/* $NetBSD: i82557.c,v 1.153 2019/05/28 07:41:48 msaitoh Exp $ */ /*- * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1995, David Greenman * Copyright (c) 2001 Jonathan Lemon * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon */ /* * Device driver for the Intel i82557 fast Ethernet controller, * and its successors, the i82558 and i82559. */ #include __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.153 2019/05/28 07:41:48 msaitoh Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * NOTE! On the Alpha, we have an alignment constraint. The * card DMAs the packet immediately following the RFA. However, * the first thing in the packet is a 14-byte Ethernet header. * This means that the packet is misaligned. To compensate, * we actually offset the RFA 2 bytes into the cluster. This * alignes the packet after the Ethernet header at a 32-bit * boundary. HOWEVER! This means that the RFA is misaligned! */ #define RFA_ALIGNMENT_FUDGE 2 /* * The configuration byte map has several undefined fields which * must be one or must be zero. Set up a template for these bits * only (assuming an i82557 chip), leaving the actual configuration * for fxp_init(). * * See the definition of struct fxp_cb_config for the bit definitions. */ const uint8_t fxp_cb_config_template[] = { 0x0, 0x0, /* cb_status */ 0x0, 0x0, /* cb_command */ 0x0, 0x0, 0x0, 0x0, /* link_addr */ 0x0, /* 0 */ 0x0, /* 1 */ 0x0, /* 2 */ 0x0, /* 3 */ 0x0, /* 4 */ 0x0, /* 5 */ 0x32, /* 6 */ 0x0, /* 7 */ 0x0, /* 8 */ 0x0, /* 9 */ 0x6, /* 10 */ 0x0, /* 11 */ 0x0, /* 12 */ 0x0, /* 13 */ 0xf2, /* 14 */ 0x48, /* 15 */ 0x0, /* 16 */ 0x40, /* 17 */ 0xf0, /* 18 */ 0x0, /* 19 */ 0x3f, /* 20 */ 0x5, /* 21 */ 0x0, /* 22 */ 0x0, /* 23 */ 0x0, /* 24 */ 0x0, /* 25 */ 0x0, /* 26 */ 0x0, /* 27 */ 0x0, /* 28 */ 0x0, /* 29 */ 0x0, /* 30 */ 0x0, /* 31 */ }; void fxp_mii_initmedia(struct fxp_softc *); void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *); void fxp_80c24_initmedia(struct fxp_softc *); int fxp_80c24_mediachange(struct ifnet *); void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *); void fxp_start(struct ifnet *); int fxp_ioctl(struct ifnet *, u_long, void *); void fxp_watchdog(struct ifnet *); int fxp_init(struct ifnet *); void fxp_stop(struct ifnet *, int); void fxp_txintr(struct fxp_softc *); int fxp_rxintr(struct fxp_softc *); void fxp_rx_hwcksum(struct fxp_softc *, struct mbuf *, const struct fxp_rfa *, u_int); void fxp_rxdrain(struct fxp_softc *); int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int); int fxp_mdi_read(device_t, int, int, uint16_t *); void fxp_statchg(struct ifnet *); int fxp_mdi_write(device_t, int, int, uint16_t); void fxp_autosize_eeprom(struct fxp_softc*); void fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int); void fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int); void fxp_eeprom_update_cksum(struct fxp_softc *); void fxp_get_info(struct fxp_softc *, uint8_t *); void fxp_tick(void *); void fxp_mc_setup(struct fxp_softc *); void fxp_load_ucode(struct fxp_softc *); int fxp_copy_small = 0; /* * Variables for interrupt mitigating microcode. */ int fxp_int_delay = 1000; /* usec */ int fxp_bundle_max = 6; /* packets */ struct fxp_phytype { int fp_phy; /* type of PHY, -1 for MII at the end. */ void (*fp_init)(struct fxp_softc *); } fxp_phytype_table[] = { { FXP_PHY_80C24, fxp_80c24_initmedia }, { -1, fxp_mii_initmedia }, }; /* * Set initial transmit threshold at 64 (512 bytes). This is * increased by 64 (512 bytes) at a time, to maximum of 192 * (1536 bytes), if an underrun occurs. */ static int tx_threshold = 64; /* * Wait for the previous command to be accepted (but not necessarily * completed). */ static inline void fxp_scb_wait(struct fxp_softc *sc) { int i = 10000; while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) delay(2); if (i == 0) log(LOG_WARNING, "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev)); } /* * Submit a command to the i82557. */ static inline void fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd) { CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); } /* * Finish attaching an i82557 interface. Called by bus-specific front-end. */ void fxp_attach(struct fxp_softc *sc) { uint8_t enaddr[ETHER_ADDR_LEN]; struct ifnet *ifp; bus_dma_segment_t seg; int rseg, i, error; struct fxp_phytype *fp; callout_init(&sc->sc_callout, 0); /* * Enable use of extended RFDs and IPCBs for 82550 and later chips. * Note: to use IPCB we need extended TXCB support too, and * these feature flags should be set in each bus attachment. */ if (sc->sc_flags & FXPF_EXT_RFA) { sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT); sc->sc_rfa_size = RFA_EXT_SIZE; } else { sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT); sc->sc_rfa_size = RFA_SIZE; } /* * Allocate the control data structures, and create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 0)) != 0) { aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n", error); goto fail_0; } if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(struct fxp_control_data), (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) { aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n", error); goto fail_1; } sc->sc_cdseg = seg; sc->sc_cdnseg = rseg; memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data)); if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct fxp_control_data), 1, sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, error = %d\n", error); goto fail_2; } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_control_data, sizeof(struct fxp_control_data), NULL, 0)) != 0) { aprint_error_dev(sc->sc_dev, "can't load control data DMA map, error = %d\n", error); goto fail_3; } /* * Create the transmit buffer DMA maps. */ for (i = 0; i < FXP_NTXCB; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, (sc->sc_flags & FXPF_EXT_RFA) ? FXP_IPCB_NTXSEG : FXP_NTXSEG, MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, error = %d\n", i, error); goto fail_4; } } /* * Create the receive buffer DMA maps. */ for (i = 0; i < FXP_NRFABUFS; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) { aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, error = %d\n", i, error); goto fail_5; } } /* Initialize MAC address and media structures. */ fxp_get_info(sc, enaddr); aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", ether_sprintf(enaddr)); ifp = &sc->sc_ethercom.ec_if; /* * Get info about our media interface, and initialize it. Note * the table terminates itself with a phy of -1, indicating * that we're using MII. */ for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++) if (fp->fp_phy == sc->phy_primary_device) break; (*fp->fp_init)(sc); strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = fxp_ioctl; ifp->if_start = fxp_start; ifp->if_watchdog = fxp_watchdog; ifp->if_init = fxp_init; ifp->if_stop = fxp_stop; IFQ_SET_READY(&ifp->if_snd); if (sc->sc_flags & FXPF_EXT_RFA) { /* * Enable hardware cksum support by EXT_RFA and IPCB. * * IFCAP_CSUM_IPv4_Tx seems to have