/* $NetBSD: mfs_vfsops.c,v 1.72 2006/04/15 01:16:40 christos Exp $ */ /* * Copyright (c) 1989, 1990, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)mfs_vfsops.c 8.11 (Berkeley) 6/19/95 */ #include __KERNEL_RCSID(0, "$NetBSD: mfs_vfsops.c,v 1.72 2006/04/15 01:16:40 christos Exp $"); #if defined(_KERNEL_OPT) #include "opt_compat_netbsd.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include caddr_t mfs_rootbase; /* address of mini-root in kernel virtual memory */ u_long mfs_rootsize; /* size of mini-root in bytes */ static int mfs_minor; /* used for building internal dev_t */ extern int (**mfs_vnodeop_p)(void *); MALLOC_DEFINE(M_MFSNODE, "MFS node", "MFS vnode private part"); /* * mfs vfs operations. */ extern const struct vnodeopv_desc mfs_vnodeop_opv_desc; const struct vnodeopv_desc * const mfs_vnodeopv_descs[] = { &mfs_vnodeop_opv_desc, NULL, }; struct vfsops mfs_vfsops = { MOUNT_MFS, mfs_mount, mfs_start, ffs_unmount, ufs_root, ufs_quotactl, mfs_statvfs, ffs_sync, ffs_vget, ffs_fhtovp, ffs_vptofh, mfs_init, mfs_reinit, mfs_done, NULL, (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp, vfs_stdextattrctl, mfs_vnodeopv_descs, }; VFS_ATTACH(mfs_vfsops); SYSCTL_SETUP(sysctl_vfs_mfs_setup, "sysctl vfs.mfs subtree setup") { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "vfs", NULL, NULL, 0, NULL, 0, CTL_VFS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_ALIAS, CTLTYPE_NODE, "mfs", SYSCTL_DESCR("Memory based file system"), NULL, 1, NULL, 0, CTL_VFS, 3, CTL_EOL); /* * XXX the "1" and the "3" above could be dynamic, thereby * eliminating one more instance of the "number to vfs" * mapping problem, but they are in order as taken from * sys/mount.h */ } /* * Memory based filesystem initialization. */ void mfs_init(void) { #ifdef _LKM malloc_type_attach(M_MFSNODE); #endif /* * ffs_init() ensures to initialize necessary resources * only once. */ ffs_init(); } void mfs_reinit(void) { ffs_reinit(); } void mfs_done(void) { /* * ffs_done() ensures to free necessary resources * only once, when it's no more needed. */ ffs_done(); #ifdef _LKM malloc_type_detach(M_MFSNODE); #endif } /* * Called by main() when mfs is going to be mounted as root. */ int mfs_mountroot(void) { struct fs *fs; struct mount *mp; struct lwp *l = curlwp; /* XXX */ struct ufsmount *ump; struct mfsnode *mfsp; int error = 0; if ((error = vfs_rootmountalloc(MOUNT_MFS, "mfs_root", &mp))) { vrele(rootvp); return (error); } mfsp = malloc(sizeof *mfsp, M_MFSNODE, M_WAITOK); rootvp->v_data = mfsp; rootvp->v_op = mfs_vnodeop_p; rootvp->v_tag = VT_MFS; mfsp->mfs_baseoff = mfs_rootbase; mfsp->mfs_size = mfs_rootsize; mfsp->mfs_vnode = rootvp; mfsp->mfs_proc = NULL; /* indicate kernel space */ mfsp->mfs_shutdown = 0; bufq_alloc(&mfsp->mfs_buflist, "fcfs", 0); if ((error = ffs_mountfs(rootvp, mp, l)) != 0) { mp->mnt_op->vfs_refcount--; vfs_unbusy(mp); bufq_free(mfsp->mfs_buflist); free(mp, M_MOUNT); free(mfsp, M_MFSNODE); return (error); } simple_lock(&mountlist_slock); CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list); simple_unlock(&mountlist_slock); mp->mnt_vnodecovered = NULLVP; ump = VFSTOUFS(mp); fs = ump->um_fs; (void) copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0); (void)ffs_statvfs(mp, &mp->mnt_stat, l); vfs_unbusy(mp); return (0); } /* * This is called early in boot to set the base address and size * of the mini-root. */ int mfs_initminiroot(caddr_t base) { struct fs *fs = (struct fs *)(base + SBLOCK_UFS1); /* check for valid super block */ if (fs->fs_magic != FS_UFS1_MAGIC || fs->fs_bsize > MAXBSIZE || fs->fs_bsize < sizeof(struct fs)) return (0); mountroot = mfs_mountroot; mfs_rootbase = base; mfs_rootsize = fs->fs_fsize * fs->fs_size; rootdev = makedev(255, mfs_minor); mfs_minor++; return (mfs_rootsize); } /* * VFS Operations. * * mount system call */ /* ARGSUSED */ int mfs_mount(struct mount *mp, const char *path, void *data, struct nameidata *ndp, struct lwp *l) { struct vnode *devvp; struct mfs_args args; struct ufsmount *ump; struct fs *fs; struct