/* $NetBSD: acpi_bat.c,v 1.79 2010/01/27 22:17:28 drochner Exp $ */ /*- * Copyright (c) 2003 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum of By Noon Software, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright 2001 Bill Sommerfeld. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * ACPI Battery Driver. * * ACPI defines two different battery device interfaces: "Control * Method" batteries, in which AML methods are defined in order to get * battery status and set battery alarm thresholds, and a "Smart * Battery" device, which is an SMbus device accessed through the ACPI * Embedded Controller device. * * This driver is for the "Control Method"-style battery only. */ #include __KERNEL_RCSID(0, "$NetBSD: acpi_bat.c,v 1.79 2010/01/27 22:17:28 drochner Exp $"); #include #include #include /* for hz */ #include #include #include #include #include #include #define _COMPONENT ACPI_BAT_COMPONENT ACPI_MODULE_NAME ("acpi_bat") /* * Sensor indexes. */ enum { ACPIBAT_PRESENT = 0, ACPIBAT_DCAPACITY = 1, ACPIBAT_LFCCAPACITY = 2, ACPIBAT_TECHNOLOGY = 3, ACPIBAT_DVOLTAGE = 4, ACPIBAT_WCAPACITY = 5, ACPIBAT_LCAPACITY = 6, ACPIBAT_VOLTAGE = 7, ACPIBAT_CHARGERATE = 8, ACPIBAT_DISCHARGERATE = 9, ACPIBAT_CAPACITY = 10, ACPIBAT_CHARGING = 11, ACPIBAT_CHARGE_STATE = 12, ACPIBAT_COUNT = 13 }; /* * Battery Information, _BIF * (ACPI 3.0, sec. 10.2.2.1). */ enum { ACPIBAT_BIF_UNIT = 0, ACPIBAT_BIF_DCAPACITY = 1, ACPIBAT_BIF_LFCCAPACITY = 2, ACPIBAT_BIF_TECHNOLOGY = 3, ACPIBAT_BIF_DVOLTAGE = 4, ACPIBAT_BIF_WCAPACITY = 5, ACPIBAT_BIF_LCAPACITY = 6, ACPIBAT_BIF_GRANULARITY1 = 7, ACPIBAT_BIF_GRANULARITY2 = 8, ACPIBAT_BIF_MODEL = 9, ACPIBAT_BIF_SERIAL = 10, ACPIBAT_BIF_TYPE = 11, ACPIBAT_BIF_OEM = 12, ACPIBAT_BIF_COUNT = 13 }; /* * Battery Status, _BST * (ACPI 3.0, sec. 10.2.2.3). */ enum { ACPIBAT_BST_STATE = 0, ACPIBAT_BST_RATE = 1, ACPIBAT_BST_CAPACITY = 2, ACPIBAT_BST_VOLTAGE = 3, ACPIBAT_BST_COUNT = 4 }; struct acpibat_softc { struct acpi_devnode *sc_node; struct sysmon_envsys *sc_sme; struct timeval sc_lastupdate; envsys_data_t sc_sensor[ACPIBAT_COUNT]; kmutex_t sc_mutex; kcondvar_t sc_condvar; int sc_present; }; static const char * const bat_hid[] = { "PNP0C0A", NULL }; #define ACPIBAT_PWRUNIT_MA 0x00000001 /* mA not mW */ #define ACPIBAT_ST_DISCHARGING 0x00000001 /* battery is discharging */ #define ACPIBAT_ST_CHARGING 0x00000002 /* battery is charging */ #define ACPIBAT_ST_CRITICAL 0x00000004 /* battery is critical */ /* * Flags for battery status from _STA return. Note that * this differs from the conventional evaluation of _STA: * * "Unlike most other devices, when a battery is inserted or * removed from the system, the device itself (the battery bay) * is still considered to be present in the system. For most * systems, the _STA for this device will always return a value * with bits 0-3 set and will