a problem, * at least, on i82550 rev.12. * specifically, it doesn't set ipv4 checksum properly * when sending UDP (and probably TCP) packets with * 20 byte ipv4 header + 1 or 2 byte data, * though ICMP packets seem working. * FreeBSD driver has related comments. * We've added a workaround to handle the bug by padding * such packets manually. */ ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING; } else if (sc->sc_flags & FXPF_82559_RXCSUM) { ifp->if_capabilities = IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx; } /* * We can support 802.1Q VLAN-sized frames. */ sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; /* * Attach the interface. */ if_attach(ifp); if_deferred_start_init(ifp, NULL); ether_ifattach(ifp, enaddr); rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), RND_TYPE_NET, RND_FLAG_DEFAULT); #ifdef FXP_EVENT_COUNTERS evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "txstall"); evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR, NULL, device_xname(sc->sc_dev), "txintr"); evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, NULL, device_xname(sc->sc_dev), "rxintr"); if (sc->sc_flags & FXPF_FC) { evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "txpause"); evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "rxpause"); } #endif /* FXP_EVENT_COUNTERS */ /* The attach is successful. */ sc->sc_flags |= FXPF_ATTACHED; return; /* * Free any resources we've allocated during the failed attach * attempt. Do this in reverse order and fall though. */ fail_5: for (i = 0; i < FXP_NRFABUFS; i++) { if (sc->sc_rxmaps[i] != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]); } fail_4: for (i = 0; i < FXP_NTXCB; i++) { if (FXP_DSTX(sc, i)->txs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap); } bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap); fail_3: bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap); fail_2: bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, sizeof(struct fxp_control_data)); fail_1: bus_dmamem_free(sc->sc_dmat, &seg, rseg); fail_0: return; } void fxp_mii_initmedia(struct fxp_softc *sc) { struct mii_data * const mii = &sc->sc_mii; int flags; sc->sc_flags |= FXPF_MII; mii->mii_ifp = &sc->sc_ethercom.ec_if; mii->mii_readreg = fxp_mdi_read; mii->mii_writereg = fxp_mdi_write; mii->mii_statchg = fxp_statchg; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange, fxp_mii_mediastatus); flags = MIIF_NOISOLATE; if (sc->sc_flags & FXPF_FC) flags |= MIIF_FORCEANEG | MIIF_DOPAUSE; /* * The i82557 wedges if all of its PHYs are isolated! */ mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, flags); if (LIST_EMPTY(&mii->mii_phys)) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); } void fxp_80c24_initmedia(struct fxp_softc *sc) { struct mii_data * const mii = &sc->sc_mii; /* * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter * doesn't have a programming interface of any sort. The * media is sensed automatically based on how the link partner * is configured. This is, in essence, manual configuration. */ aprint_normal_dev(sc->sc_dev, "Seeq 80c24 AutoDUPLEX media interface present\n"); ifmedia_init(&mii->mii_media, 0, fxp_80c24_mediachange, fxp_80c24_mediastatus); ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL); } /* * Initialize the interface media. */ void fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr) { uint16_t data, myea[ETHER_ADDR_LEN / 2]; /* * Reset to a stable state. */ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); DELAY(100); sc->sc_eeprom_size = 0; fxp_autosize_eeprom(sc); if (sc->sc_eeprom_size == 0) { aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n"); sc->sc_eeprom_size = 6; /* XXX panic here? */ } #ifdef DEBUG aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n", 1 << sc->sc_eeprom_size); #endif /* * Get info about the primary PHY */ fxp_read_eeprom(sc, &data, 6, 1); sc->phy_primary_device = (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT; /* * Read MAC address. */ fxp_read_eeprom(sc, myea, 0, 3); enaddr[0] = myea[0] & 0xff; enaddr[1] = myea[0] >> 8; enaddr[2] = myea[1] & 0xff; enaddr[3] = myea[1] >> 8; enaddr[4] = myea[2] & 0xff; enaddr[5] = myea[2] >> 8; /* * Systems based on the ICH2/ICH2-M chip from Intel, as well * as some i82559 designs, have a defect where the chip can * cause a PCI protocol violation if it receives a CU_RESUME * command when it is entering the IDLE state. * * The work-around is to disable Dynamic Standby Mode, so that * the chip never deasserts #CLKRUN, and always remains in the * active state. * * Unfortunately, the only way to disable Dynamic Standby is * to frob an EEPROM setting and reboot (the EEPROM setting * is only consulted when the PCI bus comes out of reset). * * See Intel 82801BA/82801BAM Specification Update, Errata #30. */ if (sc->sc_flags & FXPF_HAS_RESUME_BUG) { fxp_read_eeprom(sc, &data, 10, 1); if (data & 0x02) { /* STB enable */ aprint_error_dev(sc->sc_dev, "WARNING: " "Disabling dynamic standby mode in EEPROM " "to work around a\n"); aprint_normal_dev(sc->sc_dev, "WARNING: hardware bug. You must reset " "the system before using this\n"); aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n"); data &= ~0x02; fxp_write_eeprom(sc, &data, 10, 1); aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n", data); fxp_eeprom_update_cksum(sc); } } /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */ /* Due to false positives we make it conditional on setting link1 */ fxp_read_eeprom(sc, &data, 3, 1); if ((data & 0x03) != 0x03) { aprint_verbose_dev(sc->sc_dev, "May need receiver lock-up workaround\n"); } } static void fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len) { uint16_t reg; int x; for (x = 1 << (len - 1); x != 0; x >>= 1) { DELAY(40); if (data & x) reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; else reg = FXP_EEPROM_EECS; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(40); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(40); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); } DELAY(40); } /* * Figure out EEPROM size. * * 559's can have either 64-word or 256-word EEPROMs, the 558 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet * talks about the existence of 16 to 256 word EEPROMs. * * The only known sizes are 64 and 256, where the 256 version is used * by CardBus cards to store CIS information. * * The address is shifted in msb-to-lsb, and after the last * address-bit the EEPROM is supposed to output a `dummy zero' bit, * after which follows the actual data. We try to detect this zero, by * probing the data-out bit in the EEPROM control register just after * having shifted in a bit. If the bit is zero, we assume we've * shifted enough address bits. The data-out should be tri-state, * before this, which should translate to a logical one. * * Other ways to do this would be to try to read a register with known * contents with a varying number of address bits, but no such * register seem to be available. The high bits of register 10 are 