/* $NetBSD: pte.h,v 1.28 2003/08/17 18:00:51 pk Exp $ */ /* * Copyright (c) 1996 * The President and Fellows of Harvard College. All rights reserved. * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgements: * This product includes software developed by Harvard University. * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgements: * This product includes software developed by Harvard University. * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)pte.h 8.1 (Berkeley) 6/11/93 */ #ifndef _SPARC_PTE_H_ #define _SPARC_PTE_H_ #if defined(_KERNEL_OPT) #include "opt_sparc_arch.h" #endif /* * Sun-4 (sort of), 4c (SparcStation), and 4m Page Table Entries * (Sun calls them `Page Map Entries'). */ #ifndef _LOCORE /* * Segment maps contain `pmeg' (Page Map Entry Group) numbers. * A PMEG is simply an index that names a group of 32 (sun4) or * 64 (sun4c) PTEs. * Depending on the CPU model, we need 7 (sun4c) to 10 (sun4/400) bits * to hold the hardware MMU resource number. */ typedef u_short pmeg_t; /* 10 bits needed per Sun-4 segmap entry */ /* * Region maps contain `smeg' (Segment Entry Group) numbers. * An SMEG is simply an index that names a group of 64 PMEGs. */ typedef u_char smeg_t; /* 8 bits needed per Sun-4 regmap entry */ #endif /* * Address translation works as follows: * * (for sun4c and 2-level sun4) * 1. test va<31:29> -- these must be 000 or 111 (or you get a fault) * 2. concatenate context_reg<2:0> and va<29:18> to get a 15 bit number; * use this to index the segment maps, yielding a 7 or 9 bit value. * (for 3-level sun4) * 1. concatenate context_reg<3:0> and va<31:24> to get a 8 bit number; * use this to index the region maps, yielding a 10 bit value. * 2. take the value from (1) above and concatenate va<17:12> to * get a `segment map entry' index. This gives a 9 bit value. * (for sun4c) * 3. take the value from (2) above and concatenate va<17:12> to * get a `page map entry' index. This gives a 32-bit PTE. * (for sun4) * 3. take the value from (2 or 3) above and concatenate va<17:13> to * get a `page map entry' index. This gives a 32-bit PTE. ** * For sun4m: * 1. Use context_reg<3:0> to index the context table (located at * (context_reg << 2) | ((ctx_tbl_ptr_reg >> 2) << 6) ). This * gives a 32-bit page-table-descriptor (PTP). * 2. Use va<31:24> to index the region table located by the PTP from (1): * PTP<31:6> << 10. This gives another PTP for the segment tables * 3. Use va<23:18> to index the segment table located by the PTP from (2) * as follows: PTP<31:4> << 8. This gives another PTP for the page tbl. * 4. Use va<17:12> to index the page table given by (3)'s PTP: * PTP<31:4> << 8. This gives a 32-bit PTE. * * In other words: * * struct sun4_3_levelmmu_virtual_addr { * u_int va_reg:8, (virtual region) * va_seg:6, (virtual segment) * va_pg:5, (virtual page within segment) * va_off:13; (offset within page) * }; * struct sun4_virtual_addr { * u_int :2, (required to be the same as bit 29) * va_seg:12, (virtual segment) * va_pg:5, (virtual page within segment) * va_off:13; (offset within page) * }; * struct sun4c_virtual_addr { * u_int :2, (required to be the same as bit 29) * va_seg:12, (virtual segment) * va_pg:6, (virtual page within