/* $NetBSD: cd.c,v 1.87 1996/03/27 00:48:50 mycroft Exp $ */ /* * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles M. Hannum. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Originally written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* rw_big and start_stop come from there */ #include #include #define CDOUTSTANDING 4 #define CDRETRIES 1 #define CDUNIT(z) DISKUNIT(z) #define CDPART(z) DISKPART(z) #define MAKECDDEV(maj, unit, part) MAKEDISKDEV(maj, unit, part) struct cd_softc { struct device sc_dev; struct disk sc_dk; int flags; #define CDF_LOCKED 0x01 #define CDF_WANTED 0x02 #define CDF_WLABEL 0x04 /* label is writable */ #define CDF_LABELLING 0x08 /* writing label */ #define CDF_ANCIENT 0x10 /* disk is ancient; for minphys */ struct scsi_link *sc_link; /* contains our targ, lun, etc. */ struct cd_parms { int blksize; u_long disksize; /* total number sectors */ } params; struct buf buf_queue; }; int cdmatch __P((struct device *, void *, void *)); void cdattach __P((struct device *, struct device *, void *)); int cdlock __P((struct cd_softc *)); void cdunlock __P((struct cd_softc *)); void cdstart __P((void *)); void cdminphys __P((struct buf *)); void cdgetdisklabel __P((struct cd_softc *)); int cddone __P((struct scsi_xfer *, int)); u_long cd_size __P((struct cd_softc *, int)); int cd_get_mode __P((struct cd_softc *, struct cd_mode_data *, int)); int cd_set_mode __P((struct cd_softc *, struct cd_mode_data *)); int cd_play __P((struct cd_softc *, int, int )); int cd_play_big __P((struct cd_softc *, int, int )); int cd_play_tracks __P((struct cd_softc *, int, int, int, int )); int cd_play_msf __P((struct cd_softc *, int, int, int, int, int, int )); int cd_pause __P((struct cd_softc *, int)); int cd_reset __P((struct cd_softc *)); int cd_read_subchannel __P((struct cd_softc *, int, int, int, struct cd_sub_channel_info *, int )); int cd_read_toc __P((struct cd_softc *, int, int, struct cd_toc_entry *, int )); int cd_get_parms __P((struct cd_softc *, int)); struct cfattach cd_ca = { sizeof(struct cd_softc), cdmatch, cdattach }; struct cfdriver cd_cd = { NULL, "cd", DV_DISK }; struct dkdriver cddkdriver = { cdstrategy }; struct scsi_device cd_switch = { NULL, /* use default error handler */ cdstart, /* we have a queue, which is started by this */ NULL, /* we do not have an async handler */ cddone, /* deal with stats at interrupt time */ }; struct scsi_inquiry_pattern cd_patterns[] = { {T_CDROM, T_REMOV, "", "", ""}, #if 0 {T_CDROM, T_REMOV, /* more luns */ "PIONEER ", "CD-ROM DRM-600 ", ""}, #endif }; int cdmatch(parent, match, aux) struct device *parent; void *match, *aux; { struct scsibus_attach_args *sa = aux; int priority; (void)scsi_inqmatch(sa->sa_inqbuf, (caddr_t)cd_patterns, sizeof(cd_patterns)/sizeof(cd_patterns[0]), sizeof(cd_patterns[0]), &priority); return (priority); } /* * The routine called by the low level scsi routine when it discovers * A device suitable for this driver */ void cdattach(parent, self, aux) struct device *parent, *self; void *aux; { struct cd_softc *cd = (void *)self; struct scsibus_attach_args *sa = aux; struct scsi_link *sc_link = sa->sa_sc_link; SC_DEBUG(sc_link, SDEV_DB2, ("cdattach: ")); /* * Store information needed to contact our base driver */ cd->sc_link = sc_link; sc_link->device = &cd_switch; sc_link->device_softc = cd; if (sc_link->openings > CDOUTSTANDING) sc_link->openings = CDOUTSTANDING; /* * Initialize and attach the disk structure. */ cd->sc_dk.dk_driver = &cddkdriver; cd->sc_dk.dk_name = cd->sc_dev.dv_xname; disk_attach(&cd->sc_dk); #if !defined(i386) dk_establish(&cd->sc_dk, &cd->sc_dev); /* XXX */ #endif /* * Note if this device is ancient. This is used in sdminphys(). */ if ((sa->sa_inqbuf->version & SID_ANSII) == 0) cd->flags |= CDF_ANCIENT; printf("\n"); } /* * Wait interruptibly for an exclusive lock. * * XXX * Several drivers do this; it should be abstracted and made MP-safe. */ int cdlock(cd) struct cd_softc *cd; { int error; while ((cd->flags & CDF_LOCKED) != 0) { cd->flags |= CDF_WANTED; if ((error = tsleep(cd, PRIBIO | PCATCH, "cdlck", 0)) != 0) return error; } cd->flags |= CDF_LOCKED; return 0; } /* * Unlock and wake up any waiters. */ void cdunlock(cd) struct cd_softc *cd; { cd->flags &= ~CDF_LOCKED; if ((cd->flags & CDF_WANTED) != 0) { cd->flags &= ~CDF_WANTED; wakeup(cd); } } /* * open the device. Make sure the partition info is a up-to-date as can be. */ int cdopen(dev, flag, fmt, p) dev_t dev; int flag, fmt; struct proc *p; { struct cd_softc *cd; struct scsi_link *sc_link; int unit, part; int error; unit = CDUNIT(dev); if (unit >= cd_cd.cd_ndevs) return ENXIO; cd = cd_cd.cd_devs[unit]; if (!cd) return ENXIO; sc_link = cd->sc_link; SC_DEBUG(sc_link, SDEV_DB1, ("cdopen: dev=0x%x (unit %d (of %d), partition %d)\n", dev, unit, cd_cd.cd_ndevs, part)); if ((error = cdlock(cd)) != 0) return error; if (cd->sc_dk.dk_openmask != 0) { /* * If any partition is open, but the disk has been invalidated, * disallow further opens. */ if ((sc_link->flags & SDEV_MEDIA_LOADED) == 0) { error = EIO; goto bad3; } } else { /* Check that it is still responding and ok. */ error = scsi_test_unit_ready(sc_link, SCSI_IGNORE_ILLEGAL_REQUEST | SCSI_IGNORE_MEDIA_CHANGE | SCSI_IGNORE_NOT_READY); if (error) goto bad3; /* Start the pack spinning if necessary. */ error = scsi_start(sc_link, SSS_START, SCSI_IGNORE_ILLEGAL_REQUEST | SCSI_IGNORE_MEDIA_CHANGE | SCSI_SILENT); if (error) goto bad3; sc_link->flags |= SDEV_OPEN; /* Lock the pack in. */ error = scsi_prevent(sc_link, PR_PREVENT, SCSI_IGNORE_ILLEGAL_REQUEST | SCSI_IGNORE_MEDIA_CHANGE); if (error) goto bad; if ((sc_link->flags & SDEV_MEDIA_LOADED) == 0) { sc_link->flags |= SDEV_MEDIA_LOADED; /* Load the physical device parameters. */ if (cd_get_parms(cd, 0) != 0) { error = ENXIO; goto bad2; } SC_DEBUG(sc_link, SDEV_DB3, ("Params loaded ")); /* Fabricate a disk label. */ cdgetdisklabel(cd); SC_DEBUG(sc_link, SDEV_DB3, ("Disklabel fabricated ")); } } part = CDPART(dev); /* Check that the partition exists. */ if (part != RAW_PART && (part >= cd->sc_dk.dk_label->d_npartitions || cd->sc_dk.dk_label->d_partitions[part].p_fstype == FS_UNUSED)) { error = ENXIO; goto bad; } /* Insure only one open at a time. */ switch (fmt) { case S_IFCHR: cd->sc_dk.dk_copenmask |= (1 << part); break; case S_IFBLK: cd->sc_dk.dk_bopenmask |= (1 << part); break; } cd->sc_dk.dk_openmask = cd->sc_dk.dk_copenmask | cd->sc_dk.dk_bopenmask; SC_DEBUG(sc_link, SDEV_DB3, ("open complete\n")); cdunlock(cd); return 0; bad2: sc_link->flags &= ~SDEV_MEDIA_LOADED; bad: if (cd->sc_dk.dk_openmask == 0) { scsi_prevent(sc_link, PR_ALLOW, SCSI_IGNORE_ILLEGAL_REQUEST | SCSI_IGNORE_MEDIA_CHANGE); sc_link->flags &= ~SDEV_OPEN; } bad3: cdunlock(cd); return error; } /* * close the device.. only called if we are the LAST * occurence of an open device */ int cdclose(dev, flag, fmt, p) dev_t dev; int flag, fmt; struct proc *p; { struct cd_softc *cd = cd_cd.cd_devs[CDUNIT(dev)]; int