/* $NetBSD: if_tlp_pci.c,v 1.76 2004/03/17 13:54:09 martin Exp $ */ /*- * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center; and Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * PCI bus front-end for the Digital Semiconductor ``Tulip'' (21x4x) * Ethernet controller family driver. */ #include __KERNEL_RCSID(0, "$NetBSD: if_tlp_pci.c,v 1.76 2004/03/17 13:54:09 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __sparc__ #include #endif #include #include #include #include #include #include #include /* * PCI configuration space registers used by the Tulip. */ #define TULIP_PCI_IOBA 0x10 /* i/o mapped base */ #define TULIP_PCI_MMBA 0x14 /* memory mapped base */ #define TULIP_PCI_CFDA 0x40 /* configuration driver area */ #define CFDA_SLEEP 0x80000000 /* sleep mode */ #define CFDA_SNOOZE 0x40000000 /* snooze mode */ struct tulip_pci_softc { struct tulip_softc sc_tulip; /* real Tulip softc */ /* PCI-specific goo. */ void *sc_ih; /* interrupt handle */ pci_chipset_tag_t sc_pc; /* our PCI chipset */ pcitag_t sc_pcitag; /* our PCI tag */ int sc_flags; /* flags; see below */ LIST_HEAD(, tulip_pci_softc) sc_intrslaves; LIST_ENTRY(tulip_pci_softc) sc_intrq; /* Our {ROM,interrupt} master. */ struct tulip_pci_softc *sc_master; }; /* sc_flags */ #define TULIP_PCI_SHAREDINTR 0x01 /* interrupt is shared */ #define TULIP_PCI_SLAVEINTR 0x02 /* interrupt is slave */ #define TULIP_PCI_SHAREDROM 0x04 /* ROM is shared */ #define TULIP_PCI_SLAVEROM 0x08 /* slave of shared ROM */ int tlp_pci_match __P((struct device *, struct cfdata *, void *)); void tlp_pci_attach __P((struct device *, struct device *, void *)); CFATTACH_DECL(tlp_pci, sizeof(struct tulip_pci_softc), tlp_pci_match, tlp_pci_attach, NULL, NULL); const struct tulip_pci_product { u_int32_t tpp_vendor; /* PCI vendor ID */ u_int32_t tpp_product; /* PCI product ID */ tulip_chip_t tpp_chip; /* base Tulip chip type */ } tlp_pci_products[] = { { PCI_VENDOR_DEC, PCI_PRODUCT_DEC_21040, TULIP_CHIP_21040 }, { PCI_VENDOR_DEC, PCI_PRODUCT_DEC_21041, TULIP_CHIP_21041 }, { PCI_VENDOR_DEC, PCI_PRODUCT_DEC_21140, TULIP_CHIP_21140 }, { PCI_VENDOR_DEC, PCI_PRODUCT_DEC_21142, TULIP_CHIP_21142 }, { PCI_VENDOR_LITEON, PCI_PRODUCT_LITEON_82C168, TULIP_CHIP_82C168 }, /* * Note: This is like a MX98725 with Wake-On-LAN and a * 128-bit multicast hash table. */ { PCI_VENDOR_LITEON, PCI_PRODUCT_LITEON_82C115, TULIP_CHIP_82C115 }, { PCI_VENDOR_MACRONIX, PCI_PRODUCT_MACRONIX_MX98713, TULIP_CHIP_MX98713 }, { PCI_VENDOR_MACRONIX, PCI_PRODUCT_MACRONIX_MX987x5, TULIP_CHIP_MX98715 }, { PCI_VENDOR_COMPEX, PCI_PRODUCT_COMPEX_RL100TX, TULIP_CHIP_MX98713 }, { PCI_VENDOR_WINBOND, PCI_PRODUCT_WINBOND_W89C840F, TULIP_CHIP_WB89C840F }, { PCI_VENDOR_COMPEX, PCI_PRODUCT_COMPEX_RL100ATX, TULIP_CHIP_WB89C840F }, { PCI_VENDOR_DAVICOM, PCI_PRODUCT_DAVICOM_DM9102, TULIP_CHIP_DM9102 }, { PCI_VENDOR_ADMTEK, PCI_PRODUCT_ADMTEK_AL981, TULIP_CHIP_AL981 }, { PCI_VENDOR_ADMTEK, PCI_PRODUCT_ADMTEK_AN985, TULIP_CHIP_AN985 }, { PCI_VENDOR_ACCTON, PCI_PRODUCT_ACCTON_EN2242, TULIP_CHIP_AN985 }, { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C910SOHOB, TULIP_CHIP_AN985 }, #if 0 { PCI_VENDOR_ASIX, PCI_PRODUCT_ASIX_AX88140A, TULIP_CHIP_AX88140 }, #endif { 0, 0, TULIP_CHIP_INVALID }, }; struct tlp_pci_quirks { void (*tpq_func) __P((struct tulip_pci_softc *, const u_int8_t *)); u_int8_t tpq_oui[3]; }; void tlp_pci_dec_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_znyx_21040_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_smc_21040_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_cogent_21040_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_accton_21040_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_cobalt_21142_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_algor_21142_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_netwinder_21142_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_znyx_21142_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_adaptec_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); const struct tlp_pci_quirks tlp_pci_21040_quirks[] = { { tlp_pci_znyx_21040_quirks, { 0x00, 0xc0, 0x95 } }, { tlp_pci_smc_21040_quirks, { 0x00, 0x00, 0xc0 } }, { tlp_pci_cogent_21040_quirks, { 