toggle bit 4 to indicate the actual * presence of a battery. (ACPI 3.0, sec. 10.2.1, p. 320.)" */ #define ACPIBAT_STA_PRESENT 0x00000010 /* battery present */ /* * A value used when _BST or _BIF is teporarily unknown (see ibid.). */ #define ACPIBAT_VAL_UNKNOWN 0xFFFFFFFF #define ACPIBAT_VAL_ISVALID(x) \ (((x) != ACPIBAT_VAL_UNKNOWN) ? ENVSYS_SVALID : ENVSYS_SINVALID) static int acpibat_match(device_t, cfdata_t, void *); static void acpibat_attach(device_t, device_t, void *); static int acpibat_get_sta(device_t); static ACPI_OBJECT *acpibat_get_object(ACPI_HANDLE, const char *, int); static void acpibat_get_info(device_t); static void acpibat_get_status(device_t); static void acpibat_update_info(void *); static void acpibat_update_status(void *); static void acpibat_init_envsys(device_t); static void acpibat_notify_handler(ACPI_HANDLE, UINT32, void *); static void acpibat_refresh(struct sysmon_envsys *, envsys_data_t *); static bool acpibat_resume(device_t, pmf_qual_t); CFATTACH_DECL_NEW(acpibat, sizeof(struct acpibat_softc), acpibat_match, acpibat_attach, NULL, NULL); /* * acpibat_match: * * Autoconfiguration `match' routine. */ static int acpibat_match(device_t parent, cfdata_t match, void *aux) { struct acpi_attach_args *aa = aux; if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE) return 0; return acpi_match_hid(aa->aa_node->ad_devinfo, bat_hid); } /* * acpibat_attach: * * Autoconfiguration `attach' routine. */ static void acpibat_attach(device_t parent, device_t self, void *aux) { struct acpibat_softc *sc = device_private(self); struct acpi_attach_args *aa = aux; ACPI_STATUS rv; aprint_naive(": ACPI Battery\n"); aprint_normal(": ACPI Battery\n"); sc->sc_node = aa->aa_node; sc->sc_present = 0; mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE); cv_init(&sc->sc_condvar, device_xname(self)); if (pmf_device_register(self, NULL, acpibat_resume) != true) aprint_error_dev(self, "couldn't establish power handler\n"); rv = AcpiInstallNotifyHandler(sc->sc_node->ad_handle, ACPI_ALL_NOTIFY, acpibat_notify_handler, self); if (ACPI_SUCCESS(rv)) acpibat_init_envsys(self); else aprint_error_dev(self, "couldn't install notify handler\n"); } /* * acpibat_get_sta: * * Evaluate whether the battery is present or absent. * * Returns: 0 for no battery, 1 for present, and -1 on error. */ static int acpibat_get_sta(device_t dv) { struct acpibat_softc *sc = device_private(dv); ACPI_INTEGER val; ACPI_STATUS rv; rv = acpi_eval_integer(sc->sc_node->ad_handle, "_STA", &val); if (ACPI_FAILURE(rv)) { aprint_error_dev(dv, "failed to evaluate _STA\n"); return -1; } sc->sc_sensor[ACPIBAT_PRESENT].state = ENVSYS_SVALID; if ((val & ACPIBAT_STA_PRESENT) == 0) { sc->sc_sensor[ACPIBAT_PRESENT].value_cur = 0; return 0; } sc->sc_sensor[ACPIBAT_PRESENT].value_cur = 1; return 1; } static ACPI_OBJECT * acpibat_get_object(ACPI_HANDLE