part = CDPART(dev); int error; if ((error = cdlock(cd)) != 0) return error; switch (fmt) { case S_IFCHR: cd->sc_dk.dk_copenmask &= ~(1 << part); break; case S_IFBLK: cd->sc_dk.dk_bopenmask &= ~(1 << part); break; } cd->sc_dk.dk_openmask = cd->sc_dk.dk_copenmask | cd->sc_dk.dk_bopenmask; if (cd->sc_dk.dk_openmask == 0) { /* XXXX Must wait for I/O to complete! */ scsi_prevent(cd->sc_link, PR_ALLOW, SCSI_IGNORE_ILLEGAL_REQUEST | SCSI_IGNORE_NOT_READY); cd->sc_link->flags &= ~SDEV_OPEN; } cdunlock(cd); return 0; } /* * Actually translate the requested transfer into one the physical driver can * understand. The transfer is described by a buf and will include only one * physical transfer. */ void cdstrategy(bp) struct buf *bp; { struct cd_softc *cd = cd_cd.cd_devs[CDUNIT(bp->b_dev)]; int opri; SC_DEBUG(cd->sc_link, SDEV_DB2, ("cdstrategy ")); SC_DEBUG(cd->sc_link, SDEV_DB1, ("%d bytes @ blk %d\n", bp->b_bcount, bp->b_blkno)); /* * The transfer must be a whole number of blocks. */ if ((bp->b_bcount % cd->sc_dk.dk_label->d_secsize) != 0) { bp->b_error = EINVAL; goto bad; } /* * If the device has been made invalid, error out * maybe the media changed */ if ((cd->sc_link->flags & SDEV_MEDIA_LOADED) == 0) { bp->b_error = EIO; goto bad; } /* * If it's a null transfer, return immediately */ if (bp->b_bcount == 0) goto done; /* * Do bounds checking, adjust transfer. if error, process. * If end of partition, just return. */ if (CDPART(bp->b_dev) != RAW_PART && bounds_check_with_label(bp, cd->sc_dk.dk_label, (cd->flags & (CDF_WLABEL|CDF_LABELLING)) != 0) <= 0) goto done; opri = splbio(); /* * Place it in the queue of disk activities for this disk */ disksort(&cd->buf_queue, bp); /* * Tell the device to get going on the transfer if it's * not doing anything, otherwise just wait for completion */ cdstart(cd); splx(opri); return; bad: bp->b_flags |= B_ERROR; done: /* * Correctly set the buf to indicate a completed xfer */ bp->b_resid = bp->b_bcount; biodone(bp); } /* * cdstart looks to see if there is a buf waiting for the device * and that the device is not already busy. If both are true, * It deques the buf and creates a scsi command to perform the * transfer in the buf. The transfer request will call scsi_done * on completion, which will in turn call this routine again * so that the next queued transfer is performed. * The bufs are queued by the strategy routine (cdstrategy) * * This routine is also called after other non-queued requests * have been made of the scsi driver, to ensure that the queue * continues to be drained. * * must be called at the correct (highish) spl level * cdstart() is called at splbio from cdstrategy and scsi_done */ void cdstart(v) register void *v; { register struct cd_softc *cd = v; register struct scsi_link *sc_link = cd->sc_link; struct buf *bp = 0; struct buf *dp; struct scsi_rw_big cmd_big; struct scsi_rw cmd_small; struct scsi_generic *cmdp; int blkno, nblks, cmdlen; struct partition *p; SC_DEBUG(sc_link, SDEV_DB2, ("cdstart ")); /* * Check if the device has room for another command */ while (sc_link->openings > 0) { /* * there is excess capacity, but a special waits * It'll need the adapter as soon as we clear out of the * way and let it run (user level wait). */ if (sc_link->flags & SDEV_WAITING) { sc_link->flags &= ~SDEV_WAITING; wakeup((caddr_t)sc_link); return; } /* * See if there is a buf with work for us to do.. */ dp = &cd->buf_queue; if ((bp = dp->b_actf) == NULL) /* yes, an assign */ return; dp->b_actf = bp->b_actf; /* * If the deivce has become invalid, abort all the * reads and writes until all files have been closed and * re-opened */ if ((sc_link->flags & SDEV_MEDIA_LOADED) == 0) { bp->b_error = EIO; bp->b_flags |= B_ERROR; biodone(bp); continue; } /* * We have a buf, now we should make a command * * First, translate the block to absolute and put it in terms * of the logical blocksize of the device. */ blkno = bp->b_blkno / (cd->sc_dk.dk_label->d_secsize / DEV_BSIZE); if (CDPART(bp->b_dev) != RAW_PART) { p = &cd->sc_dk.dk_label->d_partitions[CDPART(bp->b_dev)]; blkno += p->p_offset; } nblks = howmany(bp->b_bcount, cd->sc_dk.dk_label->d_secsize); /* * Fill out the scsi command. If the transfer will * fit in a "small" cdb, use it. */ if (((blkno & 0x1fffff) == blkno) && ((nblks & 0xff) == nblks)) { /* * We can fit in a small cdb. */ bzero(&cmd_small, sizeof(cmd_small)); cmd_small.opcode = (bp->b_flags & B_READ) ? READ_COMMAND : WRITE_COMMAND; _lto3b(blkno, cmd_small.addr); cmd_small.length = nblks & 0xff; cmdlen = sizeof(cmd_small); cmdp = (struct scsi_generic *)&cmd_small; } else { /* * Need a large cdb. */ bzero(&cmd_big, sizeof(cmd_big)); cmd_big.opcode = (bp->b_flags & B_READ) ? READ_BIG : WRITE_BIG; _lto4b(blkno, cmd_big.addr); _lto2b(nblks, cmd_big.length); cmdlen = sizeof(cmd_big); cmdp = (struct scsi_generic *)&cmd_big; } /* Instrumentation. */ disk_busy(&cd->sc_dk); /* * Call the routine that chats with the adapter. * Note: we cannot sleep as we may be an interrupt */ if (scsi_scsi_cmd(sc_link, cmdp, cmdlen, (u_char *) bp->b_data, bp->b_bcount, CDRETRIES, 30000, bp, SCSI_NOSLEEP | ((bp->b_flags & B_READ) ? SCSI_DATA_IN : SCSI_DATA_OUT))) printf("%s: not queued", cd->sc_dev.dv_xname); } } int cddone(xs, complete) struct scsi_xfer *xs; int complete; { struct cd_softc *cd = xs->sc_link->device_softc; if (complete && (xs->bp != NULL)) disk_unbusy(&cd->sc_dk, (xs->bp->b_bcount - xs->bp->b_resid)); return (0); } void cdminphys(bp) struct buf *bp; { struct cd_softc *cd = cd_cd.cd_devs[CDUNIT(bp->b_dev)]; long max; /* * If the device is ancient, we want to make sure that * the transfer fits into a 6-byte cdb. * * XXX Note that the SCSI-I spec says that 256-block transfers * are allowed in a 6-byte read/write, and are specified * by settng the "length" to 0. However, we're conservative * here, allowing only 255-block transfers in case an * ancient device gets confused by length == 0. A length of 0 * in a 10-byte read/write actually means 0 blocks. */ if (cd->flags & CDF_ANCIENT) { max = cd->sc_dk.dk_label->d_secsize * 0xff; if (bp->b_bcount > max) bp->b_bcount = max; } (*cd->sc_link->adapter->scsi_minphys)(bp); } int cdread(dev, uio, ioflag) dev_t dev; struct uio *uio; int ioflag; { struct cd_softc *cd = cd_cd.cd_devs[CDUNIT(dev)]; return (physio(cdstrategy, NULL, dev, B_READ, cdminphys, uio)); } int cdwrite(dev, uio, ioflag) dev_t dev; struct uio *uio; int ioflag; { struct cd_softc *cd = cd_cd.cd_devs[CDUNIT(dev)]; return (physio(cdstrategy, NULL, dev, B_WRITE, cdminphys, uio)); } /* * Perform special action on behalf of the user. * Knows about the internals of this device */ int cdioctl(dev, cmd, addr, flag, p) dev_t dev; u_long cmd; caddr_t addr; int flag; struct proc *p; { struct cd_softc *cd = cd_cd.cd_devs[CDUNIT(dev)]; int error; SC_DEBUG(cd->sc_link, SDEV_DB2, ("cdioctl 0x%lx ", cmd)); /* * If the device is not valid.. abandon ship */ if ((cd->sc_link->flags & SDEV_MEDIA_LOADED) == 