mfsnode *mfsp; struct proc *p; int flags, error; p = l->l_proc; if (mp->mnt_flag & MNT_GETARGS) { struct vnode *vp; ump = VFSTOUFS(mp); if (ump == NULL) return EIO; vp = ump->um_devvp; if (vp == NULL) return EIO; mfsp = VTOMFS(vp); if (mfsp == NULL) return EIO; args.fspec = NULL; args.base = mfsp->mfs_baseoff; args.size = mfsp->mfs_size; return copyout(&args, data, sizeof(args)); } /* * XXX turn off async to avoid hangs when writing lots of data. * the problem is that MFS needs to allocate pages to clean pages, * so if we wait until the last minute to clean pages then there * may not be any pages available to do the cleaning. * ... and since the default partially-synchronous mode turns out * to not be sufficient under heavy load, make it full synchronous. */ mp->mnt_flag &= ~MNT_ASYNC; mp->mnt_flag |= MNT_SYNCHRONOUS; error = copyin(data, (caddr_t)&args, sizeof (struct mfs_args)); if (error) return (error); /* * If updating, check whether changing from read-only to * read/write; if there is no device name, that's all we do. */ if (mp->mnt_flag & MNT_UPDATE) { ump = VFSTOUFS(mp); fs = ump->um_fs; if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) { flags = WRITECLOSE; if (mp->mnt_flag & MNT_FORCE) flags |= FORCECLOSE; error = ffs_flushfiles(mp, flags, l); if (error) return (error); } if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) fs->fs_ronly = 0; if (args.fspec == NULL) return EINVAL; return (0); } error = getnewvnode(VT_MFS, (struct mount *)0, mfs_vnodeop_p, &devvp); if (error) return (error); devvp->v_type = VBLK; if (checkalias(devvp, makedev(255, mfs_minor), (struct mount *)0)) panic("mfs_mount: dup dev"); mfs_minor++; mfsp = (struct mfsnode *)malloc(sizeof *mfsp, M_MFSNODE, M_WAITOK); devvp->v_data = mfsp; mfsp->mfs_baseoff = args.base; mfsp->mfs_size = args.size; mfsp->mfs_vnode = devvp; mfsp->mfs_proc = p; mfsp->mfs_shutdown = 0; bufq_alloc(&mfsp->mfs_buflist, "fcfs", 0); if ((error = ffs_mountfs(devvp, mp, l)) != 0) { mfsp->mfs_shutdown = 1; vrele(devvp); return (error); } ump = VFSTOUFS(mp); fs = ump->um_fs; error = set_statvfs_info(path, UIO_USERSPACE, args.fspec, UIO_USERSPACE, mp, l); if (error) return error; (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, sizeof(fs->fs_fsmnt)); fs->fs_fsmnt[sizeof(fs->fs_fsmnt) - 1] = '\0'; /* XXX: cleanup on error */ return 0; } int mfs_pri = PWAIT | PCATCH; /* XXX prob. temp */ /* * Used to grab the process and keep it in the kernel to service * memory filesystem I/O requests. * * Loop servicing I/O requests. * Copy the requested data into or out of the memory filesystem * address space. */ /* ARGSUSED */ int mfs_start(struct mount *mp, int flags, struct lwp *l) { struct vnode *vp = VFSTOUFS(mp)->um_devvp; struct mfsnode *mfsp = VTOMFS(vp); struct buf *bp; caddr_t base; int sleepreturn = 0; base = mfsp->mfs_baseoff; while (mfsp->mfs_shutdown != 1) { while ((bp = BUFQ_GET(mfsp->mfs_buflist)) != NULL) { mfs_doio(bp, base); wakeup((caddr_t)bp); } /* * If a non-ignored signal is received, try to unmount. * If that fails, or the filesystem is already in the * process of being unmounted, clear the signal (it has been * "processed"), otherwise we will loop here, as tsleep * will always return EINTR/ERESTART. */ if (sleepreturn != 0) { /* * XXX Freeze syncer. Must do this before locking * the mount point. See dounmount() for details. */ lockmgr(&syncer_lock, LK_EXCLUSIVE, NULL); if (vfs_busy(mp, LK_NOWAIT, 0) != 0) lockmgr(&syncer_lock, LK_RELEASE, NULL); else if (dounmount(mp, 0, l) != 0) CLRSIG(l); sleepreturn = 0; continue; } sleepreturn = tsleep(vp, mfs_pri, "mfsidl", 0); } KASSERT(BUFQ_PEEK(mfsp->mfs_buflist) == NULL); bufq_free(mfsp->mfs_buflist); return (sleepreturn); } /* * Get file system statistics. */ int mfs_statvfs(struct mount *mp, struct statvfs *sbp, struct lwp *l) { int error; error = ffs_statvfs(mp, sbp, l); if (error) return error; (void)strncpy(sbp->f_fstypename, mp->mnt_op->vfs_name, sizeof(sbp->f_fstypename)); sbp->f_fstypename[sizeof(sbp->f_fstypename) - 1] = '\0'; return 0; }