hdl, const char *pth, int count) { ACPI_OBJECT *obj; ACPI_BUFFER buf; ACPI_STATUS rv; rv = acpi_eval_struct(hdl, pth, &buf); if (ACPI_FAILURE(rv)) return NULL; obj = buf.Pointer; if (obj->Type != ACPI_TYPE_PACKAGE) { ACPI_FREE(buf.Pointer); return NULL; } if (obj->Package.Count != count) { ACPI_FREE(buf.Pointer); return NULL; } return obj; } /* * acpibat_get_info: * * Get, and possibly display, the battery info. */ static void acpibat_get_info(device_t dv) { struct acpibat_softc *sc = device_private(dv); ACPI_HANDLE hdl = sc->sc_node->ad_handle; int capunit, i, j, rateunit, val; ACPI_OBJECT *elm, *obj; ACPI_STATUS rv = AE_OK; obj = acpibat_get_object(hdl, "_BIF", ACPIBAT_BIF_COUNT); if (obj == NULL) { rv = AE_ERROR; goto out; } elm = obj->Package.Elements; for (i = ACPIBAT_BIF_UNIT; i < ACPIBAT_BIF_MODEL; i++) { if (elm[i].Type != ACPI_TYPE_INTEGER) { rv = AE_TYPE; goto out; } KDASSERT((uint64_t)elm[i].Integer.Value < INT_MAX); } aprint_verbose_dev(dv, "battery info: "); for (i = j = ACPIBAT_BIF_OEM; i > ACPIBAT_BIF_GRANULARITY2; i--) { if (elm[i].Type != ACPI_TYPE_STRING) continue; if (elm[i].String.Pointer == NULL) continue; aprint_verbose("%s ", elm[i].String.Pointer); j = 0; } if (j != 0) aprint_verbose("not available"); aprint_verbose("\n"); if ((elm[ACPIBAT_BIF_UNIT].Integer.Value & ACPIBAT_PWRUNIT_MA) != 0) { capunit = ENVSYS_SAMPHOUR; rateunit = ENVSYS_SAMPS; } else { capunit = ENVSYS_SWATTHOUR; rateunit = ENVSYS_SWATTS; } sc->sc_sensor[ACPIBAT_DCAPACITY].units = capunit; sc->sc_sensor[ACPIBAT_LFCCAPACITY].units = capunit; sc->sc_sensor[ACPIBAT_WCAPACITY].units = capunit; sc->sc_sensor[ACPIBAT_LCAPACITY].units = capunit; sc->sc_sensor[ACPIBAT_CHARGERATE].units = rateunit; sc->sc_sensor[ACPIBAT_DISCHARGERATE].units = rateunit; sc->sc_sensor[ACPIBAT_CAPACITY].units = capunit; /* Design capacity. */ val = elm[ACPIBAT_BIF_DCAPACITY].Integer.Value * 1000; sc->sc_sensor[ACPIBAT_DCAPACITY].value_cur = val; sc->sc_sensor[ACPIBAT_DCAPACITY].state = ACPIBAT_VAL_ISVALID(val); /* Last full charge capacity. */ val = elm[ACPIBAT_BIF_LFCCAPACITY].Integer.Value * 1000; sc->sc_sensor[ACPIBAT_LFCCAPACITY].value_cur = val; sc->sc_sensor[ACPIBAT_LFCCAPACITY].state = ACPIBAT_VAL_ISVALID(val); /* Battery technology. */ val = elm[ACPIBAT_BIF_TECHNOLOGY].Integer.Value; sc->sc_sensor[ACPIBAT_TECHNOLOGY].value_cur = val; sc->sc_sensor[ACPIBAT_TECHNOLOGY].state = ACPIBAT_VAL_ISVALID(val); /* Design voltage. */ val = elm[ACPIBAT_BIF_DVOLTAGE].Integer.Value * 1000; sc->sc_sensor[ACPIBAT_DVOLTAGE].value_cur = val; sc->sc_sensor[ACPIBAT_DVOLTAGE].state = ACPIBAT_VAL_ISVALID(val); /* Design warning capacity. */ val = elm[ACPIBAT_BIF_WCAPACITY].Integer.Value * 1000; sc->sc_sensor[ACPIBAT_WCAPACITY].value_cur = val; sc->sc_sensor[ACPIBAT_WCAPACITY].state = ACPIBAT_VAL_ISVALID(val); sc->sc_sensor[ACPIBAT_WCAPACITY].flags |= ENVSYS_FPERCENT | ENVSYS_FVALID_MAX; /* Design low capacity. */ val = elm[ACPIBAT_BIF_LCAPACITY].Integer.Value * 1000; sc->sc_sensor[ACPIBAT_LCAPACITY].value_cur = val; sc->sc_sensor[ACPIBAT_LCAPACITY].state = ACPIBAT_VAL_ISVALID(val); sc->sc_sensor[ACPIBAT_LCAPACITY].flags |= ENVSYS_FPERCENT | ENVSYS_FVALID_MAX; /* * Initialize the maximum of current, warning, and * low capacity to the last full charge capacity. */ val = sc->sc_sensor[ACPIBAT_LFCCAPACITY].value_cur; sc->sc_sensor[ACPIBAT_CAPACITY].value_max = val; sc->sc_sensor[ACPIBAT_WCAPACITY].value_max = val; sc->sc_sensor[ACPIBAT_LCAPACITY].value_max = val; out: if (obj != NULL) ACPI_FREE(obj); if (ACPI_FAILURE(rv)) aprint_error_dev(dv, "failed to evaluate _BIF: %s\n", AcpiFormatException(rv)); } /* * acpibat_get_status: * * Get, and possibly display, the current battery line status. */ static void acpibat_get_status(device_t dv) { struct acpibat_softc *sc = device_private(dv); ACPI_HANDLE hdl = sc->sc_node->ad_handle; int i, rate, state, val; ACPI_OBJECT *elm, *obj; ACPI_STATUS rv = AE_OK; obj = acpibat_get_object(hdl, "_BST", ACPIBAT_BST_COUNT); if (obj == NULL) { rv = AE_ERROR; goto out; } elm = obj->Package.Elements; for (i = ACPIBAT_BST_STATE; i < ACPIBAT_BST_COUNT; i++) { if (elm[i].Type != ACPI_TYPE_INTEGER) { rv = AE_TYPE; goto out; } } state = elm[ACPIBAT_BST_STATE].Integer.Value; if ((state & ACPIBAT_ST_CHARGING) != 0) { /* XXX rate can be invalid */ rate = elm[ACPIBAT_BST_RATE].Integer.Value; sc->sc_sensor[ACPIBAT_CHARGERATE].state = ENVSYS_SVALID; sc->sc_sensor[ACPIBAT_CHARGERATE].value_cur = rate * 1000; sc->sc_sensor[ACPIBAT_DISCHARGERATE].state = ENVSYS_SINVALID; sc->sc_sensor[ACPIBAT_CHARGING].state = ENVSYS_SVALID; sc->sc_sensor[ACPIBAT_CHARGING].value_cur = 1; } else if ((state & ACPIBAT_ST_DISCHARGING) != 0) { rate = elm[ACPIBAT_BST_RATE].Integer.Value; sc->sc_sensor[ACPIBAT_DISCHARGERATE].state = ENVSYS_SVALID; sc->sc_sensor[ACPIBAT_DISCHARGERATE].value_cur = rate * 1000; sc->sc_sensor[ACPIBAT_CHARGERATE].state = ENVSYS_SINVALID; sc->sc_sensor[ACPIBAT_CHARGING].state = ENVSYS_SVALID; sc->sc_sensor[ACPIBAT_CHARGING].value_cur = 0; } else { sc->sc_sensor[ACPIBAT_CHARGING].state = ENVSYS_SVALID; sc->sc_sensor[ACPIBAT_CHARGING].value_cur = 0; sc->sc_sensor[ACPIBAT_CHARGERATE].state = ENVSYS_SINVALID; sc->sc_sensor[ACPIBAT_DISCHARGERATE].state = ENVSYS_SINVALID; } /* Remaining capacity. */ val = elm[ACPIBAT_BST_CAPACITY].Integer.Value * 1000; sc->sc_sensor[ACPIBAT_CAPACITY].value_cur = val; sc->sc_sensor[ACPIBAT_CAPACITY].state = ACPIBAT_VAL_ISVALID(val); sc->sc_sensor[ACPIBAT_CAPACITY].flags |= ENVSYS_FPERCENT | ENVSYS_FVALID_MAX; /* Battery voltage. */ val = elm[ACPIBAT_BST_VOLTAGE].Integer.Value * 1000; sc->sc_sensor[ACPIBAT_VOLTAGE].value_cur = val; sc->sc_sensor[ACPIBAT_VOLTAGE].state = ACPIBAT_VAL_ISVALID(val); sc->sc_sensor[ACPIBAT_CHARGE_STATE].state = ENVSYS_SVALID; sc->sc_sensor[ACPIBAT_CHARGE_STATE].value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL; if (sc->sc_sensor[ACPIBAT_CAPACITY].value_cur < sc->sc_sensor[ACPIBAT_WCAPACITY].value_cur) { sc->sc_sensor[ACPIBAT_CAPACITY].state = ENVSYS_SWARNUNDER; sc->sc_sensor[ACPIBAT_CHARGE_STATE].value_cur = ENVSYS_BATTERY_CAPACITY_WARNING; } if (sc->sc_sensor[ACPIBAT_CAPACITY].value_cur < sc->sc_sensor[ACPIBAT_LCAPACITY].value_cur) { sc->sc_sensor[ACPIBAT_CAPACITY].state = ENVSYS_SCRITUNDER; sc->sc_sensor[ACPIBAT_CHARGE_STATE].value_cur = ENVSYS_BATTERY_CAPACITY_LOW; } if ((state & ACPIBAT_ST_CRITICAL) != 0) { sc->sc_sensor[ACPIBAT_CAPACITY].state = ENVSYS_SCRITICAL; sc->sc_sensor[ACPIBAT_CHARGE_STATE].value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL; } out: if (obj != NULL) ACPI_FREE(obj); if (ACPI_FAILURE(rv)) aprint_error_dev(dv, "failed to evaluate _BST: %s\n", AcpiFormatException(rv)); } static void acpibat_update_info(void *arg) { device_t dv = arg; struct acpibat_softc *sc = device_private(dv); int i, rv; mutex_enter(&sc->sc_mutex); rv = acpibat_get_sta(dv); if (rv > 0) acpibat_get_info(dv); else { i = (rv < 0) ? 0 : ACPIBAT_DCAPACITY; while (i < ACPIBAT_COUNT) { sc->sc_sensor[i].state = ENVSYS_SINVALID; i++; } } sc->sc_present = rv; mutex_exit(&sc->sc_mutex); } static void acpibat_update_status(void *arg) { device_t dv = arg; struct acpibat_softc *sc = device_private(dv); int i, rv; mutex_enter(&sc->sc_mutex); rv = acpibat_get_sta(dv); if (rv > 0) { if (sc->sc_present == 0) acpibat_get_info(dv); acpibat_get_status(dv); } else { i = (rv < 0) ? 0 : ACPIBAT_DCAPACITY; while (i < ACPIBAT_COUNT) { sc->sc_sensor[i].state = ENVSYS_SINVALID; i++; } } sc->sc_present = rv; microtime(&sc->sc_lastupdate); cv_broadcast(&sc->sc_condvar); mutex_exit(&sc->sc_mutex); } /* * acpibat_notify_handler: * * Callback from ACPI interrupt handler to notify us of an event. */ static void acpibat_notify_handler(ACPI_HANDLE handle, UINT32 notify, void *context) { static const int handler = OSL_NOTIFY_HANDLER; device_t dv = context; switch (notify) { case ACPI_NOTIFY_BusCheck: break; case ACPI_NOTIFY_DeviceCheck: case ACPI_NOTIFY_BatteryInformationChanged: (void)AcpiOsExecute(handler, acpibat_update_info, dv); break; case ACPI_NOTIFY_BatteryStatusChanged: (void)AcpiOsExecute(handler, acpibat_update_status, dv); break; default: aprint_error_dev(dv, "unknown notify: 0x%02X\n", notify); } } static void acpibat_init_envsys(device_t dv) { struct acpibat_softc *sc = device_private(dv); int i; #define INITDATA(index, unit, string) \ do { \ sc->sc_sensor[index].state = ENVSYS_SVALID; \ sc->sc_sensor[index].units = unit; \ (void)strlcpy(sc->sc_sensor[index].desc, string, \ sizeof(sc->sc_sensor[index].desc)); \ } while (/* CONSTCOND */ 