocks will be written to the new segment anyway, * we don't care about current daddr of them. */ static bool lfs_issequential_hole(const struct ufsmount *ump, daddr_t daddr0, daddr_t daddr1) { daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */ daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */ KASSERT(daddr0 == UNWRITTEN || (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR)); KASSERT(daddr1 == UNWRITTEN || (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR)); /* NOTE: all we want to know here is 'hole or not'. */ /* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */ /* * treat UNWRITTENs and all resident blocks as 'contiguous' */ if (daddr0 != 0 && daddr1 != 0) return true; /* * both are in hole? */ if (daddr0 == 0 && daddr1 == 0) return true; /* all holes are 'contiguous' for us. */ return false; } /* * lfs_gop_write functions exactly like genfs_gop_write, except that * (1) it requires the seglock to be held by its caller, and sp->fip * to be properly initialized (it will return without re-initializing * sp->fip, and without calling lfs_writeseg). * (2) it uses the remaining space in the segment, rather than VOP_BMAP, * to determine how large a block it can write at once (though it does * still use VOP_BMAP to find holes in the file); * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks * (leaving lfs_writeseg to deal with the cluster blocks, so we might * now have clusters of clusters, ick.) */ static int lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags) { int i, error, run, haveeof = 0; int fs_bshift; vaddr_t kva; off_t eof, offset, startoffset = 0; size_t bytes, iobytes, skipbytes; daddr_t lbn, blkno; struct vm_page *pg; struct buf *mbp, *bp; struct vnode *devvp = VTOI(vp)->i_devvp; struct inode *ip = VTOI(vp); struct lfs *fs = ip->i_lfs; struct segment *sp = fs->lfs_sp; UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist); ASSERT_SEGLOCK(fs); /* The Ifile lives in the buffer cache */ KASSERT(vp != fs->lfs_ivnode); /* * We don't want to fill the disk before the cleaner has a chance * to make room for us. If we're in danger of doing that, fail * with EAGAIN. The caller will have to notice this, unlock * so the cleaner can run, relock and try again. * * We must write everything, however, if our vnode is being * reclaimed. */ if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp) goto tryagain; /* * Sometimes things slip past the filters in lfs_putpages, * and the pagedaemon tries to write pages---problem is * that the pagedaemon never acquires the segment lock. * * Alternatively, pages that were clean when we called * genfs_putpages may have become dirty in the meantime. In this * case the segment header is not properly set up for blocks * to be added to it. * * Unbusy and unclean the pages, and put them on the ACTIVE * queue under the hypothesis that they couldn't have got here * unless they were modified *quite* recently. * * XXXUBC that last statement is an oversimplification of course. */ if (!LFS_SEGLOCK_HELD(fs) || (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) || (pgs[0]->offset & fs->lfs_bmask) != 0) { goto tryagain; } UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", vp, pgs, npages, flags); GOP_SIZE(vp, vp->v_size, &eof, 0); haveeof = 1; if (vp->v_type == VREG) fs_bshift = vp->v_mount->mnt_fs_bshift; else fs_bshift = DEV_BSHIFT; error = 0; pg = pgs[0]; startoffset = pg->offset; KASSERT(eof >= 0); if (startoffset >= eof) { goto tryagain; } else bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); skipbytes = 0; KASSERT(bytes != 0); /* Swap PG_DELWRI for PG_PAGEOUT */ for (i = 0; i < npages; i++) { if (pgs[i]->flags & PG_DELWRI) { KASSERT(!