01 * on the 558 and 559, but apparently not on the 557. * * The Linux driver computes a checksum on the EEPROM data, but the * value of this checksum is not very well documented. */ void fxp_autosize_eeprom(struct fxp_softc *sc) { int x; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); DELAY(40); /* Shift in read opcode. */ fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); /* * Shift in address, wait for the dummy zero following a correct * address shift. */ for (x = 1; x <= 8; x++) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); DELAY(40); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS | FXP_EEPROM_EESK); DELAY(40); if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) == 0) break; DELAY(40); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); DELAY(40); } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(40); if (x != 6 && x != 8) { #ifdef DEBUG printf("%s: strange EEPROM size (%d)\n", device_xname(sc->sc_dev), 1 << x); #endif } else sc->sc_eeprom_size = x; } /* * Read from the serial EEPROM. Basically, you manually shift in * the read opcode (one bit at a time) and then shift in the address, * and then you shift out the data (all of this one bit at a time). * The word size is 16 bits, so you have to provide the address for * every 16 bits of data. */ void fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words) { uint16_t reg; int i, x; for (i = 0; i < words; i++) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); /* Shift in read opcode. */ fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); /* Shift in address. */ fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size); reg = FXP_EEPROM_EECS; data[i] = 0; /* Shift out data. */ for (x = 16; x > 0; x--) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(40); if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) data[i] |= (1 << (x - 1)); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(40); } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(40); } } /* * Write data to the serial EEPROM. */ void fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words) { int i, j; for (i = 0; i < words; i++) { /* Erase/write enable. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3); fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2), sc->sc_eeprom_size); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(4); /* Shift in write opcode, address, data. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size); fxp_eeprom_shiftin(sc, data[i], 16); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(4); /* Wait for the EEPROM to finish up. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); DELAY(4); for (j = 0; j < 1000; j++) { if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) break; DELAY(50); } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(4); /* Erase/write disable. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3); fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(4); } } /* * Update the checksum of the EEPROM. */ void fxp_eeprom_update_cksum(struct fxp_softc *sc) { int i; uint16_t data, cksum; cksum = 0; for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) { fxp_read_eeprom(sc, &data, i, 1); cksum += data; } i = (1 << sc->sc_eeprom_size) - 1; cksum = 0xbaba - cksum; fxp_read_eeprom(sc, &data, i, 1); fxp_write_eeprom(sc, &cksum, i, 1); log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n", device_xname(sc->sc_dev), i, data, cksum); } /* * Start packet transmission on the interface. */ void fxp_start(struct ifnet *ifp) { struct fxp_softc *sc = ifp->if_softc; struct mbuf *m0, *m; struct fxp_txdesc *txd; struct fxp_txsoft *txs; bus_dmamap_t dmamap; int error, lasttx, nexttx, opending, seg, nsegs, len; /* * If we want a re-init, bail out now. */ if (sc->sc_flags & FXPF_WANTINIT) { ifp->if_flags |= IFF_OACTIVE; return; } if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; /* * Remember the previous txpending and the current lasttx. */ opending = sc->sc_txpending; lasttx = sc->sc_txlast; /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ for (;;) { struct fxp_tbd *tbdp; int csum_flags; /* * Grab a packet off the queue. */ IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; m = NULL; if (sc->sc_txpending == FXP_NTXCB - 1) { FXP_EVCNT_INCR(&sc->sc_ev_txstall); break; } /* * Get the next available transmit descriptor. */ nexttx = FXP_NEXTTX(sc->sc_txlast); txd = FXP_CDTX(sc, nexttx); txs = FXP_DSTX(sc, nexttx); dmamap = txs->txs_dmamap; /* * Load the DMA map. If this fails, the packet either * didn't fit in the allotted number of frags, or we were * short on resources. In this case, we'll copy and try * again. */ if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { log(LOG_ERR, "%s: unable to allocate Tx mbuf\n", device_xname(sc->sc_dev)); break; } MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); if (m0->m_pkthdr.len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { log(LOG_ERR, "%s: unable to allocate " "Tx cluster\n", device_xname(sc->sc_dev)); m_freem(m); break; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error) { log(LOG_ERR, "%s: unable to load Tx buffer, " "error = %d\n", device_xname(sc->sc_dev), error); break; } } IFQ_DEQUEUE(&ifp->if_snd, m0); csum_flags = m0->m_pkthdr.csum_flags; if (m != NULL) { m_freem(m0); m0 = m; } /* Initialize the fraglist. */ tbdp = txd->txd_tbd; len = m0->m_pkthdr.len; nsegs = dmamap->dm_nsegs; if (sc->sc_flags & FXPF_EXT_RFA) tbdp++; for (seg = 0; seg < nsegs; seg++) { tbdp[seg].tb_addr = htole32(dmamap->dm_segs[seg].ds_addr); tbdp[seg].tb_size = htole32(dmamap->dm_segs[seg].ds_len); } if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN && (csum_flags & M_CSUM_IPv4) != 0)) { /* * Pad short packets to avoid ip4csum-tx bug. * * XXX Should we still consider if such short * (36 bytes or less) packets might already * occupy FXP_IPCB_NTXSEG (15) fragments here? */ KASSERT(nsegs < FXP_IPCB_NTXSEG); nsegs++; tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc)); tbdp[seg].tb_size = htole32(FXP_IP4CSUMTX_PADLEN + 1 - len); } /* Sync the DMA map. */ bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); /* * Store a pointer to the packet so we can free it later. */ txs->txs_mbuf = m0; /* * Initialize the transmit descriptor. */ /* BIG_ENDIAN: no need to swap to store 0 */ txd->txd_txcb.cb_status = 0; txd->txd_txcb.cb_command = sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF); txd->txd_txcb.tx_threshold = tx_threshold; txd->txd_txcb.tbd_number = nsegs; KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0); if (sc->sc_flags & FXPF_EXT_RFA) { struct fxp_ipcb *ipcb; /* * Deal with TCP/IP checksum offload. Note that * in order for TCP checksum offload to work, * the pseudo header checksum must have already * been computed and stored in the checksum field * in the TCP header. The stack should have * already done this for us. */ ipcb = &txd->txd_u.txdu_ipcb; memset(ipcb, 0, sizeof(*ipcb)); /* * always do hardware parsing. */ ipcb->ipcb_ip_activation_high = FXP_IPCB_HARDWAREPARSING_ENABLE; /* * ip checksum offloading. */ if (csum_flags & M_CSUM_IPv4) { ipcb->ipcb_ip_schedule |= FXP_IPCB_IP_CHECKSUM_ENABLE; } /* * TCP/UDP checksum offloading. */ if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) { ipcb->ipcb_ip_schedule |= FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; } /* * request VLAN tag insertion if needed. */ if (vlan_has_tag(m0)) { ipcb->ipcb_vlan_id = htobe16(vlan_get_tag(m0)); ipcb->ipcb_ip_activation_high |= FXP_IPCB_INSERTVLAN_ENABLE; } } else { KASSERT((csum_flags & (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0); } FXP_CDTXSYNC(sc, nexttx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Advance the tx pointer. */ sc->sc_txpending++; sc->sc_txlast = nexttx; /* * Pass packet to bpf if there is a listener. */ bpf_mtap(ifp, m0, BPF_D_OUT); } if (sc->sc_txpending == FXP_NTXCB - 1) { /* No more slots; notify upper layer. */ ifp->if_flags |= IFF_OACTIVE; } if (sc->sc_txpending != opending) { /* * We enqueued packets. If the transmitter was idle, * reset the txdirty pointer. */ if (opending == 0) sc->sc_txdirty = FXP_NEXTTX(lasttx); /* * Cause the chip to interrupt and suspend command * processing once the last packet we've enqueued * has been transmitted. * * To avoid a race between updating status bits * by the fxp chip and clearing command bits * by this function on machines which don't have * atomic methods to clear/set bits in memory * smaller than 32bits (both cb_status and cb_command * members are uint16_t and in the same 32bit word), * we have to prepare a dummy TX descriptor which has * NOP command and just causes a TX completion interrupt. */ sc->sc_txpending++; sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast); txd = FXP_CDTX(sc, sc->sc_txlast); /* BIG_ENDIAN: no need to swap to store 0 */ txd->txd_txcb.cb_status = 0; txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_I | FXP_CB_COMMAND_S); FXP_CDTXSYNC(sc, sc->sc_txlast, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * The entire packet chain is set up. Clear the suspend bit * on the command prior to the first packet we set up. */ FXP_CDTXSYNC(sc, lasttx, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &= htole16(~FXP_CB_COMMAND_S); FXP_CDTXSYNC(sc, lasttx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Issue a Resume command in case the chip was suspended. */ fxp_scb_wait(sc); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); /* Set a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; } } /* * Process interface interrupts. */ int fxp_intr(void *arg) { struct fxp_softc *sc = arg; struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_dmamap_t rxmap; int claimed = 0, rnr; uint8_t statack; if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0) return (0); /* * If the interface isn't running, don't try to * service the interrupt.. just ack it and bail. */ if ((ifp->if_flags & IFF_RUNNING) == 0) { statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); if (statack) { claimed = 1; CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); } return (claimed); } while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { claimed = 1; /* * First ACK all the interrupts in this pass. */ CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); /* * Process receiver interrupts. If a no-resource (RNR) * condition exists, get whatever packets we can and * re-start the receiver. */ rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ? 1 : 0; if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) { FXP_EVCNT_INCR(&sc->sc_ev_rxintr); rnr |= fxp_rxintr(sc); } /* * Free any finished transmit mbuf chains. */ if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) { FXP_EVCNT_INCR(&sc->sc_ev_txintr); fxp_txintr(sc); /* * Try to get more packets going. */ if_schedule_deferred_start(ifp); if (sc->sc_txpending == 0) { /* * Tell them that they can re-init now. */ if (sc->sc_flags & FXPF_WANTINIT) wakeup(sc); } } if (rnr) { fxp_scb_wait(sc); fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT); rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t); fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE); fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); } } if (claimed) rnd_add_uint32(&sc->rnd_source, statack); return (claimed); } /* * Handle transmit completion interrupts. */ void fxp_txintr(struct fxp_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct fxp_txdesc *txd; struct fxp_txsoft *txs; int i; uint16_t txstat; ifp->if_flags &= ~IFF_OACTIVE; for (i = sc->sc_txdirty; sc->sc_txpending != 0; i = FXP_NEXTTX(i), sc->sc_txpending--) { txd = FXP_CDTX(sc, i); txs = FXP_DSTX(sc, i); FXP_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* skip dummy NOP TX descriptor */ if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD) == FXP_CB_COMMAND_NOP) continue; txstat = le16toh(txd->txd_txcb.cb_status); if ((txstat & FXP_CB_STATUS_C) == 0) break; bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } /* Update the dirty transmit buffer pointer. */ sc->sc_txdirty = i; /* * Cancel the watchdog timer if there are no pending * transmissions. */ if (sc->sc_txpending == 0) ifp->if_timer = 0; } /* * fxp_rx_hwcksum: check status of H/W offloading for received packets. */ void fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa, u_int len) { uint32_t csum_data; int csum_flags; /* * check H/W Checksumming. */ csum_flags = 0; csum_data = 0; if ((sc->sc_flags & FXPF_EXT_RFA) != 0) { uint8_t csum_stat; csum_stat = rfa->cksum_stat; if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0) goto out; if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) { csum_flags = M_CSUM_IPv4; if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0) csum_flags |= M_CSUM_IPv4_BAD; } if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) { csum_flags |= (M_CSUM_TCPv4 | M_CSUM_UDPv4); /* XXX */ if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0) csum_flags |= M_CSUM_TCP_UDP_BAD; } } else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ether_header *eh; struct ip *ip; struct udphdr *uh; u_int hlen, pktlen; if (len < ETHER_HDR_LEN + sizeof(struct ip)) goto out; pktlen = len - ETHER_HDR_LEN; eh = mtod(m, struct ether_header *); if (ntohs(eh->ether_type) != ETHERTYPE_IP) goto out; ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN); if (ip->ip_v != IPVERSION) goto out; hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) goto out; /* * Bail if too short, has random trailing garbage, truncated, * fragment, or has ethernet pad. */ if (ntohs(ip->ip_len) < hlen || ntohs(ip->ip_len) != pktlen || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0) goto out; switch (ip->ip_p) { case IPPROTO_TCP: if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 || pktlen < (hlen + sizeof(struct tcphdr))) goto out; csum_flags = M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR; break; case IPPROTO_UDP: if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 || pktlen < (hlen + sizeof(struct udphdr))) goto out; uh = (struct