/* $NetBSD: kern_resource.c,v 1.24 1994/12/11 18:06:09 mycroft Exp $ */ /*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 */ #include #include #include #include #include #include #include #include #include #include /* * Resource controls and accounting. */ getpriority(curp, uap, retval) struct proc *curp; register struct getpriority_args /* { syscallarg(int) which; syscallarg(int) who; } */ *uap; register_t *retval; { register struct proc *p; register int low = PRIO_MAX + 1; switch (SCARG(uap, which)) { case PRIO_PROCESS: if (SCARG(uap, who) == 0) p = curp; else p = pfind(SCARG(uap, who)); if (p == 0) break; low = p->p_nice; break; case PRIO_PGRP: { register struct pgrp *pg; if (SCARG(uap, who) == 0) pg = curp->p_pgrp; else if ((pg = pgfind(SCARG(uap, who))) == NULL) break; for (p = pg->pg_members.lh_first; p != 0; p = p->p_pglist.le_next) { if (p->p_nice < low) low = p->p_nice; } break; } case PRIO_USER: if (SCARG(uap, who) == 0) SCARG(uap, who) = curp->p_ucred->cr_uid; for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) if (p->p_ucred->cr_uid == SCARG(uap, who) && p->p_nice < low) low = p->p_nice; break; default: return (EINVAL); } if (low == PRIO_MAX + 1) return (ESRCH); *retval = low; return (0); } /* ARGSUSED */ setpriority(curp, uap, retval) struct proc *curp; register struct setpriority_args /* { syscallarg(int) which; syscallarg(int) who; syscallarg(int) prio; } */ *uap; register_t *retval; { register struct proc *p; int found = 0, error = 0; switch (SCARG(uap, which)) { case PRIO_PROCESS: if (SCARG(uap, who) == 0) p = curp; else p = pfind(SCARG(uap, who)); if (p == 0) break; error = donice(curp, p, SCARG(uap, prio)); found++; break; case PRIO_PGRP: { register struct pgrp *pg; if (SCARG(uap, who) == 0) pg = curp->p_pgrp; else if ((pg = pgfind(SCARG(uap, who))) == NULL) break; for (p = pg->pg_members.lh_first; p != 0; p = p->p_pglist.le_next) { error = donice(curp, p, SCARG(uap, prio)); found++; } break; } case PRIO_USER: if (SCARG(uap, who) == 0) SCARG(uap, who) = curp->p_ucred->cr_uid; for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) if (p->p_ucred->cr_uid == SCARG(uap, who)) { error = donice(curp, p, SCARG(uap, prio)); found++; } break; default: return (EINVAL); } if (found == 0) return (ESRCH); return (error); } donice(curp, chgp, n) register struct proc *curp, *chgp; register int n; { register struct pcred *pcred = curp->p_cred; if (pcred->pc_ucred->cr_uid && pcred->p_ruid && pcred->pc_ucred->cr_uid != chgp->p_ucred->cr_uid && pcred->p_ruid != chgp->p_ucred->cr_uid) return (EPERM); if (n > PRIO_MAX) n = PRIO_MAX; if (n < PRIO_MIN) n = PRIO_MIN; if (n < chgp->p_nice && suser(pcred->pc_ucred, &curp->p_acflag)) return (EACCES); chgp->p_nice = n; (void)resetpriority(chgp); return (0); } #if defined(COMPAT_43) || defined(COMPAT_SUNOS) || defined(COMPAT_SVR4) /* ARGSUSED */ compat_43_setrlimit(p, uap, retval) struct proc *p; struct compat_43_setrlimit_args /* { syscallarg(u_int) which; syscallarg(struct ogetrlimit *) rlp; } */ *uap; register_t *retval; { struct orlimit olim; struct rlimit lim; int error; if (error = copyin((caddr_t)SCARG(uap, rlp), (caddr_t)&olim, sizeof (struct orlimit))) return (error); lim.rlim_cur = olim.rlim_cur; lim.rlim_max = olim.rlim_max; return (dosetrlimit(p, SCARG(uap, which), &lim)); } /* ARGSUSED */ compat_43_getrlimit(p, uap, retval) struct proc *p; register struct compat_43_getrlimit_args /* { syscallarg(u_int) which; syscallarg(struct ogetrlimit *) rlp; } */ *uap; register_t *retval; { struct orlimit olim; if (SCARG(uap, which) >= RLIM_NLIMITS) return (EINVAL); olim.rlim_cur = p->p_rlimit[SCARG(uap, which)].rlim_cur; if (olim.rlim_cur == -1) olim.rlim_cur = 0x7fffffff; olim.rlim_max = p->p_rlimit[SCARG(uap, which)].rlim_max; if (olim.rlim_max == -1) olim.rlim_max = 0x7fffffff; return (copyout((caddr_t)&olim, (caddr_t)SCARG(uap, rlp), sizeof(olim))); } #endif /* COMPAT_43 || COMPAT_SUNOS || COMPAT_SVR4 */ /* ARGSUSED */ setrlimit(p, uap, retval) struct proc *p; register struct setrlimit_args /* { syscallarg(u_int) which; syscallarg(struct rlimit *) rlp; } */ *uap; register_t *retval; { struct rlimit alim; int error; if (error = copyin((caddr_t)SCARG(uap, rlp), (caddr_t)&alim, sizeof (struct rlimit))) return (error); return (dosetrlimit(p, SCARG(uap, which), &alim)); } int dosetrlimit(p, which, limp) struct proc *p; u_int which; struct rlimit *limp; { register struct rlimit *alimp; extern unsigned maxdmap, maxsmap; int error; if (which >= RLIM_NLIMITS) return (EINVAL); alimp = &p->p_rlimit[which]; if (limp->rlim_cur > alimp->rlim_max || limp->rlim_max > alimp->rlim_max) if (error = suser(p->p_ucred, &p->p_acflag)) return (error); if (limp->rlim_cur > limp->rlim_max) limp->rlim_cur = limp->rlim_max; if (p->p_limit->p_refcnt > 1 && (p->p_limit->p_lflags & PL_SHAREMOD) == 0) { p->p_limit->p_refcnt--; p->p_limit = limcopy(p->p_limit); alimp = &p->p_rlimit[which]; } switch (which) { case RLIMIT_DATA: if (limp->rlim_cur > maxdmap) limp->rlim_cur = maxdmap; if (limp->rlim_max > maxdmap) limp->rlim_max = maxdmap; break; case RLIMIT_STACK: if (limp->rlim_cur > maxsmap) limp->rlim_cur = maxsmap; if (limp->rlim_max > maxsmap) limp->rlim_max = maxsmap; /* * Stack is allocated to the max at exec time with only * "rlim_cur" bytes accessible. If stack limit is going * up make more accessible, if going down make inaccessible. */ if (limp->rlim_cur != alimp->rlim_cur) { vm_offset_t addr; vm_size_t size; vm_prot_t prot; if (limp->rlim_cur > alimp->rlim_cur) { prot = VM_PROT_ALL; size = limp->rlim_cur - alimp->rlim_cur; addr = USRSTACK - limp->rlim_cur; } else { prot = VM_PROT_NONE; size = alimp->rlim_cur - limp->rlim_cur; addr = USRSTACK - alimp->rlim_cur; } addr = trunc_page(addr); size = round_page(size); (void) vm_map_protect(&p->p_vmspace->vm_map, addr, addr+size, prot, FALSE); } break; case RLIMIT_NOFILE: if (limp->rlim_cur > maxfiles) limp->rlim_cur = maxfiles; if (limp->rlim_max > maxfiles) limp->rlim_max = maxfiles; break; case RLIMIT_NPROC: if (limp->rlim_cur > maxproc) limp->rlim_cur = maxproc; if (limp->rlim_max > maxproc) limp->rlim_max = maxproc; break; } *alimp = *limp; return (0); } /* ARGSUSED */ getrlimit(p, uap, retval) struct proc *p; register struct getrlimit_args /* { syscallarg(u_int) which; syscallarg(struct rlimit *) rlp; } */ *uap; register_t *retval; { if (SCARG(uap, which) >= RLIM_NLIMITS) return (EINVAL); return (copyout((caddr_t)&p->p_rlimit[SCARG(uap, which)], (caddr_t)SCARG(uap, rlp), sizeof (struct rlimit))); } /* * Transform the running time and tick information in proc p into user, * system, and interrupt time usage. */ calcru(p, up, sp, ip) register struct proc *p; register struct timeval *up; register struct timeval *sp; register struct timeval *ip; { register u_quad_t u, st, ut, it, tot; register u_long sec, usec; register int s; struct timeval tv; s = splstatclock(); st = p->p_sticks; ut = p->p_uticks; it = p->p_iticks; splx(s); tot = st + ut + it; if (tot == 0) { up->tv_sec = up->tv_usec = 0; sp->tv_sec = sp->tv_usec = 0; if (ip != NULL) ip->tv_sec = ip->tv_usec = 0; return; } sec = p->p_rtime.tv_sec; usec = p->p_rtime.tv_usec; if (p == curproc) { /* * Adjust for the current time slice. This is actually fairly * important since the error here is on the order of a time * quantum, which is much greater than the sampling error. */ microtime(&tv); sec += tv.tv_sec - runtime.tv_sec; usec += tv.tv_usec - runtime.tv_usec; } u = sec * 1000000 + usec; st = (u * st) / tot; sp->tv_sec = st / 1000000; sp->tv_usec = st % 1000000; ut = (u * ut) / tot; up->tv_sec = ut / 1000000; up->tv_usec = ut % 1000000; if (ip != NULL) { it = (u * it) / tot; ip->tv_sec = it / 1000000; ip->tv_usec = it % 1000000; } } /* ARGSUSED */ getrusage(p, uap, retval) register struct proc *p; register struct getrusage_args /* { syscallarg(int) who; syscallarg(struct rusage *) rusage; } */ *uap; register_t *retval; { register struct rusage *rup; switch (SCARG(uap, who)) { case RUSAGE_SELF: rup = &p->p_stats->p_ru; calcru(p, &rup->ru_utime, &rup->ru_stime, NULL); break; case RUSAGE_CHILDREN: rup = &p->p_stats->p_cru; break; default: return (EINVAL); } return (copyout((caddr_t)rup, (caddr_t)SCARG(uap, rusage), sizeof (struct rusage))); } ruadd(ru, ru2) register struct rusage *ru, *ru2; { register long *ip, *ip2; register int i; __timeradd(&ru->ru_utime, &ru2->ru_utime); __timeradd(&ru->ru_stime, &ru2->ru_stime); if (ru->ru_maxrss < ru2->ru_maxrss) ru->ru_maxrss = ru2->ru_maxrss; ip = &ru->ru_first; ip2 = &ru2->ru_first; for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) *ip++ += *ip2++; } /* * Make a copy of the plimit structure. * We share these structures copy-on-write after fork, * and copy when a limit is changed. */ struct plimit * limcopy(lim) struct plimit *lim; { register struct plimit *copy; MALLOC(copy, struct plimit *, sizeof(struct plimit), M_SUBPROC, M_WAITOK); bcopy(lim->pl_rlimit, copy->pl_rlimit, sizeof(struct rlimit) * RLIM_NLIMITS); copy->p_lflags = 0; copy->p_refcnt = 1; return (copy); }