/* * Copyright (c) 1991-1993 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the Computer Systems * Engineering Group at Lawrence Berkeley Laboratory. * 4. Neither the name of the University nor of the Laboratory may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: bsd_audio.c,v 1.2 1994/04/24 01:29:56 mycroft Exp $ */ /* * This is a (partially) SunOS-compatible /dev/audio driver for NetBSD. * This code assumes SoundBlaster type hardware, supported by the * code in isa/sb.c. A major problem with this hardware is that it * is half-duplex. E.g., you cannot simultaneously record and play * samples. Thus, it doesn't really make sense to allow O_RDWR access. * However, opening and closing the device to "turn around the line" * is relatively expensive and costs a card reset (which can take * some time). Instead, we allow O_RDWR access, and provide an * ioctl to set the "mode", e.g., playing or recording. If you * write to the device in record mode, the data is tossed. If you * read from the device in play mode, you get zero filled buffers * at the rate at which samples are naturally generated. */ #include "audio.h" #if NAUDIO > 0 #include #include #include #include #include #include #include #include #define AUDIODEBUG if (audiodebug) printf int audiodebug = 0; /* * Initial/default block size is patchable. */ #ifndef AUDIOBLKSIZE #ifdef SBPRO #define AUDIOBLKSIZE 1024 /* ~20ms at 43478 Hz */ #else #define AUDIOBLKSIZE 160 /* 20ms at 8KHz */ #endif #endif int audio_blocksize = AUDIOBLKSIZE; int audio_backlog = 3; /* 60ms in samples */ /* XXX */ #define splaudio splclock /* * Software state, per audio device. */ struct audio_softc { struct sb_softc *sc_sb; u_char sc_open; /* single use device */ u_char sc_mode; /* */ u_char sc_rbus; /* input dma in progress */ u_char sc_pbus; /* output dma in progress */ u_char sc_rulaw; u_char sc_pulaw; u_char sc_pad[2]; u_long sc_wseek; /* timestamp of last frame written */ u_long sc_rseek; /* timestamp of last frame read */ u_long sc_orate; /* input sampling rate */ u_long sc_irate; /* output sampling rate */ struct selinfo sc_wsel; /* write selector */ struct selinfo sc_rsel; /* read selector */ int sc_rlevel; /* record level */ int sc_plevel; /* play level */ /* * Sleep channels for reading and writing. */ int sc_rchan; int sc_wchan; /* * Buffer management. */ u_char *sc_hp; /* head */ u_char *sc_tp; /* tail */ u_char *sc_bp; /* start of buffer */ u_char *sc_ep; /* end of buffer */ u_char *sc_zp; /* block of silence */ int sc_nblk; int sc_maxblk; int sc_lowat; /* xmit low water mark (for wakeup) */ int sc_hiwat; /* xmit high water mark (for wakeup) */ int sc_blksize; /* recv block (chunk) size */ int sc_backlog; /* # blks of xmit backlog to gen. */ int sc_rblks; /* number of phantom record blocks */ }; /* XXX */ struct sb_softc *sbopen(); static int audio_default_level = 150; static void ausetrgain(struct audio_softc *, int); static void ausetpgain(struct audio_softc *, int); static int audiosetinfo(struct audio_softc *, struct audio_info *); static int audiogetinfo(struct audio_softc *, struct audio_info *); struct audio_softc audio_softc; void audio_init_record(struct audio_softc *); void audio_init_play(struct audio_softc *); void audiostartr(struct audio_softc *); void audiostartp(struct audio_softc *); void audio_rint(struct audio_softc *); void audio_pint(struct audio_softc *); void audio_tomulaw(register u_char *, register int); void audio_frommulaw(register u_char *, register int); audio_initbuf(struct audio_softc *sc) { register int nblk = NBPG / sc->sc_blksize; sc->sc_ep = sc->sc_bp + nblk * sc->sc_blksize; sc->sc_hp = sc->sc_tp = sc->sc_bp; sc->sc_maxblk = nblk; sc->sc_nblk = 0; sc->sc_lowat = 1; sc->sc_hiwat = nblk - sc->sc_lowat; } static inline int audio_sleep(int *chan) { int st; *chan = 1; st = (tsleep((caddr_t)chan, PWAIT | PCATCH, "audio", 0)); *chan = 0; return (st); } static inline void audio_wakeup(int *chan) { if (*chan) { wakeup((caddr_t)chan); *chan = 0; } } /*XXX*/ int auzero[1024]; void audioattach(int unused) { AUDIODEBUG("audio: attach\n"); } int audioopen(dev_t dev, int flags, int ifmt, struct proc *p) { register struct audio_softc *sc = &audio_softc; int s; AUDIODEBUG("audio: open\n"); if (sc->sc_open != 0 || (sc->sc_sb = sbopen()) == 0) return (EBUSY); sc->sc_open = 1; /* * Allocate a single page so it won't cross a page boundary. * This way the dma carried out in the sb module will be efficient * (i.e., at_dma() won't have to make a copy) */ sc->sc_zp = malloc(NBPG, M_DEVBUF, M_WAITOK); if (sc->sc_zp == 0) goto nobufs; sc->sc_bp = malloc(NBPG, M_DEVBUF, M_WAITOK); if (sc->sc_bp == 0) { free(sc->sc_zp, M_DEVBUF); goto nobufs; } sc->sc_blksize = audio_blocksize; sc->sc_backlog = audio_backlog; audio_initbuf(sc); /* nothing read or written yet */ sc->sc_rseek = 0; sc->sc_wseek = 0; sc->sc_rchan = 0; sc->sc_wchan = 0; /* * Here's a hack: do ulaw conversion if high bit of * minor device is set. That way, we can have /dev/audio * (minor 0x80) do ulaw conversion, and /dev/sound or * whatever, do linear. */ if (minor(dev) & 0x80) { /* /dev/audio */ int i; sc->sc_pulaw = sc->sc_rulaw = 1; sc->sc_orate = 8000; sc->sc_irate = 8000; for (i = NBPG / 4; --i >= 0; ) { ((u_long *)sc->sc_zp)[i] = 0x7f7f7f7f; auzero[i] = 0x80808080; } } else { /* /dev/sound */ sc->sc_pulaw = sc->sc_rulaw = 0; #ifdef SBPRO sc->sc_orate = 43478; sc->sc_irate = 43478; #else #ifdef notdef sc->sc_orate = 14925; sc->sc_irate = 14925; #endif sc->sc_orate = 8000; sc->sc_irate = 8000; #endif bzero(sc->sc_zp, NBPG); } ausetrgain(sc, audio_default_level); ausetpgain(sc, audio_default_level); /* XXX */ s = splaudio(); sc->sc_rbus = 0; sc->sc_pbus = 0; if ((flags & FREAD) != 0) { audio_init_record(sc); audiostartr(sc); } else { audio_init_play(sc); audio_pint(sc); } splx(s); return (0); nobufs: sbclose(sc->sc_sb); sc->sc_open = 0; return (ENOBUFS); } audio_to(caddr_t arg) { wakeup(arg); } /* * Wait a little while because doing certain things to * the soundblaster (like toggling the speaker) make * it go away for a while. */ void audio_pause(struct audio_softc *sc) { extern int hz; timeout(audio_to, audio_to, hz / 8); (void)tsleep((caddr_t)audio_to, PWAIT, "audio", 0); } /* * Must be called from task context. */ void audio_init_record(struct audio_softc *sc) { register int s = splaudio(); sc->sc_mode = AUMODE_RECORD; (void)sb_set_sr(sc->sc_sb, &sc->sc_irate, SB_INPUT_RATE); sb_spkroff(sc->sc_sb); audio_pause(sc); splx(s); } /* * Must be called from task context. */ void audio_init_play(struct audio_softc *sc) { register int s = splaudio(); sc->sc_mode = AUMODE_PLAY; sc->sc_rblks = 