udphdr *)((uint8_t *)ip + hlen); if (uh->uh_sum == 0) goto out; /* no checksum */ csum_flags = M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR; break; default: goto out; } /* Extract computed checksum. */ csum_data = be16dec(mtod(m, uint8_t *) + len); /* * The computed checksum includes IP headers, * so we have to deduct them. */ #if 0 /* * But in TCP/UDP layer we can assume the IP header is valid, * i.e. a sum of the whole IP header should be 0xffff, * so we don't have to bother to deduct it. */ if (hlen > 0) { uint32_t hsum; const uint16_t *iphdr; hsum = 0; iphdr = (uint16_t *)ip; while (hlen > 1) { hsum += ntohs(*iphdr++); hlen -= sizeof(uint16_t); } while (hsum >> 16) hsum = (hsum >> 16) + (hsum & 0xffff); csum_data += (uint16_t)~hsum; while (csum_data >> 16) csum_data = (csum_data >> 16) + (csum_data & 0xffff); } #endif } out: m->m_pkthdr.csum_flags = csum_flags; m->m_pkthdr.csum_data = csum_data; } /* * Handle receive interrupts. */ int fxp_rxintr(struct fxp_softc *sc) { struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mbuf *m, *m0; bus_dmamap_t rxmap; struct fxp_rfa *rfa; int rnr; uint16_t len, rxstat; rnr = 0; for (;;) { m = sc->sc_rxq.ifq_head; rfa = FXP_MTORFA(m); rxmap = M_GETCTX(m, bus_dmamap_t); FXP_RFASYNC(sc, m, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rxstat = le16toh(rfa->rfa_status); if ((rxstat & FXP_RFA_STATUS_RNR) != 0) rnr = 1; if ((rxstat & FXP_RFA_STATUS_C) == 0) { /* * We have processed all of the * receive buffers. */ FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD); return rnr; } IF_DEQUEUE(&sc->sc_rxq, m); FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD); len = le16toh(rfa->actual_size) & (m->m_ext.ext_size - 1); if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) { /* Adjust for appended checksum bytes. */ len -= sizeof(uint16_t); } if (len < sizeof(struct ether_header)) { /* * Runt packet; drop it now. */ FXP_INIT_RFABUF(sc, m); continue; } /* * If support for 802.1Q VLAN sized frames is * enabled, we need to do some additional error * checking (as we are saving bad frames, in * order to receive the larger ones). */ if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 && (rxstat & (FXP_RFA_STATUS_OVERRUN | FXP_RFA_STATUS_RNR | FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_CRC)) != 0) { FXP_INIT_RFABUF(sc, m); continue; } /* * check VLAN tag stripping. */ if ((sc->sc_flags & FXPF_EXT_RFA) != 0 && (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0) vlan_set_tag(m, be16toh(rfa->vlan_id)); /* Do checksum checking. */ if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) fxp_rx_hwcksum(sc, m, rfa, len); /* * If the packet is small enough to fit in a * single header mbuf, allocate one and copy * the data into it. This greatly reduces * memory consumption when we receive lots * of small packets. * * Otherwise, we add a new buffer to the receive * chain. If this fails, we drop the packet and * recycle the old buffer. */ if (fxp_copy_small != 0 && len <= MHLEN) { MGETHDR(m0, M_DONTWAIT, MT_DATA); if (m0 == NULL) goto dropit; MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner); memcpy(mtod(m0, void *), mtod(m, void *), len); m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags; m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data; FXP_INIT_RFABUF(sc, m); m = m0; } else { if (fxp_add_rfabuf(sc, rxmap, 1) != 0) { dropit: ifp->if_ierrors++; FXP_INIT_RFABUF(sc, m); continue; } } m_set_rcvif(m, ifp); m->m_pkthdr.len = m->m_len = len; /* Pass it on. */ if_percpuq_enqueue(ifp->if_percpuq, m); } } /* * Update packet in/out/collision statistics. The i82557 doesn't * allow you to access these counters without doing a fairly * expensive DMA to get _all_ of the statistics it maintains, so * we do this operation here only once per second. The statistics * counters in the kernel are updated from the previous dump-stats * DMA and then a new dump-stats DMA is started. The on-chip * counters are zeroed when the DMA completes. If we can't start * the DMA immediately, we don't wait - we just prepare to read * them again next time. */ void fxp_tick(void *arg) { struct fxp_softc *sc = arg; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct fxp_stats *sp = &sc->sc_control_data->fcd_stats; int s; if (!device_is_active(sc->sc_dev)) return; s = splnet(); FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD); ifp->if_opackets += le32toh(sp->tx_good); ifp->if_collisions += le32toh(sp->tx_total_collisions); if (sp->rx_good) { ifp->if_ipackets += le32toh(sp->rx_good); sc->sc_rxidle = 0; } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) { sc->sc_rxidle++; } ifp->if_ierrors += le32toh(sp->rx_crc_errors) + le32toh(sp->rx_alignment_errors) + le32toh(sp->rx_rnr_errors) + le32toh(sp->rx_overrun_errors); /* * If any transmit underruns occurred, bump up the transmit * threshold by another 512 bytes (64 * 8). */ if (sp->tx_underruns) { ifp->if_oerrors += le32toh(sp->tx_underruns); if (tx_threshold < 192) tx_threshold += 64; } #ifdef FXP_EVENT_COUNTERS if (sc->sc_flags & FXPF_FC) { sc->sc_ev_txpause.ev_count += sp->tx_pauseframes; sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes; } #endif /* * If we haven't received any packets in FXP_MAX_RX_IDLE seconds, * then assume the receiver has locked up and attempt to clear * the condition by reprogramming the multicast filter (actually, * resetting the interface). This is a work-around for a bug in * the 82557 where the receiver locks up if it gets certain types * of garbage in the synchronization bits prior to the packet header. * This bug is supposed to only occur in 10Mbps mode, but has been * seen to occur in 100Mbps mode as well (perhaps due to a 10/100 * speed transition). */ if (sc->sc_rxidle > FXP_MAX_RX_IDLE) { (void) fxp_init(ifp); splx(s); return; } /* * If there is no pending command, start another stats * dump. Otherwise punt for now. */ if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { /* * Start another stats dump. */ FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); } else { /* * A previous command is still waiting to be accepted. * Just zero our copy of the stats and wait for the * next timer event to update them. */ /* BIG_ENDIAN: no swap required to store 0 */ sp->tx_good = 0; sp->tx_underruns = 0; sp->tx_total_collisions = 0; sp->rx_good = 0; sp->rx_crc_errors = 0; sp->rx_alignment_errors = 0; sp->rx_rnr_errors = 0; sp->rx_overrun_errors = 0; if (sc->sc_flags & FXPF_FC) { sp->tx_pauseframes = 0; sp->rx_pauseframes = 0; } } if (sc->sc_flags & FXPF_MII) { /* Tick the MII clock. */ mii_tick(&sc->sc_mii); } splx(s); /* * Schedule another timeout one second from now. */ callout_reset(&sc->sc_callout, hz, fxp_tick, sc); } /* * Drain the receive queue. */ void fxp_rxdrain(struct fxp_softc *sc) { bus_dmamap_t rxmap; struct mbuf *m; for (;;) { IF_DEQUEUE(&sc->sc_rxq, m); if (m == NULL) break; rxmap = M_GETCTX(m, bus_dmamap_t); bus_dmamap_unload(sc->sc_dmat, rxmap); FXP_RXMAP_PUT(sc, rxmap); m_freem(m); } } /* * Stop the