segment) * va_off:12; (offset within page) * }; * * struct sun4m_virtual_addr { * u_int va_reg:8, (virtual region) * va_seg:6, (virtual segment within region) * va_pg:6, (virtual page within segment) * va_off:12; (offset within page) * }; * * Then, given any `va': * * extern smeg_t regmap[16][1<<8]; (3-level MMU only) * extern pmeg_t segmap[8][1<<12]; ([16][1<<12] for sun4) * extern int ptetable[128][1<<6]; ([512][1<<5] for sun4) * * extern u_int s4m_ctxmap[16]; (sun4m SRMMU only) * extern u_int s4m_regmap[16][1<<8]; (sun4m SRMMU only) * extern u_int s4m_segmap[1<<8][1<<6]; (sun4m SRMMU only) * extern u_int s4m_pagmap[1<<14][1<<6]; (sun4m SRMMU only) * * (the above being in the hardware, accessed as Alternate Address Spaces on * all machines but the Sun4m SRMMU, in which case the tables are in physical * kernel memory. In the 4m architecture, the tables are not layed out as * 2-dim arrays, but are sparsely allocated as needed, and point to each * other.) * * if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4D) // SPARC Reference MMU * regptp = s4m_ctxmap[curr_ctx]; * if (!(regptp & SRMMU_TEPTD)) TRAP(); * segptp = *(u_int *)(((regptp & ~0x3) << 4) | va.va_reg); * if (!(segptp & SRMMU_TEPTD)) TRAP(); * pagptp = *(u_int *)(((segptp & ~0x3) << 4) | va.va_seg); * if (!(pagptp & SRMMU_TEPTD)) TRAP(); * pte = *(u_int *)(((pagptp & ~0x3) << 4) | va.va_pg); * if (!(pte & SRMMU_TEPTE)) TRAP(); // like PG_V * if (usermode && PTE_PROT_LEVEL(pte) > 0x5) TRAP(); * if (writing && !PTE_PROT_LEVEL_ALLOWS_WRITING(pte)) TRAP(); * if (!(pte & SRMMU_PG_C)) DO_NOT_USE_CACHE_FOR_THIS_ACCESS(); * pte |= SRMMU_PG_U; * if (writing) pte |= PG_M; * physaddr = ((pte & SRMMU_PG_PFNUM) << SRMMU_PGSHIFT)|va.va_off; * return; * if (mmu_3l) * physreg = regmap[curr_ctx][va.va_reg]; * physseg = segmap[physreg][va.va_seg]; * else * physseg = segmap[curr_ctx][va.va_seg]; * pte = ptetable[physseg][va.va_pg]; * if (!(pte & PG_V)) TRAP(); * if (writing && !pte.pg_w) TRAP(); * if (usermode && pte.pg_s) TRAP(); * if (pte & PG_NC) DO_NOT_USE_CACHE_FOR_THIS_ACCESS(); * pte |= PG_U; (mark used/accessed) * if (writing) pte |= PG_M; (mark modified) * ptetable[physseg][va.va_pg] = pte; * physadr = ((pte & PG_PFNUM) << PGSHIFT) | va.va_off; */ #if defined(SUN4_MMU3L) && !defined(SUN4) #error "configuration error" #endif #define NBPRG (1 << 24) /* bytes per region */ #define RGSHIFT 24 /* log2(NBPRG) */ #define RGOFSET (NBPRG - 1) /* mask for region offset */ #define NSEGRG (NBPRG / NBPSG) /* segments per region */ #define NBPSG (1 << 18) /* bytes per segment */ #define SGSHIFT 18 /* log2(NBPSG) */ #define SGOFSET (NBPSG - 1) /* mask for segment offset */ /* number of PTEs that map one segment (not number that fit in one segment!) */ #if defined(SUN4) && (defined(SUN4C) || defined(SUN4M) || defined(SUN4D)) extern int nptesg; #define NPTESG nptesg /* (which someone will have to initialize) */ #else #define NPTESG (NBPSG / NBPG) #endif /* virtual address to virtual region number */ #define VA_VREG(va) (((unsigned int)(va) >> RGSHIFT) & 255) /* virtual address to virtual segment number */ #define VA_VSEG(va) (((unsigned int)(va) >> SGSHIFT) & 63) /* virtual address to virtual page number, for Sun-4 and Sun-4c */ #define VA_SUN4_VPG(va) (((int)(va) >> 13) & 31) #define VA_SUN4C_VPG(va) (((int)(va) >> 12) & 63) #define VA_SUN4M_VPG(va) (((int)(va) >> 12) & 63) #define VA_VPG(va) \ (PGSHIFT==SUN4_PGSHIFT ? VA_SUN4_VPG(va) : VA_SUN4C_VPG(va)) /* virtual address to offset within page */ #define VA_SUN4_OFF(va) (((int)(va)) & 0x1FFF) #define VA_SUN4C_OFF(va) (((int)(va)) & 0xFFF) #define VA_SUN4M_OFF(va) (((int)(va)) & 0xFFF) #define VA_OFF(va) \ (PGSHIFT==SUN4_PGSHIFT ? VA_SUN4_OFF(va) : VA_SUN4C_OFF(va)) /* truncate virtual address to region base */ #define VA_ROUNDDOWNTOREG(va) ((int)(va) & ~RGOFSET) /* truncate virtual address to segment base */ #define VA_ROUNDDOWNTOSEG(va) ((int)(va) & ~SGOFSET) /* virtual segment to virtual address (must sign extend on holy MMUs!) */ #define VRTOVA(vr) ((CPU_HAS_SRMMU || HASSUN4_MMU3L) \ ? ((int)(vr) << RGSHIFT) \ : (((int)(vr) << (RGSHIFT+2)) >> 2)) #define VSTOVA(vr,vs) ((CPU_HAS_SRMMU || HASSUN4_MMU3L) \ ? (((int)(vr) << RGSHIFT) + ((int)(vs) << SGSHIFT)) \ : ((((int)(vr) << (RGSHIFT+2)) >> 2) + ((int)(vs) << SGSHIFT))) extern int mmu_has_hole; #define VA_INHOLE(va) (mmu_has_hole \ ? ( (unsigned int)(((int)(va) >> PG_VSHIFT) + 1) > 1) \ : 0) /* Define the virtual address space hole */ #define MMU_HOLE_START 0x20000000 #define MMU_HOLE_END 0xe0000000 /* there is no `struct pte'; we just use `int'; this is for non-4M only */ #define PG_V 0x80000000 #define PG_PROT 0x60000000 /* both protection bits */ #define PG_W 0x40000000 /* allowed to write */ #define PG_S 0x20000000 /* supervisor only */ #define PG_NC 0x10000000 /* non-cacheable */ #define PG_TYPE 0x0c000000 /* both type bits */ #define PG_OBMEM 0x00000000 /* on board memory */ #define PG_OBIO 0x04000000 /* on board I/O (incl. Sbus on 4c) */ #define PG_VME16 0x08000000 /* 16-bit-data VME space */ #define PG_VME32 0x0c000000 /* 32-bit-data VME space */ #if defined(SUN4M) || defined(SUN4D) #define PG_SUN4M_OBMEM 0x0 /* No type bits=>obmem on 4m */ #define PG_SUN4M_OBIO 0xf /* obio maps to 0xf on 4M */ #define SRMMU_PGTYPE 0xf0000000 /* Top 4 bits of pte PPN give type */ #endif #define PG_U 0x02000000 #define PG_M 0x01000000 #define PG_IOC 0x00800000 #define PG_MBZ 0x00780000 /* unused; must be zero (oh really?) */ #define PG_PFNUM 0x0007ffff /* n.b.: only 16 bits on sun4c */ #define PG_WIRED 0x00400000 /* S/W only; in MBZ area */ #define PG_TNC_SHIFT 26 /* shift to get PG_TYPE + PG_NC */ #define PG_M_SHIFT 24 /* shift to get PG_M, PG_U */ #define PG_M_SHIFT4M 5 /* shift to get SRMMU_PG_M,R on 4m */ /*efine PG_NOACC 0 ** XXX */ #define PG_KR 0x20000000 #define PG_KW 0x60000000 #define PG_URKR 0 #define PG_UW 0x40000000 #ifdef KGDB /* but we will define one for gdb anyway */ struct pte { u_int pg_v:1, pg_w:1, pg_s:1, pg_nc:1; enum pgtype { pg_obmem, pg_obio, pg_vme16, pg_vme32 } pg_type:2; u_int pg_u:1, pg_m:1, pg_mbz:5, pg_pfnum:19; }; #if defined(SUN4M) || defined(SUN4D) struct srmmu_pte { u_int pg_pfnum:20, pg_c:1, pg_m:1, pg_u:1; enum pgprot { pprot_r_r, pprot_rw_rw, pprot_rx_rx, pprot_rwx_rwx, pprot_x_x, pprot_r_rw, pprot_n_rx, pprot_n_rwx } pg_prot:3; /* prot. bits: pprot__ */ u_int pg_must_be_2:2; }; #endif #endif /* * These are needed in the register window code * to check the