(pgs[i]->flags & PG_PAGEOUT)); pgs[i]->flags &= ~PG_DELWRI; pgs[i]->flags |= PG_PAGEOUT; uvm_pageout_start(1); mutex_enter(&uvm_pageqlock); uvm_pageunwire(pgs[i]); mutex_exit(&uvm_pageqlock); } } /* * Check to make sure we're starting on a block boundary. * We'll check later to make sure we always write entire * blocks (or fragments). */ if (startoffset & fs->lfs_bmask) printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n", startoffset, fs->lfs_bmask, startoffset & fs->lfs_bmask); KASSERT((startoffset & fs->lfs_bmask) == 0); if (bytes & fs->lfs_ffmask) { printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes); panic("lfs_gop_write: non-integer blocks"); } /* * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK. * If we would, write what we have and try again. If we don't * have anything to write, we'll have to sleep. */ if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE | (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ? UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) { DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n")); #if 0 " with nfinfo=%d at offset 0x%x\n", (int)((SEGSUM *)(sp->segsum))->ss_nfinfo, (unsigned)fs->lfs_offset)); #endif lfs_updatemeta(sp); lfs_release_finfo(fs); (void) lfs_writeseg(fs, sp); lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); /* * Having given up all of the pager_map we were holding, * we can now wait for aiodoned to reclaim it for us * without fear of deadlock. */ kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); } mutex_enter(&vp->v_interlock); vp->v_numoutput += 2; /* one for biodone, one for aiodone */ mutex_exit(&vp->v_interlock); mbp = getiobuf(NULL, true); UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", vp, mbp, vp->v_numoutput, bytes); mbp->b_bufsize = npages << PAGE_SHIFT; mbp->b_data = (void *)kva; mbp->b_resid = mbp->b_bcount = bytes; mbp->b_cflags = BC_BUSY|BC_AGE; mbp->b_iodone = uvm_aio_biodone; bp = NULL; for (offset = startoffset; bytes > 0; offset += iobytes, bytes -= iobytes) { lbn = offset >> fs_bshift; error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run, lfs_issequential_hole); if (error) { UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d", error,0,0,0); skipbytes += bytes; bytes = 0; break; } iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, bytes); if (blkno == (daddr_t)-1) { skipbytes += iobytes; continue; } /* * Discover how much we can really pack into this buffer. */ /* If no room in the current segment, finish it up */ if (sp->sum_bytes_left < sizeof(int32_t) || sp->seg_bytes_left < (1 << fs->lfs_bshift)) { int vers; lfs_updatemeta(sp); vers = sp->fip->fi_version; lfs_release_finfo(fs); (void) lfs_writeseg(fs, sp); lfs_acquire_finfo(fs, ip->i_number, vers); } /* Check both for space in segment and space in segsum */ iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift) << fs_bshift); iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t)) << fs_bshift); KASSERT(iobytes > 0); /* if it's really one i/o, don't make a second buf */ if (offset == startoffset && iobytes == bytes) { bp = mbp; /* correct overcount if there is no second buffer */ mutex_enter(&vp->v_interlock); --vp->v_numoutput; mutex_exit(&vp->v_interlock); } else { bp = getiobuf(NULL, true); UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", vp, bp, vp->v_numoutput, 0); bp->b_data = (char *)kva + (vaddr_t)(offset - pg->offset); bp->b_resid = bp->b_bcount = iobytes; bp->b_cflags = BC_BUSY; bp->b_iodone = uvm_aio_biodone1; } /* XXX This is silly ... is this necessary? */ mutex_enter(&bufcache_lock); mutex_enter(&vp->v_interlock); bgetvp(vp, bp); mutex_exit(&vp->v_interlock); mutex_exit(&bufcache_lock); bp->b_lblkno = lblkno(fs, offset); bp->b_private = mbp; if (devvp->v_type == VBLK) { bp->b_dev = devvp->v_rdev; } VOP_BWRITE(bp); while (lfs_gatherblock(sp, bp, NULL)) continue; } if (skipbytes) { UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); mutex_enter(mbp->b_objlock); if (error) { mbp->b_error = error; } mbp->b_resid -= skipbytes; mutex_exit(mbp->b_objlock); if (mbp->b_resid == 0) { biodone(mbp); } } UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0); return (0); tryagain: /* * We can't write the pages, for whatever reason. * Clean up after ourselves, and make the caller try again. */ mutex_enter(&vp->v_interlock); /* Tell why we're here, if we know */ if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) { DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n")); } else if ((pgs[0]->offset & fs->lfs_bmask) != 0) { DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n")); } else if (haveeof && startoffset >= eof) { DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number, pgs[0]->offset, eof, npages)); } else if (LFS_STARVED_FOR_SEGS(fs)) { DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n")); } else { DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n")); } mutex_enter(&uvm_pageqlock); for (i = 0; i < npages; i++) { pg = pgs[i]; if (pg->flags & PG_PAGEOUT) uvm_pageout_done(1); if (pg->flags & PG_DELWRI) { uvm_pageunwire(pg); } uvm_pageactivate(pg); pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED); DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg, vp, pg->offset)); DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags)); DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags)); DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon)); DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject)); DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i, pg->wire_count)); DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i, pg->loan_count)); } /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */ uvm_page_unbusy(pgs, npages); mutex_exit(&uvm_pageqlock); mutex_exit(&vp->v_interlock); return EAGAIN; } /* * finish vnode/inode initialization. * used by lfs_vget and lfs_fastvget. */ void lfs_vinit(struct mount *mp, struct vnode **vpp) { struct vnode *vp = *vpp; struct inode *ip = VTOI(vp); struct ufsmount *ump = VFSTOUFS(mp); struct lfs *fs = ump->um_lfs; int i; ip->i_mode = ip->i_ffs1_mode; ip->i_ffs_effnlink = ip->i_nlink = ip->i_ffs1_nlink; ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size; ip->i_flags = ip->i_ffs1_flags; ip->i_gen = ip->i_ffs1_gen; ip->i_uid = ip->i_ffs1_uid; ip->i_gid = ip->i_ffs1_gid; ip->i_lfs_effnblks = ip->i_ffs1_blocks; ip->i_lfs_odnlink = ip->i_ffs1_nlink; /* * Initialize the vnode from the inode, check for aliases. In all * cases re-init ip, the underlying vnode/inode may have changed. */ ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp); ip = VTOI(vp); memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize)); if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) { #ifdef DEBUG for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift; i < NDADDR; i++) { if ((vp->v_type == VBLK || vp->v_type == VCHR) && i == 0) continue; if (ip->i_ffs1_db[i] != 0) { inconsistent: lfs_dump_dinode(ip->i_din.ffs1_din); panic("inconsistent inode"); } } for ( ; i < NDADDR + NIADDR; i++) { if (ip->i_ffs1_ib[i - NDADDR] != 0) { goto inconsistent; } } #endif /* DEBUG */ for (i = 0; i < NDADDR; i++) if (ip->i_ffs1_db[i] != 0) ip->i_lfs_fragsize[i] = blksize(fs, ip, i); } #ifdef DIAGNOSTIC if (vp->v_type == VNON) { # ifdef DEBUG lfs_dump_dinode(ip->i_din.ffs1_din); # endif panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n", (unsigned long long)ip->i_number, (ip->i_mode & IFMT) >> 12); } #endif /* DIAGNOSTIC */ /* * Finish inode initialization now that aliasing has been resolved. */ ip->i_devvp = ump->um_devvp; VREF(ip->i_devvp); genfs_node_init(vp, &lfs_genfsops); uvm_vnp_setsize(vp, ip->i_size); /* Initialize hiblk from file size */ ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1; *vpp = vp; } /* * Resize the filesystem to contain the specified number of segments. */ int lfs_resize_fs(struct lfs *fs, int newnsegs) { SEGUSE *sup; struct buf *bp, *obp; daddr_t olast, nlast, ilast, noff, start, end; struct vnode *ivp; struct inode *ip; int error, badnews, inc, oldnsegs; int sbbytes, csbbytes, gain, cgain; int i; /* Only support v2 and up */ if (fs->lfs_version < 2) return EOPNOTSUPP; /* If we're doing nothing, do it fast */ oldnsegs = fs->lfs_nseg; if (newnsegs == oldnsegs) return 0; /* We always have to have two superblocks */ if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1])) return EFBIG; ivp = fs->lfs_ivnode; ip = VTOI(ivp); error = 0; /* Take the segment lock so no one else calls lfs_newseg() */ lfs_seglock(fs, SEGM_PROT); /* * Make sure the segments we're going to be losing, if any, * are in fact empty. We hold the seglock, so their status * cannot change underneath us. Count the superblocks we lose, * while we're at it. */ sbbytes = csbbytes = 0; cgain = 0; for (i = newnsegs; i < oldnsegs; i++) { LFS_SEGENTRY(sup, fs, i, bp); badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL); if (sup->su_flags & SEGUSE_SUPERBLOCK) sbbytes += LFS_SBPAD; if (!