0) return EIO; switch (cmd) { case DIOCGDINFO: *(struct disklabel *)addr = *(cd->sc_dk.dk_label); return 0; case DIOCGPART: ((struct partinfo *)addr)->disklab = cd->sc_dk.dk_label; ((struct partinfo *)addr)->part = &cd->sc_dk.dk_label->d_partitions[CDPART(dev)]; return 0; case DIOCWDINFO: case DIOCSDINFO: if ((flag & FWRITE) == 0) return EBADF; if ((error = cdlock(cd)) != 0) return error; cd->flags |= CDF_LABELLING; error = setdisklabel(cd->sc_dk.dk_label, (struct disklabel *)addr, /*cd->sc_dk.dk_openmask : */0, cd->sc_dk.dk_cpulabel); if (error == 0) { } cd->flags &= ~CDF_LABELLING; cdunlock(cd); return error; case DIOCWLABEL: return EBADF; case CDIOCPLAYTRACKS: { struct ioc_play_track *args = (struct ioc_play_track *)addr; struct cd_mode_data data; if ((error = cd_get_mode(cd, &data, AUDIO_PAGE)) != 0) return error; data.page.audio.flags &= ~CD_PA_SOTC; data.page.audio.flags |= CD_PA_IMMED; if ((error = cd_set_mode(cd, &data)) != 0) return error; return cd_play_tracks(cd, args->start_track, args->start_index, args->end_track, args->end_index); } case CDIOCPLAYMSF: { struct ioc_play_msf *args = (struct ioc_play_msf *)addr; struct cd_mode_data data; if ((error = cd_get_mode(cd, &data, AUDIO_PAGE)) != 0) return error; data.page.audio.flags &= ~CD_PA_SOTC; data.page.audio.flags |= CD_PA_IMMED; if ((error = cd_set_mode(cd, &data)) != 0) return error; return cd_play_msf(cd, args->start_m, args->start_s, args->start_f, args->end_m, args->end_s, args->end_f); } case CDIOCPLAYBLOCKS: { struct ioc_play_blocks *args = (struct ioc_play_blocks *)addr; struct cd_mode_data data; if ((error = cd_get_mode(cd, &data, AUDIO_PAGE)) != 0) return error; data.page.audio.flags &= ~CD_PA_SOTC; data.page.audio.flags |= CD_PA_IMMED; if ((error = cd_set_mode(cd, &data)) != 0) return error; return cd_play(cd, args->blk, args->len); } case CDIOCREADSUBCHANNEL: { struct ioc_read_subchannel *args = (struct ioc_read_subchannel *)addr; struct cd_sub_channel_info data; int len = args->data_len; if (len > sizeof(data) || len < sizeof(struct cd_sub_channel_header)) return EINVAL; error = cd_read_subchannel(cd, args->address_format, args->data_format, args->track, &data, len); if (error) return error; len = min(len, _2btol(data.header.data_len) + sizeof(struct cd_sub_channel_header)); return copyout(&data, args->data, len); } case CDIOREADTOCHEADER: { struct ioc_toc_header th; if ((error = cd_read_toc(cd, 0, 0, (struct cd_toc_entry *) &th, sizeof(th))) != 0) return error; th.len = ntohs(th.len); bcopy(&th, addr, sizeof(th)); return 0; } case CDIOREADTOCENTRYS: { struct cd_toc { struct ioc_toc_header header; struct cd_toc_entry entries[65]; } data; struct ioc_read_toc_entry *te = (struct ioc_read_toc_entry *)addr; struct ioc_toc_header *th; int len = te->data_len; th = &data.header; if (len > sizeof(data.entries) || len < sizeof(struct cd_toc_entry)) return EINVAL; error = cd_read_toc(cd, te->address_format, te->starting_track, (struct cd_toc_entry *)&data, len + sizeof(struct ioc_toc_header)); if (error) return error; len = min(len, ntohs(th->len) - (sizeof(th->starting_track) + sizeof(th->ending_track))); return copyout(data.entries, te->data, len); } case CDIOCSETPATCH: { struct ioc_patch *arg = (struct ioc_patch *)addr; struct cd_mode_data data; if ((error = cd_get_mode(cd, &data, AUDIO_PAGE)) != 0) return error; data.page.audio.port[LEFT_PORT].channels = arg->patch[0]; data.page.audio.port[RIGHT_PORT].channels = arg->patch[1]; data.page.audio.port[2].channels = arg->patch[2]; data.page.audio.port[3].channels = arg->patch[3]; return cd_set_mode(cd, &data); } case CDIOCGETVOL: { struct ioc_vol *arg = (struct ioc_vol *)addr; struct cd_mode_data data; if ((error = cd_get_mode(cd, &data, AUDIO_PAGE)) != 0) return error; arg->vol[LEFT_PORT] = data.page.audio.port[LEFT_PORT].volume; arg->vol[RIGHT_PORT] = data.page.audio.port[RIGHT_PORT].volume; arg->vol[2] = data.page.audio.port[2].volume; arg->vol[3] = data.page.audio.port[3].volume; return 0; } case CDIOCSETVOL: { struct ioc_vol *arg = (struct ioc_vol *)addr; struct cd_mode_data data; if ((error = cd_get_mode(cd, &data, AUDIO_PAGE)) != 0) return error; data.page.audio.port[LEFT_PORT].channels = CHANNEL_0; data.page.audio.port[LEFT_PORT].volume = arg->vol[LEFT_PORT]; data.page.audio.port[RIGHT_PORT].channels = CHANNEL_1; data.page.audio.port[RIGHT_PORT].volume = arg->vol[RIGHT_PORT]; data.page.audio.port[2].volume = arg->vol[2]; data.page.audio.port[3].volume = arg->vol[3]; return cd_set_mode(cd, &data); } case CDIOCSETMONO: { struct cd_mode_data data; if ((error = cd_get_mode(cd, &data, AUDIO_PAGE)) != 0) return error; data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL | RIGHT_CHANNEL | 4 | 8; data.page.audio.port[RIGHT_PORT].channels = LEFT_CHANNEL | RIGHT_CHANNEL; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; return cd_set_mode(cd, &data); } case CDIOCSETSTEREO: { struct cd_mode_data data; if ((error = cd_get_mode(cd, &data, AUDIO_PAGE)) != 0) return error; data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL; data.page.audio.port[RIGHT_PORT].channels = RIGHT_CHANNEL; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; return cd_set_mode(cd, &data); } case CDIOCSETMUTE: { struct cd_mode_data data; if ((error = cd_get_mode(cd, &data, AUDIO_PAGE)) != 0) return error; data.page.audio.port[LEFT_PORT].channels = 0; data.page.audio.port[RIGHT_PORT].channels = 0; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; return cd_set_mode(cd, &data); } case CDIOCSETLEFT: { struct cd_mode_data data; if ((error = cd_get_mode(cd, &data, AUDIO_PAGE)) != 0) return error; data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL; data.page.audio.port[RIGHT_PORT].channels = LEFT_CHANNEL; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; return cd_set_mode(cd, &data); } case CDIOCSETRIGHT: { struct cd_mode_data data; if ((error = cd_get_mode(cd, &data, AUDIO_PAGE)) != 0) return error; data.page.audio.port[LEFT_PORT].channels = RIGHT_CHANNEL; data.page.audio.port[RIGHT_PORT].channels = RIGHT_CHANNEL; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; return cd_set_mode(cd, &data); } case CDIOCRESUME: return cd_pause(cd, 1); case CDIOCPAUSE: return cd_pause(cd, 0); case CDIOCSTART: return scsi_start(cd->sc_link, SSS_START, 0); case CDIOCSTOP: return scsi_start(cd->sc_link, SSS_STOP, 0); case CDIOCEJECT: /* FALLTHROUGH */ case DIOCEJECT: return scsi_start(cd->sc_link, SSS_STOP|SSS_LOEJ, 0); case CDIOCALLOW: return scsi_prevent(cd->sc_link, PR_ALLOW, 0); case CDIOCPREVENT: return scsi_prevent(cd->sc_link, PR_PREVENT, 0); case DIOCLOCK: return scsi_prevent(cd->sc_link, (*(int *)addr) ? PR_PREVENT : PR_ALLOW, 0); case CDIOCSETDEBUG: cd->sc_link->flags |= (SDEV_DB1 | SDEV_DB2); return 0; case CDIOCCLRDEBUG: cd->sc_link->flags &= ~(SDEV_DB1 | SDEV_DB2); return 0; case CDIOCRESET: return cd_reset(cd); default: if (CDPART(dev) != RAW_PART) return ENOTTY; return scsi_do_ioctl(cd->sc_link, dev, cmd, addr, flag, p); } #ifdef