interface. Cancels the statistics updater and resets * the interface. */ void fxp_stop(struct ifnet *ifp, int disable) { struct fxp_softc *sc = ifp->if_softc; struct fxp_txsoft *txs; int i; /* * Turn down interface (done early to avoid bad interactions * between panics, shutdown hooks, and the watchdog timer) */ ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); /* * Cancel stats updater. */ callout_stop(&sc->sc_callout); if (sc->sc_flags & FXPF_MII) { /* Down the MII. */ mii_down(&sc->sc_mii); } /* * Issue software reset. This unloads any microcode that * might already be loaded. */ sc->sc_flags &= ~FXPF_UCODE_LOADED; CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); DELAY(50); /* * Release any xmit buffers. */ for (i = 0; i < FXP_NTXCB; i++) { txs = FXP_DSTX(sc, i); if (txs->txs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } } sc->sc_txpending = 0; if (disable) { fxp_rxdrain(sc); fxp_disable(sc); } } /* * Watchdog/transmission transmit timeout handler. Called when a * transmission is started on the interface, but no interrupt is * received before the timeout. This usually indicates that the * card has wedged for some reason. */ void fxp_watchdog(struct ifnet *ifp) { struct fxp_softc *sc = ifp->if_softc; log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev)); ifp->if_oerrors++; (void) fxp_init(ifp); } /* * Initialize the interface. Must be called at splnet(). */ int fxp_init(struct ifnet *ifp) { struct fxp_softc *sc = ifp->if_softc; struct fxp_cb_config *cbp; struct fxp_cb_ias *cb_ias; struct fxp_txdesc *txd; bus_dmamap_t rxmap; int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0; uint16_t status; if ((error = fxp_enable(sc)) != 0) goto out; /* * Cancel any pending I/O */ fxp_stop(ifp, 0); /* * XXX just setting sc_flags to 0 here clears any FXPF_MII * flag, and this prevents the MII from detaching resulting in * a panic. The flags field should perhaps be split in runtime * flags and more static information. For now, just clear the * only other flag set. */ sc->sc_flags &= ~FXPF_WANTINIT; /* * Initialize base of CBL and RFA memory. Loading with zero * sets it up for regular linear addressing. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); fxp_scb_wait(sc); fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); /* * Initialize the multicast filter. Do this now, since we might * have to setup the config block differently. */ fxp_mc_setup(sc); prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0; /* * In order to support receiving 802.1Q VLAN frames, we have to * enable "save bad frames", since they are 4 bytes larger than * the normal Ethernet maximum frame length. On i82558 and later, * we have a better mechanism for this. */ save_bf = 0; lrxen = 0; vlan_drop = 0; if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) { if (sc->sc_rev < FXP_REV_82558_A4) save_bf = 1; else lrxen = 1; if (sc->sc_rev >= FXP_REV_82550) vlan_drop = 1; } /* * Initialize base of dump-stats buffer. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDSTATSOFF); FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); cbp = &sc->sc_control_data->fcd_configcb; memset(cbp, 0, sizeof(struct fxp_cb_config)); /* * Load microcode for this controller. */ fxp_load_ucode(sc); if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1)) sc->sc_flags |= FXPF_RECV_WORKAROUND; else sc->sc_flags &= ~FXPF_RECV_WORKAROUND; /* * This copy is kind of disgusting, but there are a bunch of must be * zero and must be one bits in this structure and this is the easiest * way to initialize them all to proper values. */ memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template)); /* BIG_ENDIAN: no need to swap to store 0 */ cbp->cb_status = 0; cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL); /* BIG_ENDIAN: no need to swap to store 0xffffffff */ cbp->link_addr = 0xffffffff; /* (no) next command */ /* bytes in config block */ cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ? FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN; cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0; cbp->type_enable = 0; /* actually reserved */ cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0; cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0; cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ cbp->dma_mbce = 0; /* (disable) dma max counters */ cbp->late_scb = 0; /* (don't) defer SCB update */ cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ cbp->ci_int = 1; /* interrupt on CU idle */ cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1; cbp->ext_stats_dis = 1; /* disable extended counters */ cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ cbp->save_bf = save_bf;/* save bad frames */ cbp->disc_short_rx = !prm; /* discard short packets */ cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */ cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0; cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */ /* interface mode */ cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0; cbp->csma_dis = 0; /* (don't) disable link */ cbp->tcp_udp_cksum = (sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0; /* (don't) enable RX checksum */ cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */ cbp->nsai = 1; /* (don't) disable source addr insert */ cbp->preamble_length = 2; /* (7 byte) preamble */ cbp->loopback = 0; /* (don't) loopback */ cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ cbp->linear_pri_mode = 0; /* (wait after xmit only) */ cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ cbp->promiscuous = prm; /* promiscuous mode */ cbp->bcast_disable = 0; /* (don't) disable broadcasts */ cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1; cbp->stripping = !prm; /* truncate rx packet to byte count */ cbp->padding = 1; /* (do) pad short tx packets */ cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ cbp->long_rx_en = lrxen; /* long packet receive enable */ cbp->ia_wake_en = 0; /* (don't) wake up on address match */ cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */ /* must set wake_en in PMCSR also */ cbp->force_fdx = 0; /* (don't) force full duplex */ cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ cbp->multi_ia = 0; /* (don't) accept multiple IAs */ cbp->mc_all = allm; /* accept all multicasts */ cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0; cbp->vlan_drop_en = vlan_drop; if (!(sc->sc_flags & FXPF_FC)) { /* * The i82557 has no hardware flow control, the values * here are the defaults for the chip. */ cbp->fc_delay_lsb = 0; cbp->fc_delay_msb = 0x40; cbp->pri_fc_thresh = 3; cbp->tx_fc_dis = 0; cbp->rx_fc_restop = 0; cbp->rx_fc_restart = 0; cbp->fc_filter = 0; cbp->pri_fc_loc = 1; } else { cbp->fc_delay_lsb = 0x1f; cbp->fc_delay_msb = 0x01; cbp->pri_fc_thresh = 3; cbp->tx_fc_dis = 0; /* enable transmit FC */ cbp->rx_fc_restop = 1; /* enable FC restop frames */ cbp->rx_fc_restart = 1; /* enable FC restart frames */ cbp->fc_filter = !prm; /* drop FC frames to host */ cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ cbp->ext_stats_dis = 0; /* enable extended stats */ } FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Start the config command/DMA. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ for (i = 1000; i > 0; i--) { FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); status = le16toh(cbp->cb_status); FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD); if ((status & FXP_CB_STATUS_C) != 0) break; DELAY(1); } if (i == 0) { log(LOG_WARNING, "%s: line %d: dmasync timeout\n", device_xname(sc->sc_dev), __LINE__); return (ETIMEDOUT); } /* * Initialize the station address. */ cb_ias = &sc->sc_control_data->fcd_iascb; /* BIG_ENDIAN: no need to swap to store 0 */ cb_ias->cb_status = 0; cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); /* BIG_ENDIAN: no need to swap to store 0xffffffff */ cb_ias->link_addr = 0xffffffff; memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN); FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Start the IAS (Individual Address Setup) command/DMA. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ for (i = 1000; i > 0; i++) { FXP_CDIASSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); status = le16toh(cb_ias->cb_status); FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD); if ((status & FXP_CB_STATUS_C) != 0) break; DELAY(1); } if (i == 0) { log(LOG_WARNING, "%s: line %d: dmasync timeout\n", device_xname(sc->sc_dev), __LINE__); return (ETIMEDOUT); } /* * Initialize the transmit descriptor ring. txlast is initialized * to the end of the list so that it will wrap around to the first * descriptor when the first packet is transmitted. */ for (i = 0; i < FXP_NTXCB; i++) { txd = FXP_CDTX(sc, i); memset(txd, 0, sizeof(*txd)); txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); txd->txd_txcb.link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i))); if (sc->sc_flags & FXPF_EXT_TXCB) txd->txd_txcb.tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i) + (2 * sizeof(struct fxp_tbd))); else txd->txd_txcb.tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i)); FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } sc->sc_txpending = 0; sc->sc_txdirty = 0; sc->sc_txlast = FXP_NTXCB - 1; /* * Initialize the receive buffer list. */ sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS; while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) { rxmap = FXP_RXMAP_GET(sc); if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) { log(LOG_ERR, "%s: unable to allocate or map rx " "buffer %d, error = %d\n", device_xname(sc->sc_dev), sc->sc_rxq.ifq_len, error); /* * XXX Should attempt to run with fewer receive * XXX buffers instead of just failing. */ FXP_RXMAP_PUT(sc, rxmap); fxp_rxdrain(sc); goto out; } } sc->sc_rxidle = 0; /* * Give the transmit ring to the chip. We do this by pointing * the chip at the last descriptor (which is a NOP|SUSPEND), and * issuing a start command. It will execute the NOP and then * suspend, pointing at the first descriptor. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast)); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* * Initialize receiver buffer area - RFA. */ #if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */ rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t); fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE); fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); #endif if (sc->sc_flags & FXPF_MII) { /* * Set current media. */ if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0) goto out; } /* * ...all done! */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* * Request a software generated interrupt that will be used to * (re)start the RU processing. If we direct the chip to start * receiving from the start of queue now, instead of letting the * interrupt handler first process all received packets, we run * the risk of having it overwrite mbuf clusters while they are * being processed or after they have been returned to the pool. */ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI); /* * Start the one second timer. */ callout_reset(&sc->sc_callout, hz, fxp_tick, sc); /* * Attempt to start output on the interface. */ fxp_start(ifp); out: if (error) { ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; log(LOG_ERR, "%s: interface not running\n", device_xname(sc->sc_dev)); } return (error); } /* * Notify the world which media we're using. */ void fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct fxp_softc *sc = ifp->if_softc; if (sc->sc_enabled == 0) { ifmr->ifm_active = IFM_ETHER | IFM_NONE; ifmr->ifm_status = 0; return; } ether_mediastatus(ifp, ifmr); } int fxp_80c24_mediachange(struct ifnet *ifp) { /* Nothing to do here. */ return (0); } void fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct fxp_softc *sc = ifp->if_softc; /* * Media is currently-selected media. We cannot determine * the link status. */ ifmr->ifm_status = 0; ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media; } /* * Add a buffer to the end of the RFA buffer list. * Return 0 if successful, error code on failure. * * The RFA struct is stuck at the beginning of mbuf cluster and the * data pointer is fixed up to point just past it. */ int fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload) { struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return (ENOBUFS); } if (unload) bus_dmamap_unload(sc->sc_dmat, rxmap); M_SETCTX(m, rxmap); m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error) { /* XXX XXX XXX */ aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n", sc->sc_rxq.ifq_len, error); panic("fxp_add_rfabuf"); } FXP_INIT_RFABUF(sc, m); return (0); } int fxp_mdi_read(device_t self, int phy, int reg, uint16_t *value) { struct fxp_softc *sc = device_private(self); int count = 10000; uint32_t data; CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); while (((data = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 && count--) DELAY(10); if (count <= 0) { log(LOG_WARNING, "%s: fxp_mdi_read: timed out\n", device_xname(self)); return ETIMEDOUT; } *value = data & 0xffff; return 0; } void fxp_statchg(struct ifnet *ifp) { /* Nothing to do. */ } int fxp_mdi_write(device_t self, int phy, int reg, uint16_t value) { struct fxp_softc *sc = device_private(self); int count = 10000; CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | value); while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && count--) DELAY(10); if (count <= 0) { log(LOG_WARNING, "%s: fxp_mdi_write: timed out\n", device_xname(self)); return ETIMEDOUT; } return 0; } int fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct fxp_softc *sc = ifp->if_softc; int s, error; s = splnet(); switch (cmd) { default: if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) break; error = 0; if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) ; else if (ifp->if_flags & IFF_RUNNING) { /* * Multicast list has changed; set the * hardware filter accordingly. */ while (sc->sc_txpending) { sc->sc_flags |= FXPF_WANTINIT; tsleep(sc, PSOCK, "fxp_init", 