(sup->su_flags & SEGUSE_DIRTY)) { ++cgain; if (sup->su_flags & SEGUSE_SUPERBLOCK) csbbytes += LFS_SBPAD; } brelse(bp, 0); if (badnews) { error = EBUSY; goto out; } } /* Note old and new segment table endpoints, and old ifile size */ olast = fs->lfs_cleansz + fs->lfs_segtabsz; nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz; ilast = ivp->v_size >> fs->lfs_bshift; noff = nlast - olast; /* * Make sure no one can use the Ifile while we change it around. * Even after taking the iflock we need to make sure no one still * is holding Ifile buffers, so we get each one, to drain them. * (XXX this could be done better.) */ rw_enter(&fs->lfs_iflock, RW_WRITER); vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY); for (i = 0; i < ilast; i++) { bread(ivp, i, fs->lfs_bsize, NOCRED, 0, &bp); brelse(bp, 0); } /* Allocate new Ifile blocks */ for (i = ilast; i < ilast + noff; i++) { if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0, &bp) != 0) panic("balloc extending ifile"); memset(bp->b_data, 0, fs->lfs_bsize); VOP_BWRITE(bp); } /* Register new ifile size */ ip->i_size += noff * fs->lfs_bsize; ip->i_ffs1_size = ip->i_size; uvm_vnp_setsize(ivp, ip->i_size); /* Copy the inode table to its new position */ if (noff != 0) { if (noff < 0) { start = nlast; end = ilast + noff; inc = 1; } else { start = ilast + noff - 1; end = nlast - 1; inc = -1; } for (i = start; i != end; i += inc) { if (bread(ivp, i, fs->lfs_bsize, NOCRED, B_MODIFY, &bp) != 0) panic("resize: bread dst blk failed"); if (bread(ivp, i - noff, fs->lfs_bsize, NOCRED, 0, &obp)) panic("resize: bread src blk failed"); memcpy(bp->b_data, obp->b_data, fs->lfs_bsize); VOP_BWRITE(bp); brelse(obp, 0); } } /* If we are expanding, write the new empty SEGUSE entries */ if (newnsegs > oldnsegs) { for (i = oldnsegs; i < newnsegs; i++) { if ((error = bread(ivp, i / fs->lfs_sepb + fs->lfs_cleansz, fs->lfs_bsize, NOCRED, B_MODIFY, &bp)) != 0) panic("lfs: ifile read: %d", error); while ((i + 1) % fs->lfs_sepb && i < newnsegs) { sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb]; memset(sup, 0, sizeof(*sup)); i++; } VOP_BWRITE(bp); } } /* Zero out unused superblock offsets */ for (i = 2; i < LFS_MAXNUMSB; i++) if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs) fs->lfs_sboffs[i] = 0x0; /* * Correct superblock entries that depend on fs size. * The computations of these are as follows: * * size = segtod(fs, nseg) * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD) * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD) * + (segtod(fs, 1) - (offset - curseg)) * - segtod(fs, minfreeseg - (minfreeseg / 2)) * * XXX - we should probably adjust minfreeseg as well. */ gain = (newnsegs - oldnsegs); fs->lfs_nseg = newnsegs; fs->lfs_segtabsz = nlast - fs->lfs_cleansz; fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize); fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes); fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes) - gain * btofsb(fs, fs->lfs_bsize / 2); if (gain > 0) { fs->lfs_nclean += gain; fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize); } else { fs->lfs_nclean -= cgain; fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, csbbytes); } /* Resize segment flag cache */ fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0], fs->lfs_nseg * sizeof(u_int32_t), M_SEGMENT, M_WAITOK); fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1], fs->lfs_nseg * sizeof(u_int32_t), M_SEGMENT, M_WAITOK); for (i = oldnsegs; i < newnsegs; i++) fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0; /* Truncate Ifile if necessary */ if (noff < 0) lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0, NOCRED); /* Update cleaner info so the cleaner can die */ bread(ivp, 0, fs->lfs_bsize, NOCRED, B_MODIFY, &bp); ((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean; ((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean; VOP_BWRITE(bp); /* Let Ifile accesses proceed */ VOP_UNLOCK(ivp, 0); rw_exit(&fs->lfs_iflock); out: lfs_segunlock(fs); return error; }