DIAGNOSTIC panic("cdioctl: impossible"); #endif } /* * Load the label information on the named device * Actually fabricate a disklabel * * EVENTUALLY take information about different * data tracks from the TOC and put it in the disklabel */ void cdgetdisklabel(cd) struct cd_softc *cd; { struct disklabel *lp = cd->sc_dk.dk_label; bzero(lp, sizeof(struct disklabel)); bzero(cd->sc_dk.dk_cpulabel, sizeof(struct cpu_disklabel)); lp->d_secsize = cd->params.blksize; lp->d_ntracks = 1; lp->d_nsectors = 100; lp->d_ncylinders = (cd->params.disksize / 100) + 1; lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; strncpy(lp->d_typename, "SCSI CD-ROM", 16); lp->d_type = DTYPE_SCSI; strncpy(lp->d_packname, "fictitious", 16); lp->d_secperunit = cd->params.disksize; lp->d_rpm = 300; lp->d_interleave = 1; lp->d_flags = D_REMOVABLE; lp->d_partitions[0].p_offset = 0; lp->d_partitions[0].p_size = lp->d_secperunit * (lp->d_secsize / DEV_BSIZE); lp->d_partitions[0].p_fstype = FS_ISO9660; lp->d_partitions[RAW_PART].p_offset = 0; lp->d_partitions[RAW_PART].p_size = lp->d_secperunit * (lp->d_secsize / DEV_BSIZE); lp->d_partitions[RAW_PART].p_fstype = FS_ISO9660; lp->d_npartitions = RAW_PART + 1; lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(lp); } /* * Find out from the device what it's capacity is */ u_long cd_size(cd, flags) struct cd_softc *cd; int flags; { struct scsi_read_cd_cap_data rdcap; struct scsi_read_cd_capacity scsi_cmd; int blksize; u_long size; /* * make up a scsi command and ask the scsi driver to do * it for you. */ bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.opcode = READ_CD_CAPACITY; /* * If the command works, interpret the result as a 4 byte * number of blocks and a blocksize */ if (scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), (u_char *)&rdcap, sizeof(rdcap), CDRETRIES, 2000, NULL, flags | SCSI_DATA_IN) != 0) return 0; blksize = _4btol(rdcap.length); if (blksize < 512) blksize = 2048; /* some drives lie ! */ cd->params.blksize = blksize; size = _4btol(rdcap.addr) + 1; if (size < 100) size = 400000; /* ditto */ cd->params.disksize = size; return size; } /* * Get the requested page into the buffer given */ int cd_get_mode(cd, data, page) struct cd_softc *cd; struct cd_mode_data *data; int page; { struct scsi_mode_sense scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); bzero(data, sizeof(*data)); scsi_cmd.opcode = MODE_SENSE; scsi_cmd.page = page; scsi_cmd.length = sizeof(*data) & 0xff; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), (u_char *)data, sizeof(*data), CDRETRIES, 20000, NULL, SCSI_DATA_IN); } /* * Get the requested page into the buffer given */ int cd_set_mode(cd, data) struct cd_softc *cd; struct cd_mode_data *data; { struct scsi_mode_select scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.opcode = MODE_SELECT; scsi_cmd.byte2 |= SMS_PF; scsi_cmd.length = sizeof(*data) & 0xff; data->header.data_length = 0; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), (u_char *)data, sizeof(*data), CDRETRIES, 20000, NULL, SCSI_DATA_OUT); } /* * Get scsi driver to send a "start playing" command */ int cd_play(cd, blkno, nblks) struct cd_softc *cd; int blkno, nblks; { struct scsi_play scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.opcode = PLAY; _lto4b(blkno, scsi_cmd.blk_addr); _lto2b(nblks, scsi_cmd.xfer_len); return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 200000, NULL, 0); } /* * Get scsi driver to send a "start