0; (void)sb_set_sr(sc->sc_sb, &sc->sc_orate, SB_OUTPUT_RATE); sb_spkron(sc->sc_sb); audio_pause(sc); splx(s); } static int audio_drain(sc) register struct audio_softc *sc; { register int error; while (sc->sc_nblk > 0) { error = audio_sleep(&sc->sc_wchan); if (error != 0) return (error); } return (0); } /* * Close an audio chip. */ /* ARGSUSED */ int audioclose(dev_t dev, int flags, int ifmt, struct proc *p) { register struct audio_softc *sc = &audio_softc; register struct aucb *cb; register int s; AUDIODEBUG("audio: close\n"); /* * Block until output drains, but allow ^C interrupt. */ sc->sc_lowat = 0; /* avoid excessive wakeups */ s = splaudio(); /* * If there is pending output, let it drain (unless * the output is paused). */ if (sc->sc_pbus && sc->sc_nblk > 0) (void)audio_drain(sc); sbclose(sc->sc_sb); splx(s); free(sc->sc_bp, M_DEVBUF); free(sc->sc_zp, M_DEVBUF); sc->sc_open = 0; return (0); } int audioread(dev_t dev, struct uio *uio, int ioflag) { register struct audio_softc *sc = &audio_softc; register u_char *hp; register int blocksize = sc->sc_blksize; register int error, s; if (uio->uio_resid == 0) return (0); if (uio->uio_resid < blocksize) return (EINVAL); if (sc->sc_mode == AUMODE_PLAY) { /* * If we're in play mode, return silence blocks * based on the number of blocks we have output. */ do { s = splaudio(); while (sc->sc_rblks <= 0) { if (ioflag & IO_NDELAY) { splx(s); return (EWOULDBLOCK); } error = audio_sleep(&sc->sc_rchan); if (error != 0) { splx(s); return (error); } } splx(s); /*XXX handle ulaw 0 */ error = uiomove(sc->sc_zp, blocksize, uio); if (error) break; --sc->sc_rblks; } while (uio->uio_resid >= blocksize); return (error); } error = 0; do { while (sc->sc_nblk <= 0) { if (ioflag & IO_NDELAY) { error = EWOULDBLOCK; return (error); } s = splaudio(); if (!sc->sc_rbus) audiostartr(sc); error = audio_sleep(&sc->sc_rchan); splx(s); if (error != 0) return (error); } hp = sc->sc_hp; if (sc->sc_rulaw) audio_tomulaw(hp, blocksize); error = uiomove(hp, blocksize, uio); if (error) break; hp += blocksize; if (hp >= sc->sc_ep) hp = sc->sc_bp; sc->sc_hp = hp; --sc->sc_nblk; } while (uio->uio_resid >= blocksize); return (error); } void audio_clear(struct audio_softc *sc) { register int s = splaudio(); if (sc->sc_rbus || sc->sc_pbus) { sb_haltdma(sc->sc_sb); sc->sc_rbus = 0; sc->sc_pbus = 0; } sc->sc_nblk = 0; sc->sc_hp = sc->sc_tp = sc->sc_bp; splx(s); } int audiowrite(dev_t dev, struct uio *uio, int ioflag) { register struct audio_softc *sc = &audio_softc; register u_char *tp; register int error, s, cc; register int blocksize = sc->sc_blksize; /* * If currently recording, throw away data. */ if (sc->sc_mode != AUMODE_PLAY) { uio->uio_offset += uio->uio_resid; uio->uio_resid = 0; return (0); } error = 0; while (uio->uio_resid > 0) { register int watermark = sc->sc_hiwat; s = splaudio(); while (sc->sc_nblk > watermark) { if (ioflag & IO_NDELAY) { splx(s); error = EWOULDBLOCK; return (error); } error = audio_sleep(&sc->sc_wchan); if (error != 0) { splx(s); return (error); } watermark = sc->sc_lowat; } splx(s); if (sc->sc_nblk == 0 && uio->uio_resid <= blocksize) { /* * the write is 'small', the buffer is empty * and we have been silent for at least 50ms * so we might be dealing with an application * that writes frames synchronously with * reading them. If so, we need an output * backlog to cover scheduling delays or * there will be gaps in the sound output. * Also take this opportunity to reset the * buffer pointers in case we ended up on * a bad boundary (odd byte, blksize bytes * from end, etc.). */ s = splaudio();/*XXX*/ sc->sc_hp = sc->sc_bp; bzero(sc->sc_hp, 3 * blocksize); sc->sc_nblk = 3; sc->sc_tp = sc->sc_hp + 3 * blocksize; splx(s); } tp = sc->sc_tp; cc = uio->uio_resid; if (cc < blocksize) { error = uiomove(tp, cc, uio); if (error) break; tp += cc; cc = blocksize - cc; while (--cc >= 0) *tp++ = 0x7f; } else { error = uiomove(tp, blocksize, uio); if (error) break; tp += blocksize; } if (sc->sc_pulaw) audio_frommulaw(sc->sc_tp, blocksize); if (tp >= sc->sc_ep) tp = sc->sc_bp; sc->sc_tp = tp; ++sc->sc_nblk; /* * If output isn't active, start it up. */ s = splaudio(); if (sc->sc_pbus == 0) audiostartp(sc); splx(s); } return (error); } /* Sun audio compatibility */ struct sun_audio_prinfo { u_int sample_rate; u_int channels; u_int precision; u_int encoding; u_int gain; u_int port; u_int reserved0[4]; u_int samples; u_int eof; u_char pause; u_char error; u_char waiting; u_char reserved1[3]; u_char open; u_char active; }; struct sun_audio_info { struct sun_audio_prinfo play; struct sun_audio_prinfo record; u_int monitor_gain; u_int reserved[4]; }; int audioioctl(dev_t dev, int cmd, caddr_t addr, int flag, struct proc *p) { register struct audio_softc *sc = &audio_softc; int error = 0, i, s; AUDIODEBUG("audio: ioctl(0x%x)\n", cmd); switch (cmd) { case AUDIO_FLUSH: AUDIODEBUG("AUDIO_FLUSH\n"); audio_clear(sc); if (sc->sc_mode != AUMODE_PLAY) audiostartr(sc); break; #ifdef notdef /* * Number of read samples dropped. We don't know where or * when they were dropped. */ case AUDIO_RERROR: *(int *)addr = sc->sc_au.au_rb.cb_drops != 0; break; /* * How many samples will elapse until mike hears the first * sample of what we last wrote? */ case AUDIO_WSEEK: s = splaudio(); *(u_long *)addr = sc->sc_wseek - sc->sc_au.au_stamp + AUCB_LEN(&sc->sc_au.au_rb); splx(s); break; #endif case AUDIO_SETINFO: AUDIODEBUG("AUDIO_SETINFO\n"); error = audiosetinfo(sc, (struct audio_info *)addr); break; case AUDIO_GETINFO: AUDIODEBUG("AUDIO_GETINFO\n"); error = audiogetinfo(sc, (struct audio_info *)addr); break; case AUDIO_DRAIN: AUDIODEBUG("AUDIO_DRAIN\n"); error = audio_drain(sc); break; default: AUDIODEBUG("audio: unknown ioctl\n"); error = EINVAL; break; } AUDIODEBUG("audio: ioctl(%d) result %d\n", cmd, error); return (error); } int audioselect(dev_t dev, int rw, struct proc *p) { register struct audio_softc *sc = &audio_softc; register int s = splaudio(); switch (rw) { case FREAD: if (sc->sc_mode == AUMODE_PLAY) { if (sc->sc_rblks > 0) { splx(s); return (1); } } else if (sc->sc_nblk > 0) { splx(s); return (1); } selrecord(p, &sc->sc_rsel); break; case FWRITE: /* * Can write if we're recording because it gets preempted. * Otherwise, can write when below low water. * XXX this won't work right if we're in * record mode -- we need to note that a write * select has happed and flip the speaker. */ if (sc->sc_mode != AUMODE_PLAY || sc->sc_nblk < sc->sc_lowat) { splx(s); return (1); } selrecord(p, &sc->sc_wsel); break; } splx(s); return (0); } void audiostartr(struct audio_softc *sc) { sb_dma_input(sc->sc_sb, sc->sc_tp, sc->sc_blksize, audio_rint, (void *)sc); sc->sc_rbus = 1; } void audiostartp(struct audio_softc *sc) { /*XXX check for nblk == 0 */ sb_dma_output(sc->sc_sb, sc->sc_hp, sc->sc_blksize, audio_pint, (void *)sc); sc->sc_pbus = 1; } void audio_pint(struct audio_softc *sc) { register u_char *hp; register int cc = sc->sc_blksize; if (sc->sc_nblk > 0) { --sc->sc_nblk; hp = sc->sc_hp; hp += cc; if (hp >= sc->sc_ep) hp = sc->sc_bp; sc->sc_hp = hp; sb_dma_output(sc->sc_sb, hp, cc, audio_pint, (void *)sc); } else { sb_dma_output(sc->sc_sb, auzero, cc, audio_pint, (void *)sc); } ++sc->sc_rblks; if (sc->sc_mode == AUMODE_PLAY) { if (sc->sc_nblk <= sc->sc_lowat) { audio_wakeup(&sc->sc_wchan); selwakeup(&sc->sc_wsel); } } /*XXX*/ audio_wakeup(&sc->sc_rchan); selwakeup(&sc->sc_rsel); } /* * Called from sb module on completion of dma input. * Copy the input frame into the ring buffer at the * current position. Do a wakeup if necessary. */ void audio_rint(struct audio_softc *sc) { register u_char *tp; register int cc = sc->sc_blksize; tp = sc->sc_tp; tp += cc; if (tp >= sc->sc_ep) tp = sc->sc_bp; if (++sc->sc_nblk < sc->sc_maxblk) sb_dma_input(sc->sc_sb, tp, cc, audio_rint, (void *)sc); else sc->sc_rbus = 0; sc->sc_tp = tp; audio_wakeup(&sc->sc_rchan); selwakeup(&sc->sc_rsel); } static void ausetrgain(sc, level) register struct audio_softc *sc; register int level; { #ifdef SBPRO /* XXX */ #endif } /* * XXX Looks like we need a pro to do volume control... */ static void ausetpgain(sc, level) register struct audio_softc *sc; register int level; { #ifdef SBPRO /* XXX */ #endif } static int audiosetinfo(sc, ai) struct audio_softc *sc; struct audio_info *ai; { struct audio_prinfo *r = &ai->record, *p = &ai->play; register int cleared = 0; register int s, bsize; if (p->gain != ~0) ausetpgain(sc, p->gain); if (r->gain != ~0) ausetrgain(sc, r->gain); if (p->sample_rate != ~0) { if (!cleared) audio_clear(sc); cleared = 1; p->sample_rate = sb_round_sr(p->sample_rate, SB_OUTPUT_RATE); sc->sc_orate = p->sample_rate; if (sc->sc_mode == AUMODE_PLAY) (void)sb_set_sr(sc->sc_sb, &sc->sc_orate, SB_OUTPUT_RATE); } if (r->sample_rate != ~0) { if (!cleared) audio_clear(sc); cleared = 1; r->sample_rate = sb_round_sr(r->sample_rate, SB_INPUT_RATE); sc->sc_irate = r->sample_rate; if (sc->sc_mode != AUMODE_PLAY) (void)sb_set_sr(sc->sc_sb, &sc->sc_irate, SB_INPUT_RATE); } if (p->encoding != ~0) { if (!cleared) audio_clear(sc); cleared = 1; if (p->encoding == AUDIO_ENCODING_ULAW) sc->sc_pulaw = 1; else { sc->sc_pulaw = 0; p->encoding = AUDIO_ENCODING_LINEAR; } } if (r->encoding != ~0) { if (r->encoding == AUDIO_ENCODING_ULAW) sc->sc_rulaw = 1; else { r->encoding = AUDIO_ENCODING_LINEAR; sc->sc_rulaw = 0; } } #ifdef notdef if (p->pause != (u_char)~0) sc->sc_au.au_wb.cb_pause = p->pause; if (r->pause != (u_char)~0) sc->sc_au.au_rb.cb_pause = r->pause; #endif if (ai->blocksize != ~0) { if (!cleared) audio_clear(sc); cleared = 1; if (ai->blocksize == 0) bsize = audio_blocksize; else if (ai->blocksize > NBPG/2) bsize = NBPG/2; else bsize = ai->blocksize; ai->blocksize = sc->sc_blksize = bsize; audio_initbuf(sc); } if (ai->hiwat != ~0) { if ((unsigned)ai->hiwat > sc->sc_maxblk) ai->hiwat = sc->sc_maxblk; sc->sc_hiwat = ai->hiwat; } if (ai->lowat != ~0) { if ((unsigned)ai->lowat > sc->sc_maxblk) ai->lowat = sc->sc_maxblk; sc->sc_lowat = ai->lowat; } if (ai->backlog != ~0) { if ((unsigned)ai->backlog > (sc->sc_maxblk/2)) ai->backlog = sc->sc_maxblk/2; sc->sc_backlog = ai->backlog; } if (ai->mode != ~0) { if (!cleared) audio_clear(sc); cleared = 1; sc->sc_mode = ai->mode; if (sc->sc_mode == AUMODE_PLAY) audio_init_play(sc); else audio_init_record(sc); } if (cleared) { if (sc->sc_mode != AUMODE_PLAY) audiostartr(sc); else audiostartp(sc); } return (0); } static int audiogetinfo(sc, ai) struct audio_softc *sc; struct audio_info *ai; { struct audio_prinfo *r = &ai->record, *p = &ai->play; p->sample_rate = sc->sc_orate; r->sample_rate = sc->sc_irate; p->channels = r->channels = 1; p->precision = r->precision = 8; p->encoding = sc->sc_pulaw ? AUDIO_ENCODING_ULAW : AUDIO_ENCODING_LINEAR; r->encoding = sc->sc_rulaw ? AUDIO_ENCODING_ULAW : AUDIO_ENCODING_LINEAR; ai->monitor_gain = 0; r->gain = sc->sc_rlevel; p->gain = sc->sc_plevel; r->port = 1; p->port = AUDIO_SPEAKER; #ifdef notdef p->pause = sc->sc_au.au_wb.cb_pause; r->pause = sc->sc_au.au_rb.cb_pause; p->error = sc->sc_au.au_wb.cb_drops != 0; r->error = sc->sc_au.au_rb.cb_drops != 0; #endif p->open = sc->sc_open; r->open = sc->sc_open; #ifdef notdef p->samples = sc->sc_au.au_stamp - sc->sc_au.au_wb.cb_pdrops; r->samples = sc->sc_au.au_stamp - sc->sc_au.au_rb.cb_pdrops; #endif p->seek = sc->sc_wseek; r->seek = sc->sc_rseek; ai->blocksize = sc->sc_blksize; ai->hiwat = sc->sc_hiwat; ai->lowat = sc->sc_lowat; ai->backlog = sc->sc_backlog; ai->mode = sc->sc_mode; return (0); } u_char mulawtolin[256] = { 128, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 112, 113, 113, 114, 114, 115, 115, 116, 116, 117, 117, 118, 118, 119, 119, 120, 120, 120, 121, 121, 121, 121, 122, 122, 122, 122, 123, 123, 123, 123, 124, 124, 124, 124, 124, 125, 125, 125, 125, 125, 125, 125, 125, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 255, 251, 247, 243, 239, 235, 231, 227, 223, 219, 215, 211, 207, 203, 199, 195, 191, 189, 187, 185, 183, 181, 179, 177, 175, 173, 171, 169, 167, 165, 163, 161, 159, 158, 157, 156, 155, 154, 153, 152, 151, 150, 149, 148, 147, 146, 145, 144, 143, 143, 142, 142, 141, 141, 140, 140, 139, 139, 138, 138, 137, 137, 136, 136, 135, 135, 135, 134, 134, 134, 134, 133, 133, 133, 133, 132, 132, 132, 132, 131, 131, 131, 131, 131, 130, 130, 130, 130, 130, 130, 130, 130, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, }; u_char lintomulaw[256] = { 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 58, 60, 62, 65, 69, 73, 77, 83, 91, 103, 255, 231, 219, 211, 205, 201, 197, 193, 190, 188, 186, 184, 182, 180, 178, 176, 175, 174, 173, 172, 171, 170, 169, 168, 167, 166, 165, 164, 163, 162, 161, 160, 159, 159, 158, 158, 157, 157, 156, 156, 155, 155, 154, 154, 153, 153, 152, 152, 151, 151, 150, 150, 149, 149, 148, 148, 147, 147, 146, 146, 145, 145, 144, 144, 143, 143, 143, 143, 142, 142, 142, 142, 141, 141, 141, 141, 140, 140, 140, 140, 139, 139, 139, 139, 138, 138, 138, 138, 137, 137, 137, 137, 136, 136, 136, 136, 135, 135, 135, 135, 134, 134, 134, 134, 133, 133, 133, 133, 132, 132, 132, 132, 131, 131, 131, 131, 130, 130, 130, 130, 129, 129, 129, 129, 128, 128, 128, 128, }; void audio_tomulaw(register u_char *p, register int cc) { register u_char *utab = lintomulaw; while (--cc >= 0) { *p = utab[*p]; ++p; } } void audio_frommulaw(register u_char *p, register int cc) { register u_char *utab = mulawtolin; while (--cc >= 0) { *p = utab[*p]; ++p; } } #endif