0x00, 0x00, 0x92 } }, { tlp_pci_accton_21040_quirks, { 0x00, 0x00, 0xe8 } }, { NULL, { 0, 0, 0 } } }; const struct tlp_pci_quirks tlp_pci_21041_quirks[] = { { tlp_pci_dec_quirks, { 0x08, 0x00, 0x2b } }, { tlp_pci_dec_quirks, { 0x00, 0x00, 0xf8 } }, { NULL, { 0, 0, 0 } } }; void tlp_pci_asante_21140_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_smc_21140_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); void tlp_pci_vpc_21140_quirks __P((struct tulip_pci_softc *, const u_int8_t *)); const struct tlp_pci_quirks tlp_pci_21140_quirks[] = { { tlp_pci_dec_quirks, { 0x08, 0x00, 0x2b } }, { tlp_pci_dec_quirks, { 0x00, 0x00, 0xf8 } }, { tlp_pci_asante_21140_quirks, { 0x00, 0x00, 0x94 } }, { tlp_pci_adaptec_quirks, { 0x00, 0x00, 0x92 } }, { tlp_pci_adaptec_quirks, { 0x00, 0x00, 0xd1 } }, { tlp_pci_smc_21140_quirks, { 0x00, 0x00, 0xc0 } }, { tlp_pci_vpc_21140_quirks, { 0x00, 0x03, 0xff } }, { NULL, { 0, 0, 0 } } }; const struct tlp_pci_quirks tlp_pci_21142_quirks[] = { { tlp_pci_dec_quirks, { 0x08, 0x00, 0x2b } }, { tlp_pci_dec_quirks, { 0x00, 0x00, 0xf8 } }, { tlp_pci_cobalt_21142_quirks, { 0x00, 0x10, 0xe0 } }, { tlp_pci_algor_21142_quirks, { 0x00, 0x40, 0xbc } }, { tlp_pci_adaptec_quirks, { 0x00, 0x00, 0xd1 } }, { tlp_pci_netwinder_21142_quirks,{ 0x00, 0x10, 0x57 } }, { tlp_pci_znyx_21142_quirks, { 0x00, 0xc0, 0x95 } }, { NULL, { 0, 0, 0 } } }; int tlp_pci_shared_intr __P((void *)); const struct tulip_pci_product *tlp_pci_lookup __P((const struct pci_attach_args *)); void tlp_pci_get_quirks __P((struct tulip_pci_softc *, const u_int8_t *, const struct tlp_pci_quirks *)); void tlp_pci_check_slaved __P((struct tulip_pci_softc *, int, int)); const struct tulip_pci_product * tlp_pci_lookup(pa) const struct pci_attach_args *pa; { const struct tulip_pci_product *tpp; for (tpp = tlp_pci_products; tlp_chip_names[tpp->tpp_chip] != NULL; tpp++) { if (PCI_VENDOR(pa->pa_id) == tpp->tpp_vendor && PCI_PRODUCT(pa->pa_id) == tpp->tpp_product) return (tpp); } return (NULL); } void tlp_pci_get_quirks(psc, enaddr, tpq) struct tulip_pci_softc *psc; const u_int8_t *enaddr; const struct tlp_pci_quirks *tpq; { for (; tpq->tpq_func != NULL; tpq++) { if (tpq->tpq_oui[0] == enaddr[0] && tpq->tpq_oui[1] == enaddr[1] && tpq->tpq_oui[2] == enaddr[2]) { (*tpq->tpq_func)(psc, enaddr); return; } } } void tlp_pci_check_slaved(psc, shared, slaved) struct tulip_pci_softc *psc; int shared, slaved; { extern struct cfdriver tlp_cd; struct tulip_pci_softc *cur, *best = NULL; struct tulip_softc *sc = &psc->sc_tulip; int i; /* * First of all, find the lowest pcidev numbered device on our * bus marked as shared. That should be our master. */ for (i = 0; i < tlp_cd.cd_ndevs; i++) { if ((cur = tlp_cd.cd_devs[i]) == NULL) continue; if (cur->sc_tulip.sc_dev.dv_parent != sc->sc_dev.dv_parent) continue; if ((cur->sc_flags & shared) == 0) continue; if (cur == psc) continue; if (best == NULL || best->sc_tulip.sc_devno > cur->sc_tulip.sc_devno) best = cur; } if (best != NULL) { psc->sc_master = best; psc->sc_flags |= (shared | slaved); } } int tlp_pci_match(parent, match, aux) struct device *parent; struct cfdata *match; void *aux; { struct pci_attach_args *pa = aux; if (tlp_pci_lookup(pa) != NULL) return (10); /* beat if_de.c */ return (0); } void tlp_pci_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct tulip_pci_softc *psc = (void *) self; struct tulip_softc *sc = &psc->sc_tulip; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; bus_space_tag_t iot, memt; bus_space_handle_t ioh, memh; int ioh_valid, memh_valid, i, j; const struct tulip_pci_product *tpp; u_int8_t enaddr[ETHER_ADDR_LEN]; u_int32_t val = 0; pcireg_t reg; int pmreg; sc->sc_devno = pa->pa_device; psc->sc_pc = pa->pa_pc; psc->sc_pcitag = pa->pa_tag; LIST_INIT(&psc->sc_intrslaves); tpp = tlp_pci_lookup(pa); if (tpp == NULL) { printf("\n"); panic("tlp_pci_attach: impossible"); } sc->sc_chip = tpp->tpp_chip; /* * By default, Tulip registers are 8 bytes long (4 bytes * followed by a 4 byte pad). */ sc->sc_regshift = 3; /* * No power management hooks. * XXX Maybe we should add some! */ sc->sc_flags |= TULIPF_ENABLED; /* * Get revision info, and set some chip-specific variables. */ sc->sc_rev = PCI_REVISION(pa->pa_class); switch (sc->sc_chip) { case TULIP_CHIP_21140: if (sc->sc_rev >= 0x20) sc->sc_chip = TULIP_CHIP_21140A; break; case TULIP_CHIP_21142: if (sc->sc_rev >= 0x20) sc->sc_chip = TULIP_CHIP_21143; break; case TULIP_CHIP_82C168: if (sc->sc_rev >= 0x20) sc->sc_chip = TULIP_CHIP_82C169; break; case TULIP_CHIP_MX98713: if (sc->sc_rev >= 0x10) sc->sc_chip = TULIP_CHIP_MX98713A; break; case TULIP_CHIP_MX98715: if (sc->sc_rev >= 0x20) sc->sc_chip = TULIP_CHIP_MX98715A; if (sc->sc_rev >= 0x25) sc->sc_chip = TULIP_CHIP_MX98715AEC_X; if (sc->sc_rev >= 0x30) sc->sc_chip = TULIP_CHIP_MX98725; break; case TULIP_CHIP_WB89C840F: sc->sc_regshift = 2; break; case TULIP_CHIP_AN985: /* * The AN983 and AN985 are very similar, and are * differentiated by a "signature" register that * is like, but not identical, to a PCI ID register. */ reg = pci_conf_read(pc, pa->pa_tag, 0x80); switch (reg) { case 0x09811317: sc->sc_chip = TULIP_CHIP_AN985; break; case 0x09851317: sc->sc_chip = TULIP_CHIP_AN983; break; default: /* Unknown -- use default. */ break; } break; case TULIP_CHIP_AX88140: if (sc->sc_rev >= 0x10) sc->sc_chip = TULIP_CHIP_AX88141; break; case TULIP_CHIP_DM9102: if (sc->sc_rev >= 0x30) sc->sc_chip = TULIP_CHIP_DM9102A; break; default: /* Nothing. */ break; } printf(": %s Ethernet, pass %d.%d\n", tlp_chip_names[sc->sc_chip], (sc->sc_rev >> 4) & 0xf, sc->sc_rev & 0xf); switch (sc->sc_chip) { case TULIP_CHIP_21040: if (sc->sc_rev < 0x20) { printf("%s: 21040 must be at least pass 2.0\n", sc->sc_dev.dv_xname); return; } break; case TULIP_CHIP_21140: if (sc->sc_rev < 0x11) { printf("%s: 21140 must be at least pass 1.1\n", sc->sc_dev.dv_xname); return; } break; default: /* Nothing. */ break; } /* * Check to see if the device is in power-save mode, and * being it out if necessary. */ switch (sc->sc_chip) { case TULIP_CHIP_21140: case TULIP_CHIP_21140A: case TULIP_CHIP_21142: case TULIP_CHIP_21143: case TULIP_CHIP_MX98713A: case TULIP_CHIP_MX98715: case TULIP_CHIP_MX98715A: case TULIP_CHIP_MX98715AEC_X: case TULIP_CHIP_MX98725: case TULIP_CHIP_DM9102: case TULIP_CHIP_DM9102A: /* * Clear the "sleep mode" bit in the CFDA register. */ reg = pci_conf_read(pc, pa->pa_tag, TULIP_PCI_CFDA); if (reg & (CFDA_SLEEP|CFDA_SNOOZE)) pci_conf_write(pc, pa->pa_tag, TULIP_PCI_CFDA, reg & ~(CFDA_SLEEP|CFDA_SNOOZE)); break; default: /* Nothing. */ break; } if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) { reg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR); switch (reg & PCI_PMCSR_STATE_MASK) { case PCI_PMCSR_STATE_D1: case PCI_PMCSR_STATE_D2: printf("%s: waking up from power state D%d\n%s", sc->sc_dev.dv_xname, reg & PCI_PMCSR_STATE_MASK, sc->sc_dev.dv_xname); pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR, (reg & ~PCI_PMCSR_STATE_MASK) | PCI_PMCSR_STATE_D0); break; case PCI_PMCSR_STATE_D3: /* * The card has lost all configuration data in * this state, so punt. */ printf("%s: unable to wake up from power state D3, " "reboot required.\n", sc->sc_dev.dv_xname); pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR, (reg & ~PCI_PMCSR_STATE_MASK) | PCI_PMCSR_STATE_D0); return; } } /* * Map the device. */ ioh_valid = (pci_mapreg_map(pa, TULIP_PCI_IOBA, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, NULL) == 0); memh_valid = (pci_mapreg_map(pa, TULIP_PCI_MMBA, PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, NULL) == 0); if (memh_valid) { sc->sc_st = memt; sc->sc_sh = memh; } else if (ioh_valid) { sc->sc_st = iot; sc->sc_sh = ioh; } else { printf("%s: unable to map device registers\n", sc->sc_dev.dv_xname); return; } sc->sc_dmat = pa->pa_dmat; /* * Make sure bus mastering is enabled. */ pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | PCI_COMMAND_MASTER_ENABLE); /* * Get the cacheline size. */ sc->sc_cacheline = PCI_CACHELINE(pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG)); /* * Get PCI data moving command info. */ if (pa->pa_flags & PCI_FLAGS_MRL_OKAY) sc->sc_flags |= TULIPF_MRL; if (pa->pa_flags & PCI_FLAGS_MRM_OKAY) sc->sc_flags |= TULIPF_MRM; if (pa->pa_flags & PCI_FLAGS_MWI_OKAY) sc->sc_flags |= TULIPF_MWI; /* * Read the contents of the Ethernet Address ROM/SROM. */ switch (sc->sc_chip) { case TULIP_CHIP_21040: sc->sc_srom_addrbits = 6; sc->sc_srom = malloc(TULIP_ROM_SIZE(6), M_DEVBUF, M_NOWAIT); TULIP_WRITE(sc, CSR_MIIROM, MIIROM_SROMCS); for (i = 0; i < TULIP_ROM_SIZE(6); i++) { for (j = 0; j < 10000; j++) { val = TULIP_READ(sc, CSR_MIIROM); if ((val & MIIROM_DN) == 0) break; } sc->sc_srom[i] = val & MIIROM_DATA; } break; case TULIP_CHIP_82C168: case TULIP_CHIP_82C169: { sc->sc_srom_addrbits = 2; sc->sc_srom = malloc(TULIP_ROM_SIZE(2), M_DEVBUF, M_NOWAIT); /* * The Lite-On PNIC stores the Ethernet address in * the first 3 words of the EEPROM. EEPROM access * is not like the other Tulip chips. */ for (i = 0; i < 6; i += 2) { TULIP_WRITE(sc, CSR_PNIC_SROMCTL, PNIC_SROMCTL_READ | (i >> 1)); for (j = 0; j < 500; j++) { delay(2); val = TULIP_READ(sc, CSR_MIIROM); if ((val & PNIC_MIIROM_BUSY) == 0) break; } if (val & PNIC_MIIROM_BUSY) { printf("%s: EEPROM timed out\n", sc->sc_dev.dv_xname); return; } val &= PNIC_MIIROM_DATA; sc->sc_srom[i] = val >> 8; sc->sc_srom[i + 1] = val & 0xff; } break; } default: #ifdef algor /* * XXX This should be done with device properties, but * XXX we don't have those yet. */ if (algor_get_ethaddr(pa, NULL)) { extern int tlp_srom_debug; sc->sc_srom_addrbits = 6; sc->sc_srom = malloc(TULIP_ROM_SIZE(6), M_DEVBUF, M_NOWAIT|M_ZERO); algor_get_ethaddr(pa, sc->sc_srom); if (tlp_srom_debug) { printf("SROM CONTENTS:"); for (i = 0; i < TULIP_ROM_SIZE(6); i++) { if ((i % 8) == 0) printf("\n\t"); printf("0x%02x ", sc->sc_srom[i]); } printf("\n"); } break; } #endif /* algor */ /* Check for a slaved ROM on a multi-port board. */ tlp_pci_check_slaved(psc, TULIP_PCI_SHAREDROM, TULIP_PCI_SLAVEROM); if (psc->sc_flags & TULIP_PCI_SLAVEROM) { sc->sc_srom_addrbits = psc->sc_master->sc_tulip.sc_srom_addrbits; sc->sc_srom = psc->sc_master->sc_tulip.sc_srom; enaddr[5] += sc->sc_devno - psc->sc_master->sc_tulip.sc_devno; } else if (tlp_read_srom(sc) == 0) goto cant_cope; break; } /* * Deal with chip/board quirks. This includes setting up * the mediasw, and extracting the Ethernet address from * the rombuf. */ switch (sc->sc_chip) { case TULIP_CHIP_21040: /* * Parse the Ethernet Address ROM. */ if (tlp_parse_old_srom(sc, enaddr) == 0) goto cant_cope; /* * All 21040 boards start out with the same * media switch. */ sc->sc_mediasw = &tlp_21040_mediasw; /* * Deal with any quirks this board might have. */ tlp_pci_get_quirks(psc, enaddr, tlp_pci_21040_quirks); break; case TULIP_CHIP_21041: /* Check for new format SROM. */ if (tlp_isv_srom_enaddr(sc, enaddr) == 0) { /* * Not an ISV SROM; try the old DEC Ethernet Address * ROM format. */ if (tlp_parse_old_srom(sc, enaddr) == 0) goto cant_cope; } /* * All 21041 boards use the same media switch; they all * work basically the same! Yippee! */ sc->sc_mediasw = &tlp_21041_mediasw; /* * Deal with any quirks this board might have. */ tlp_pci_get_quirks(psc, enaddr, tlp_pci_21041_quirks); break; case TULIP_CHIP_21140: case TULIP_CHIP_21140A: /* Check for new format SROM. */ if (tlp_isv_srom_enaddr(sc, enaddr) == 0) { /* * Not an ISV SROM; try the old DEC Ethernet Address * ROM format. */ if (tlp_parse_old_srom(sc, enaddr) == 0) goto cant_cope; } else { /* * We start out with the 2114x ISV media switch. * When we search for quirks, we may change to * a different switch. */ sc->sc_mediasw = &tlp_2114x_isv_mediasw; } /* * Deal with any quirks this board might have. */ tlp_pci_get_quirks(psc, enaddr, tlp_pci_21140_quirks); /* * Bail out now if we can't deal with this board. */ if (sc->sc_mediasw == NULL) goto cant_cope; break; case TULIP_CHIP_21142: case TULIP_CHIP_21143: /* Check for new format SROM. */ if (tlp_isv_srom_enaddr(sc, enaddr) == 0) { /* * Not an ISV SROM; try the old DEC Ethernet Address * ROM format. */ if (tlp_parse_old_srom(sc, enaddr) == 0) { /* * One last try: just copy the address * from offset 20 and try to look * up quirks. */ memcpy(enaddr, &sc->sc_srom[20], ETHER_ADDR_LEN); } } else { /* * We start out with the 2114x ISV media switch. * When we search for quirks, we may change to * a different switch. */ sc->sc_mediasw = &tlp_2114x_isv_mediasw; } /* * Deal with any quirks this board might have. */ tlp_pci_get_quirks(psc, enaddr, tlp_pci_21142_quirks); /* * Bail