0) INITDATA(ACPIBAT_PRESENT, ENVSYS_INDICATOR, "present"); INITDATA(ACPIBAT_DCAPACITY, ENVSYS_SWATTHOUR, "design cap"); INITDATA(ACPIBAT_LFCCAPACITY, ENVSYS_SWATTHOUR, "last full cap"); INITDATA(ACPIBAT_TECHNOLOGY, ENVSYS_INTEGER, "technology"); INITDATA(ACPIBAT_DVOLTAGE, ENVSYS_SVOLTS_DC, "design voltage"); INITDATA(ACPIBAT_WCAPACITY, ENVSYS_SWATTHOUR, "warn cap"); INITDATA(ACPIBAT_LCAPACITY, ENVSYS_SWATTHOUR, "low cap"); INITDATA(ACPIBAT_VOLTAGE, ENVSYS_SVOLTS_DC, "voltage"); INITDATA(ACPIBAT_CHARGERATE, ENVSYS_SWATTS, "charge rate"); INITDATA(ACPIBAT_DISCHARGERATE, ENVSYS_SWATTS, "discharge rate"); INITDATA(ACPIBAT_CAPACITY, ENVSYS_SWATTHOUR, "charge"); INITDATA(ACPIBAT_CHARGING, ENVSYS_BATTERY_CHARGE, "charging"); INITDATA(ACPIBAT_CHARGE_STATE, ENVSYS_BATTERY_CAPACITY, "charge state"); #undef INITDATA /* Enable monitoring for the charge state sensor */ sc->sc_sensor[ACPIBAT_CHARGE_STATE].monitor = true; sc->sc_sensor[ACPIBAT_CHARGE_STATE].flags |= ENVSYS_FMONSTCHANGED; /* Disable userland monitoring on these sensors */ sc->sc_sensor[ACPIBAT_VOLTAGE].flags = ENVSYS_FMONNOTSUPP; sc->sc_sensor[ACPIBAT_CHARGERATE].flags = ENVSYS_FMONNOTSUPP; sc->sc_sensor[ACPIBAT_DISCHARGERATE].flags = ENVSYS_FMONNOTSUPP; sc->sc_sensor[ACPIBAT_DCAPACITY].flags = ENVSYS_FMONNOTSUPP; sc->sc_sensor[ACPIBAT_LFCCAPACITY].flags = ENVSYS_FMONNOTSUPP; sc->sc_sensor[ACPIBAT_TECHNOLOGY].flags = ENVSYS_FMONNOTSUPP; sc->sc_sensor[ACPIBAT_DVOLTAGE].flags = ENVSYS_FMONNOTSUPP; sc->sc_sensor[ACPIBAT_WCAPACITY].flags = ENVSYS_FMONNOTSUPP; sc->sc_sensor[ACPIBAT_LCAPACITY].flags = ENVSYS_FMONNOTSUPP; sc->sc_sme = sysmon_envsys_create(); for (i = 0; i < ACPIBAT_COUNT; i++) { if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[i])) goto fail; } sc->sc_sme->sme_name = device_xname(dv); sc->sc_sme->sme_cookie = dv; sc->sc_sme->sme_refresh = acpibat_refresh; sc->sc_sme->sme_class = SME_CLASS_BATTERY; sc->sc_sme->sme_flags = SME_POLL_ONLY; acpibat_update_info(dv); acpibat_update_status(dv); if (sysmon_envsys_register(sc->sc_sme)) goto fail; return; fail: aprint_error_dev(dv, "failed to initialize sysmon\n"); sysmon_envsys_destroy(sc->sc_sme); } static void acpibat_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) { device_t dv = sme->sme_cookie; struct acpibat_softc *sc = device_private(dv); struct timeval tv, tmp; ACPI_STATUS rv; tmp.tv_sec = 5; tmp.tv_usec = 0; microtime(&tv); timersub(&tv, &tmp, &tv); if (timercmp(&tv, &sc->sc_lastupdate, <)) return; if (!mutex_tryenter(&sc->sc_mutex)) return; rv = AcpiOsExecute(OSL_NOTIFY_HANDLER, acpibat_update_status, dv); if (ACPI_SUCCESS(rv)) cv_timedwait(&sc->sc_condvar, &sc->sc_mutex, hz); mutex_exit(&sc->sc_mutex); } static bool acpibat_resume(device_t dv, pmf_qual_t qual) { (void)AcpiOsExecute(OSL_NOTIFY_HANDLER, acpibat_update_info, dv); (void)AcpiOsExecute(OSL_NOTIFY_HANDLER, acpibat_update_status, dv); return true; }