0); } error = fxp_init(ifp); } break; } /* Try to get more packets going. */ if (sc->sc_enabled) fxp_start(ifp); splx(s); return (error); } /* * Program the multicast filter. * * This function must be called at splnet(). */ void fxp_mc_setup(struct fxp_softc *sc) { struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ethercom *ec = &sc->sc_ethercom; struct ether_multi *enm; struct ether_multistep step; int count, nmcasts; uint16_t status; #ifdef DIAGNOSTIC if (sc->sc_txpending) panic("fxp_mc_setup: pending transmissions"); #endif if (ifp->if_flags & IFF_PROMISC) { ifp->if_flags |= IFF_ALLMULTI; return; } else { ifp->if_flags &= ~IFF_ALLMULTI; } /* * Initialize multicast setup descriptor. */ nmcasts = 0; ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { /* * Check for too many multicast addresses or if we're * listening to a range. Either way, we simply have * to accept all multicasts. */ if (nmcasts >= MAXMCADDR || memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { /* * Callers of this function must do the * right thing with this. If we're called * from outside fxp_init(), the caller must * detect if the state if IFF_ALLMULTI changes. * If it does, the caller must then call * fxp_init(), since allmulti is handled by * the config block. */ ifp->if_flags |= IFF_ALLMULTI; ETHER_UNLOCK(ec); return; } memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo, ETHER_ADDR_LEN); nmcasts++; ETHER_NEXT_MULTI(step, enm); } ETHER_UNLOCK(ec); /* BIG_ENDIAN: no need to swap to store 0 */ mcsp->cb_status = 0; mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast))); mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN); FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Wait until the command unit is not active. This should never * happen since nothing is queued, but make sure anyway. */ count = 100; while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == FXP_SCB_CUS_ACTIVE && --count) DELAY(1); if (count == 0) { log(LOG_WARNING, "%s: line %d: command queue timeout\n", device_xname(sc->sc_dev), __LINE__); return; } /* * Start the multicast setup command/DMA. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ for (count = 1000; count > 0; count--) { FXP_CDMCSSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); status = le16toh(mcsp->cb_status); FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD); if ((status & FXP_CB_STATUS_C) != 0) break; DELAY(1); } if (count == 0) { log(LOG_WARNING, "%s: line %d: dmasync timeout\n", device_xname(sc->sc_dev), __LINE__); return; } } static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE; #define UCODE(x) x, sizeof(x)/sizeof(uint32_t) static const struct ucode { int32_t revision; const uint32_t *ucode; size_t length; uint16_t int_delay_offset; uint16_t bundle_max_offset; } ucode_table[] = { { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82550, UCODE(fxp_ucode_d102), D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82551_F, UCODE(fxp_ucode_d102e), D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82551_10, UCODE(fxp_ucode_d102e), D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, { 0, NULL, 0, 0, 0 } }; void fxp_load_ucode(struct fxp_softc *sc) { const struct ucode *uc; struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode; int count, i; uint16_t status; if (sc->sc_flags & FXPF_UCODE_LOADED) return; /* * Only load the uCode if the user has requested that * we do so. */ if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) { sc->sc_int_delay = 0; sc->sc_bundle_max = 0; return; } for (uc = ucode_table; uc->ucode != NULL; uc++) { if (sc->sc_rev == uc->revision) break; } if (uc->ucode == NULL) return; /* BIG ENDIAN: no need to swap to store 0 */ cbp->cb_status = 0; cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL); cbp->link_addr = 0xffffffff; /* (no) next command */ for (i = 0; i < uc->length; i++) cbp->ucode[i] = htole32(uc->ucode[i]); if (uc->int_delay_offset) *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] = htole16(fxp_int_delay + (fxp_int_delay / 2)); if (uc->bundle_max_offset) *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] = htole16(fxp_bundle_max); FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Download the uCode to the chip. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ for (count = 10000; count > 0; count--) { FXP_CDUCODESYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); status = le16toh(cbp->cb_status); FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD); if ((status & FXP_CB_STATUS_C) != 0) break; DELAY(2); } if (count == 0) { sc->sc_int_delay = 0; sc->sc_bundle_max = 0; log(LOG_WARNING, "%s: timeout loading microcode\n", device_xname(sc->sc_dev)); return; } if (sc->sc_int_delay != fxp_int_delay || sc->sc_bundle_max != fxp_bundle_max) { sc->sc_int_delay = fxp_int_delay; sc->sc_bundle_max = fxp_bundle_max; log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, " "max bundle: %d\n", device_xname(sc->sc_dev), sc->sc_int_delay, uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max); } sc->sc_flags |= FXPF_UCODE_LOADED; } int fxp_enable(struct fxp_softc *sc) { if (sc->sc_enabled == 0 && sc->sc_enable != NULL) { if ((*sc->sc_enable)(sc) != 0) { log(LOG_ERR, "%s: device enable failed\n", device_xname(sc->sc_dev)); return (EIO); } } sc->sc_enabled = 1; return (0); } void fxp_disable(struct fxp_softc *sc) { if (sc->sc_enabled != 0 && sc->sc_disable != NULL) { (*sc->sc_disable)(sc); sc->sc_enabled = 0; } } /* * fxp_activate: * * Handle device activation/deactivation requests. */ int fxp_activate(device_t self, enum devact act) { struct fxp_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: if_deactivate(&sc->sc_ethercom.ec_if); return 0; default: return EOPNOTSUPP; } } /* * fxp_detach: * * Detach an i82557 interface. */ int fxp_detach(struct fxp_softc *sc, int flags) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; int i, s; /* Succeed now if there's no work to do. */ if ((sc->sc_flags & FXPF_ATTACHED) == 0) return (0); s = splnet(); /* Stop the interface. Callouts are stopped in it. */ fxp_stop(ifp, 1); splx(s); /* Destroy our callout. */ callout_destroy(&sc->sc_callout); if (sc->sc_flags & FXPF_MII) { /* Detach all PHYs */ mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); } /* Delete all remaining media. */ ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY); rnd_detach_source(&sc->rnd_source); ether_ifdetach(ifp); if_detach(ifp); for (i = 0; i < FXP_NRFABUFS; i++) { bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]); bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]); } for (i = 0; i < FXP_NTXCB; i++) { bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap); bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap); } bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap); bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap); bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, sizeof(struct fxp_control_data)); bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg); return (0); }