out now if we can't deal with this board. */ if (sc->sc_mediasw == NULL) goto cant_cope; break; case TULIP_CHIP_82C168: case TULIP_CHIP_82C169: /* * Lite-On PNIC's Ethernet address is the first 6 * bytes of its EEPROM. */ memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); /* * Lite-On PNICs always use the same mediasw; we * select MII vs. internal NWAY automatically. */ sc->sc_mediasw = &tlp_pnic_mediasw; break; case TULIP_CHIP_MX98713: /* * The Macronix MX98713 has an MII and GPIO, but no * internal Nway block. This chip is basically a * perfect 21140A clone, with the exception of the * a magic register frobbing in order to make the * interface function. */ if (tlp_isv_srom_enaddr(sc, enaddr)) { sc->sc_mediasw = &tlp_2114x_isv_mediasw; break; } /* FALLTHROUGH */ case TULIP_CHIP_82C115: /* * Yippee! The Lite-On 82C115 is a clone of * the MX98725 (the data sheet even says `MXIC' * on it)! Imagine that, a clone of a clone. * * The differences are really minimal: * * - Wake-On-LAN support * - 128-bit multicast hash table, rather than * the standard 512-bit hash table */ /* FALLTHROUGH */ case TULIP_CHIP_MX98713A: case TULIP_CHIP_MX98715A: case TULIP_CHIP_MX98715AEC_X: case TULIP_CHIP_MX98725: /* * The MX98713A has an MII as well as an internal Nway block, * but no GPIO. The MX98715 and MX98725 have an internal * Nway block only. * * The internal Nway block, unlike the Lite-On PNIC's, does * just that - performs Nway. Once autonegotiation completes, * we must program the GPR media information into the chip. * * The byte offset of the Ethernet address is stored at * offset 0x70. */ memcpy(enaddr, &sc->sc_srom[sc->sc_srom[0x70]], ETHER_ADDR_LEN); sc->sc_mediasw = &tlp_pmac_mediasw; break; case TULIP_CHIP_WB89C840F: /* * Winbond 89C840F's Ethernet address is the first * 6 bytes of its EEPROM. */ memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN); /* * Winbond 89C840F has an MII attached to the SIO. */ sc->sc_mediasw = &tlp_sio_mii_mediasw; break; case TULIP_CHIP_AL981: /* * The ADMtek AL981's Ethernet address is located * at offset 8 of its EEPROM. */ memcpy(enaddr, &sc->sc_srom[8], ETHER_ADDR_LEN); /* * ADMtek AL981 has a built-in PHY accessed through * special registers. */ sc->sc_mediasw = &tlp_al981_mediasw; break; case TULIP_CHIP_AN983: case TULIP_CHIP_AN985: /* * The ADMtek AN985's Ethernet address is located * at offset 8 of its EEPROM. */ memcpy(enaddr, &sc->sc_srom[8], ETHER_ADDR_LEN); /* * The ADMtek AN985 can be configured in Single-Chip * mode or MAC-only mode. Single-Chip uses the built-in * PHY, MAC-only has an external PHY (usually HomePNA). * The selection is based on an EEPROM setting, and both * PHYs are accessed via MII attached to SIO. * * The AN985 "ghosts" the internal PHY onto all * MII addresses, so we have to use a media init * routine that limits the search. * XXX How does this work with MAC-only mode? */ sc->sc_mediasw = &tlp_an985_mediasw; break; case TULIP_CHIP_DM9102: case TULIP_CHIP_DM9102A: /* * Some boards with the Davicom chip have an ISV * SROM (mostly DM9102A boards -- trying to describe * the HomePNA PHY, probably) although the data in * them is generally wrong. Check for ISV format * and grab the Ethernet address that way, and if * that fails, fall back on grabbing it from an * observed offset of 20 (which is where it would * be in an ISV SROM anyhow, tho ISV can cope with * multi-port boards). */ if (!tlp_isv_srom_enaddr(sc, enaddr)) { #ifdef __sparc__ if (!sc->sc_srom[20] && !sc->sc_srom[21] && !sc->sc_srom[22]) { prom_getether(PCITAG_NODE(pa->pa_tag), enaddr); } else #endif memcpy(enaddr, &sc->sc_srom[20], ETHER_ADDR_LEN); } /* * Davicom chips all have an internal MII interface * and a built-in PHY. DM9102A also has a an external * MII interface, usually with a HomePNA PHY attached * to it. */ sc->sc_mediasw = &tlp_dm9102_mediasw; break; default: cant_cope: printf("%s: sorry, unable to handle your board\n", sc->sc_dev.dv_xname); return; } /* * Handle shared interrupts. */ if (psc->sc_flags & TULIP_PCI_SHAREDINTR) { if (psc->sc_master) psc->sc_flags |= TULIP_PCI_SLAVEINTR; else { tlp_pci_check_slaved(psc, TULIP_PCI_SHAREDINTR, TULIP_PCI_SLAVEINTR); if (psc->sc_master == NULL) psc->sc_master = psc; } LIST_INSERT_HEAD(&psc->sc_master->sc_intrslaves, psc, sc_intrq); } if (psc->sc_flags & TULIP_PCI_SLAVEINTR) { printf("%s: sharing interrupt with %s\n", sc->sc_dev.dv_xname, psc->sc_master->sc_tulip.sc_dev.dv_xname); } else { /* * Map and establish our interrupt. */ if (pci_intr_map(pa, &ih)) { printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname); return; } intrstr = pci_intr_string(pc, ih); psc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, (psc->sc_flags & TULIP_PCI_SHAREDINTR) ? tlp_pci_shared_intr : tlp_intr, sc); if (psc->sc_ih == NULL) { printf("%s: unable to establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); } /* * Finish off the attach. */ tlp_attach(sc, enaddr); } int tlp_pci_shared_intr(arg) void *arg; { struct tulip_pci_softc *master = arg, *slave; int rv = 0; for (slave = LIST_FIRST(&master->sc_intrslaves); slave != NULL; slave = LIST_NEXT(slave, sc_intrq)) rv |= tlp_intr(&slave->sc_tulip); return (rv); } void tlp_pci_dec_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; /* * This isn't really a quirk-gathering device, really. We * just want to get the spiffy DEC board name from the SROM. */ strcpy(sc->sc_name, "DEC "); if (memcmp(&sc->sc_srom[29], "DE500", 5) == 0 || memcmp(&sc->sc_srom[29], "DE450", 5) == 0) memcpy(&sc->sc_name[4], &sc->sc_srom[29], 8); } void tlp_pci_znyx_21040_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; u_int16_t id = 0; /* * If we have a slaved ROM, just copy the bits from the master. * This is in case we fail the ROM ID check (older boards) and * need to fall back on Ethernet address model checking; that * will fail for slave chips. */ if (psc->sc_flags & TULIP_PCI_SLAVEROM) { strcpy(sc->sc_name, psc->sc_master->sc_tulip.sc_name); sc->sc_mediasw = psc->sc_master->sc_tulip.sc_mediasw; psc->sc_flags |= psc->sc_master->sc_flags & TULIP_PCI_SHAREDINTR; return; } if (sc->sc_srom[32] == 0x4a && sc->sc_srom[33] == 0x52) { id = sc->sc_srom[37] | (sc->sc_srom[36] << 8); switch (id) { zx312: case 0x0602: /* ZX312 */ strcpy(sc->sc_name, "ZNYX ZX312"); return; case 0x0622: /* ZX312T */ strcpy(sc->sc_name, "ZNYX ZX312T"); sc->sc_mediasw = &tlp_21040_tp_mediasw; return; zx314_inta: case 0x0701: /* ZX314 INTA */ psc->sc_flags |= TULIP_PCI_SHAREDINTR; /* FALLTHROUGH */ case 0x0711: /* ZX314 */ strcpy(sc->sc_name, "ZNYX ZX314"); psc->sc_flags |= TULIP_PCI_SHAREDROM; sc->sc_mediasw = &tlp_21040_tp_mediasw; return; zx315_inta: case 0x0801: /* ZX315 INTA */ psc->sc_flags |= TULIP_PCI_SHAREDINTR; /* FALLTHROUGH */ case 0x0811: /* ZX315 */ strcpy(sc->sc_name, "ZNYX ZX315"); psc->sc_flags |= TULIP_PCI_SHAREDROM; return; default: id = 0; break; } } /* * Deal with boards that have broken ROMs. */ if (id == 0) { if ((enaddr[3] & ~3) == 0xf0 && (enaddr[5] & 3) == 0x00) goto zx314_inta; if ((enaddr[3] & ~3) == 0xf4 && (enaddr[5] & 1) == 0x00) goto zx315_inta; if ((enaddr[3] & ~3) == 0xec) goto zx312; } strcpy(sc->sc_name, "ZNYX ZX31x"); } void tlp_pci_znyx_21142_qs6611_reset __P((struct tulip_softc *)); void tlp_pci_znyx_21142_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; pcireg_t subid; subid = pci_conf_read(psc->sc_pc, psc->sc_pcitag, PCI_SUBSYS_ID_REG); if (PCI_VENDOR(subid) != PCI_VENDOR_ZNYX) return; /* ? */ switch (PCI_PRODUCT(subid) & 0xff) { /* * ZNYX 21143 boards with QS6611 PHY */ case 0x12: /* ZX345Q */ case 0x13: /* ZX346Q */ case 0x14: /* ZX348Q */ case 0x18: /* ZX414 */ case 0x19: /* ZX412 */ case 0x1a: /* ZX444 */ case 0x1b: /* ZX442 */ case 0x23: /* ZX212 */ case 0x24: /* ZX214 */ case 0x29: /* ZX374 */ case 0x2d: /* ZX372 */ case 0x2b: /* ZX244 */ case 0x2c: /* ZX424 */ case 0x2e: /* ZX422 */ printf("%s: QS6611 PHY\n", sc->sc_dev.dv_xname); sc->sc_reset = tlp_pci_znyx_21142_qs6611_reset; break; } } void tlp_pci_znyx_21142_qs6611_reset(sc) struct tulip_softc *sc; { /* * Reset QS6611 PHY. */ TULIP_WRITE(sc, CSR_SIAGEN, SIAGEN_CWE | SIAGEN_LGS1 | SIAGEN_ABM | (0xf << 16)); delay(200); TULIP_WRITE(sc, CSR_SIAGEN, (0x4 << 16)); delay(10000); } void tlp_pci_smc_21040_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; u_int16_t id1, id2, ei; int auibnc = 0, utp = 0; char *cp; id1 = sc->sc_srom[0x60] | (sc->sc_srom[0x61] << 8); id2 = sc->sc_srom[0x62] | (sc->sc_srom[0x63] << 8); ei = sc->sc_srom[0x66] | (sc->sc_srom[0x67] << 8); strcpy(sc->sc_name, "SMC 8432"); cp = &sc->sc_name[8]; if ((id1 & 1) == 0) { *cp++ = 'B'; auibnc = 1; } if ((id1 & 0xff) > 0x32) { *cp++ = 'T'; utp = 1; } if ((id1 & 0x4000) == 0) { *cp++ = 'A'; auibnc = 1; } if (id2 == 0x15) { sc->sc_name[7] = '4'; *cp++ = '-'; *cp++ = 'C'; *cp++ = 'H'; *cp++ = ei ? '2' : '1'; } *cp = '\0'; if (utp != 0 && auibnc == 0) sc->sc_mediasw = &tlp_21040_tp_mediasw; else if (utp == 0 && auibnc != 0) sc->sc_mediasw = &tlp_21040_auibnc_mediasw; } void tlp_pci_cogent_21040_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { strcpy(psc->sc_tulip.sc_name, "Cogent multi-port"); psc->sc_flags |= TULIP_PCI_SHAREDINTR|TULIP_PCI_SHAREDROM; } void tlp_pci_accton_21040_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { strcpy(psc->sc_tulip.sc_name, "ACCTON EN1203"); } void tlp_pci_asante_21140_reset __P((struct tulip_softc *)); void tlp_pci_asante_21140_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; /* * Some Asante boards don't use the ISV SROM format. For * those that don't, we initialize the GPIO direction bits, * and provide our own reset hook, which resets the MII. * * All of these boards use SIO-attached-MII media. */ if (sc->sc_mediasw == &tlp_2114x_isv_mediasw) return; strcpy(sc->sc_name, "Asante"); sc->sc_gp_dir = 0xbf; sc->sc_reset = tlp_pci_asante_21140_reset; sc->sc_mediasw = &tlp_sio_mii_mediasw; } void tlp_pci_asante_21140_reset(sc) struct tulip_softc *sc; { TULIP_WRITE(sc, CSR_GPP, GPP_GPC | sc->sc_gp_dir); TULIP_WRITE(sc, CSR_GPP, 0x8); delay(100); TULIP_WRITE(sc, CSR_GPP, 0); } /* * SMC 9332DST media switch. */ void tlp_smc9332dst_tmsw_init __P((struct tulip_softc *)); const struct tulip_mediasw tlp_smc9332dst_mediasw = { tlp_smc9332dst_tmsw_init, tlp_21140_gpio_get, tlp_21140_gpio_set }; void tlp_pci_smc_21140_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; if (sc->sc_mediasw != NULL) { return; } strcpy(psc->sc_tulip.sc_name, "SMC 9332DST"); sc->sc_mediasw = &tlp_smc9332dst_mediasw; } void tlp_smc9332dst_tmsw_init(sc) struct tulip_softc *sc; { struct tulip_21x4x_media *tm; const char *sep = ""; uint32_t reg; int i, cnt; sc->sc_gp_dir = GPP_SMC9332DST_PINS; sc->sc_opmode = OPMODE_MBO | OPMODE_PS; TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange, tlp_mediastatus); printf("%s: ", sc->sc_dev.dv_xname); #define ADD(m, c) \ tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK|M_ZERO); \ tm->tm_opmode = (c); \ tm->tm_gpdata = GPP_SMC9332DST_INIT; \ ifmedia_add(&sc->sc_mii.mii_media, (m), 0, tm) #define PRINT(str) printf("%s%s", sep, str); sep = ", " ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0), OPMODE_TTM); PRINT("10baseT"); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, IFM_FDX, 0), OPMODE_TTM | OPMODE_FD); PRINT("10baseT-FDX"); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, 0), OPMODE_PS | OPMODE_PCS | OPMODE_SCR); PRINT("100baseTX"); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, IFM_FDX, 0), OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_FD); PRINT("100baseTX-FDX"); #undef ADD #undef PRINT printf("\n"); tlp_reset(sc); TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode | OPMODE_PCS | OPMODE_SCR); TULIP_WRITE(sc, CSR_GPP, GPP_GPC | sc->sc_gp_dir); delay(10); TULIP_WRITE(sc, CSR_GPP, GPP_SMC9332DST_INIT); delay(200000); cnt = 0; for (i = 1000; i > 0; i--) { reg = TULIP_READ(sc, CSR_GPP); if ((~reg & (GPP_SMC9332DST_OK10 | GPP_SMC9332DST_OK100)) == 0) { if (cnt++ > 100) { break; } } else if ((reg & GPP_SMC9332DST_OK10) == 0) { break; } else { cnt = 0; } delay(1000); } if (cnt > 100) { ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_100_TX); } else { ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T); } } void tlp_pci_vpc_21140_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; char *p1 = (char *) &sc->sc_srom[32]; char *p2 = &sc->sc_name[0]; do { if ((unsigned char) *p1 & 0x80) *p2++ = ' '; else *p2++ = *p1; } while (*p1++); } void tlp_pci_cobalt_21142_reset __P((struct tulip_softc *)); void tlp_pci_cobalt_21142_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; /* * Cobalt