validity of (ostensible) user stack PTEs. */ #define PG_VSHIFT 29 /* (va>>vshift)==0 or -1 => valid */ /* XXX fix this name, it is a va shift not a pte bit shift! */ #define PG_PROTSHIFT 29 #define PG_PROTUWRITE 6 /* PG_V,PG_W,!PG_S */ #define PG_PROTUREAD 4 /* PG_V,!PG_W,!PG_S */ /* %%%: Fix above and below for 4m? */ /* static __inline int PG_VALID(void *va) { register int t = va; t >>= PG_VSHIFT; return (t == 0 || t == -1); } */ /* * Here are the bit definitions for 4M/SRMMU pte's */ /* MMU TABLE ENTRIES */ #define SRMMU_TEINVALID 0x0 /* invalid (serves as !valid bit) */ #define SRMMU_TEPTD 0x1 /* Page Table Descriptor */ #define SRMMU_TEPTE 0x2 /* Page Table Entry */ #define SRMMU_TERES 0x3 /* reserved */ #define SRMMU_TETYPE 0x3 /* mask for table entry type */ /* PTE FIELDS */ #define SRMMU_PPNMASK 0xFFFFFF00 #define SRMMU_PPNSHIFT 0x8 #define SRMMU_PPNPASHIFT 0x4 /* shift to put ppn into PAddr */ #define SRMMU_L1PPNSHFT 0x14 #define SRMMU_L1PPNMASK 0xFFF00000 #define SRMMU_L2PPNSHFT 0xE #define SRMMU_L2PPNMASK 0xFC000 #define SRMMU_L3PPNSHFT 0x8 #define SRMMU_L3PPNMASK 0x3F00 /* PTE BITS */ #define SRMMU_PG_C 0x80 /* cacheable */ #define SRMMU_PG_M 0x40 /* modified (dirty) */ #define SRMMU_PG_R 0x20 /* referenced */ #define SRMMU_PGBITSMSK 0xE0 /* PTE PROTECTION */ #define SRMMU_PROT_MASK 0x1C /* Mask protection bits out of pte */ #define SRMMU_PROT_SHFT 0x2 #define PPROT_R_R 0x0 /* These are in the form: */ #define PPROT_RW_RW 0x4 /* PPROT__ */ #define PPROT_RX_RX 0x8 /* where is the user-mode */ #define PPROT_RWX_RWX 0xC /* permission, and is the */ #define PPROT_X_X 0x10 /* supervisor mode permission. */ #define PPROT_R_RW 0x14 /* R=read, W=write, X=execute */ #define PPROT_N_RX 0x18 /* N=none. */ #define PPROT_N_RWX 0x1C #define PPROT_WRITE 0x4 /* set iff write priv. allowed */ #define PPROT_S 0x18 /* effective S bit */ #define PPROT_U2S_OMASK 0x18 /* OR with prot. to revoke user priv */ /* TABLE SIZES */ #define SRMMU_L1SIZE 0x100 #define SRMMU_L2SIZE 0x40 #define SRMMU_L3SIZE 0x40 #define SRMMU_PTE_BITS "\177\020" \ "f\0\2TYPE\0=\1PTD\0=\2PTE\0f\2\3PROT\0" \ "=\0R_R\0=\4RW_RW\0=\10RX_RX\0=\14RWX_RWX\0=\20X_X\0=\24R_RW\0" \ "=\30N_RX\0=\34N_RWX\0" \ "b\5R\0b\6M\0b\7C\0f\10\30PFN\0" /* * IOMMU PTE bits. */ #define IOPTE_PPN_MASK 0x07ffff00 #define IOPTE_PPN_SHIFT 8 #define IOPTE_RSVD 0x000000f1 #define IOPTE_WRITE 0x00000004 #define IOPTE_VALID 0x00000002 #define IOMMU_PTE_BITS "\177\020" \ "f\10\23PPN\0b\2W\0b\1V\0" #if defined(_KERNEL) || defined(_STANDALONE) /* * Macros to get and set the processor context. */ #define getcontext4() lduba(AC_CONTEXT, ASI_CONTROL) #define getcontext4m() lda(SRMMU_CXR, ASI_SRMMU) #define getcontext() (CPU_HAS_SRMMU ? getcontext4m() \ : getcontext4()) #define setcontext4(c) stba(AC_CONTEXT, ASI_CONTROL, c) #define setcontext4m(c) sta(SRMMU_CXR, ASI_SRMMU, c) #define setcontext(c) (CPU_HAS_SRMMU ? setcontext4m(c) \ : setcontext4(c)) /* sun4/sun4c access to MMU-resident PTEs */ #define getpte4(va) lda(va, ASI_PTE) #define setpte4(va, pte) sta(va, ASI_PTE, pte) /* sun4m TLB probe */ #define getpte4m(va) lda((va & 0xFFFFF000) | ASI_SRMMUFP_L3, \ ASI_SRMMUFP) #endif /* _KERNEL || _STANDALONE */ #endif /* _SPARC_PTE_H_ */