Networks interfaces are just MII-on-SIO. */ sc->sc_reset = tlp_pci_cobalt_21142_reset; sc->sc_mediasw = &tlp_sio_mii_mediasw; /* * The Cobalt systems tend to fall back to store-and-forward * pretty quickly, so we select that from the beginning to * avoid initial timeouts. */ sc->sc_txthresh = TXTH_SF; } void tlp_pci_cobalt_21142_reset(sc) struct tulip_softc *sc; { /* * Reset PHY. */ TULIP_WRITE(sc, CSR_SIAGEN, SIAGEN_CWE | (1 << 16)); delay(10); TULIP_WRITE(sc, CSR_SIAGEN, SIAGEN_CWE); delay(10); } void tlp_pci_algor_21142_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; /* * Algorithmics boards just have MII-on-SIO. * * XXX They also have AUI on the serial interface. * XXX Deal with this. */ sc->sc_mediasw = &tlp_sio_mii_mediasw; } /* * Cogent EM1x0 (aka. Adaptec ANA-6910) media switch. */ void tlp_cogent_em1x0_tmsw_init __P((struct tulip_softc *)); const struct tulip_mediasw tlp_cogent_em1x0_mediasw = { tlp_cogent_em1x0_tmsw_init, tlp_21140_gpio_get, tlp_21140_gpio_set }; void tlp_pci_adaptec_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; uint8_t *srom = sc->sc_srom, id0; uint16_t id1, id2; if (sc->sc_mediasw == NULL) { id0 = srom[32]; switch (id0) { case 0x12: strcpy(psc->sc_tulip.sc_name, "Cogent EM100TX"); sc->sc_mediasw = &tlp_cogent_em1x0_mediasw; break; case 0x15: strcpy(psc->sc_tulip.sc_name, "Cogent EM100FX"); sc->sc_mediasw = &tlp_cogent_em1x0_mediasw; break; #if 0 case XXX: strcpy(psc->sc_tulip.sc_name, "Cogent EM110TX"); sc->sc_mediasw = &tlp_cogent_em1x0_mediasw; break; #endif default: printf("%s: unknown Cogent board ID 0x%02x\n", sc->sc_dev.dv_xname, id0); } return; } id1 = TULIP_ROM_GETW(srom, 0); id2 = TULIP_ROM_GETW(srom, 2); if (id1 != 0x1109) { goto unknown; } switch (id2) { case 0x1900: strcpy(psc->sc_tulip.sc_name, "Adaptec ANA-6911"); break; case 0x2400: strcpy(psc->sc_tulip.sc_name, "Adaptec ANA-6944A"); psc->sc_flags |= TULIP_PCI_SHAREDINTR|TULIP_PCI_SHAREDROM; break; case 0x2b00: strcpy(psc->sc_tulip.sc_name, "Adaptec ANA-6911A"); break; case 0x3000: strcpy(psc->sc_tulip.sc_name, "Adaptec ANA-6922"); psc->sc_flags |= TULIP_PCI_SHAREDINTR|TULIP_PCI_SHAREDROM; break; default: unknown: printf("%s: unknown Adaptec/Cogent board ID 0x%04x/0x%04x\n", sc->sc_dev.dv_xname, id1, id2); } } void tlp_cogent_em1x0_tmsw_init(sc) struct tulip_softc *sc; { struct tulip_21x4x_media *tm; const char *sep = ""; sc->sc_gp_dir = GPP_COGENT_EM1x0_PINS; sc->sc_opmode = OPMODE_MBO | OPMODE_PS; TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode); ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange, tlp_mediastatus); printf("%s: ", sc->sc_dev.dv_xname); #define ADD(m, c) \ tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK|M_ZERO); \ tm->tm_opmode = (c); \ tm->tm_gpdata = GPP_COGENT_EM1x0_INIT; \ ifmedia_add(&sc->sc_mii.mii_media, (m), 0, tm) #define PRINT(str) printf("%s%s", sep, str); sep = ", " if (sc->sc_srom[32] == 0x15) { ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_FX, 0, 0), OPMODE_PS | OPMODE_PCS); PRINT("100baseFX"); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_FX, IFM_FDX, 0), OPMODE_PS | OPMODE_PCS | OPMODE_FD); PRINT("100baseFX-FDX"); printf("\n"); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_100_FX); } else { ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, 0), OPMODE_PS | OPMODE_PCS | OPMODE_SCR); PRINT("100baseTX"); ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_FX, IFM_FDX, 0), OPMODE_PS | OPMODE_PCS | OPMODE_SCR | OPMODE_FD); PRINT("100baseTX-FDX"); printf("\n"); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_100_TX); } #undef ADD #undef PRINT } void tlp_pci_netwinder_21142_reset(struct tulip_softc *); void tlp_pci_netwinder_21142_quirks(psc, enaddr) struct tulip_pci_softc *psc; const u_int8_t *enaddr; { struct tulip_softc *sc = &psc->sc_tulip; /* * Netwinders just use MII-on_SIO. */ sc->sc_mediasw = &tlp_sio_mii_mediasw; sc->sc_reset = tlp_pci_netwinder_21142_reset; } void tlp_pci_netwinder_21142_reset(sc) struct tulip_softc *sc; { /* * Reset the PHY. */ TULIP_WRITE(sc, CSR_SIAGEN, 0x0821 << 16); delay(10); TULIP_WRITE(sc, CSR_SIAGEN, 0x0000 << 16); delay(10); TULIP_WRITE(sc, CSR_SIAGEN, 0x0001 << 16); delay(10); }