playing" command */ int cd_play_big(cd, blkno, nblks) struct cd_softc *cd; int blkno, nblks; { struct scsi_play_big scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.opcode = PLAY_BIG; _lto4b(blkno, scsi_cmd.blk_addr); _lto4b(nblks, scsi_cmd.xfer_len); return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 20000, NULL, 0); } /* * Get scsi driver to send a "start playing" command */ int cd_play_tracks(cd, strack, sindex, etrack, eindex) struct cd_softc *cd; int strack, sindex, etrack, eindex; { struct scsi_play_track scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.opcode = PLAY_TRACK; scsi_cmd.start_track = strack; scsi_cmd.start_index = sindex; scsi_cmd.end_track = etrack; scsi_cmd.end_index = eindex; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 20000, NULL, 0); } /* * Get scsi driver to send a "play msf" command */ int cd_play_msf(cd, startm, starts, startf, endm, ends, endf) struct cd_softc *cd; int startm, starts, startf, endm, ends, endf; { struct scsi_play_msf scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.opcode = PLAY_MSF; scsi_cmd.start_m = startm; scsi_cmd.start_s = starts; scsi_cmd.start_f = startf; scsi_cmd.end_m = endm; scsi_cmd.end_s = ends; scsi_cmd.end_f = endf; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 2000, NULL, 0); } /* * Get scsi driver to send a "start up" command */ int cd_pause(cd, go) struct cd_softc *cd; int go; { struct scsi_pause scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.opcode = PAUSE; scsi_cmd.resume = go; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 2000, NULL, 0); } /* * Get scsi driver to send a "RESET" command */ int cd_reset(cd) struct cd_softc *cd; { return scsi_scsi_cmd(cd->sc_link, 0, 0, 0, 0, CDRETRIES, 2000, NULL, SCSI_RESET); } /* * Read subchannel */ int cd_read_subchannel(cd, mode, format, track, data, len) struct cd_softc *cd; int mode, format, track, len; struct cd_sub_channel_info *data; { struct scsi_read_subchannel scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.opcode = READ_SUBCHANNEL; if (mode == CD_MSF_FORMAT) scsi_cmd.byte2 |= CD_MSF; scsi_cmd.byte3 = SRS_SUBQ; scsi_cmd.subchan_format = format; scsi_cmd.track = track; _lto2b(len, scsi_cmd.data_len); return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(struct scsi_read_subchannel), (u_char *)data, len, CDRETRIES, 5000, NULL, SCSI_DATA_IN); } /* * Read table of contents */ int cd_read_toc(cd, mode, start, data, len) struct cd_softc *cd; int mode, start, len; struct cd_toc_entry *data; { struct scsi_read_toc scsi_cmd; int ntoc; bzero(&scsi_cmd, sizeof(scsi_cmd)); /*if (len!=sizeof(struct ioc_toc_header)) * ntoc=((len)-sizeof(struct ioc_toc_header))/sizeof(struct cd_toc_entry); * else */ ntoc = len; scsi_cmd.opcode = READ_TOC; if (mode == CD_MSF_FORMAT) scsi_cmd.byte2 |= CD_MSF; scsi_cmd.from_track = start; _lto2b(ntoc, scsi_cmd.data_len); return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(struct scsi_read_toc), (u_char *)data, len, CDRETRIES, 5000, NULL, SCSI_DATA_IN); } /* * Get the scsi driver to send a full inquiry to the device and use the * results to fill out the disk parameter structure. */ int cd_get_parms(cd, flags) struct cd_softc *cd; int flags; { /* * give a number of sectors so that sec * trks * cyls * is <= disk_size */ if (cd_size(cd, flags) == 0) return ENXIO; return 0; } int cdsize(dev) dev_t dev; { /* CD-ROMs are read-only. */ return -1; } int cddump(dev, blkno, va, size) dev_t dev; daddr_t blkno; caddr_t va; size_t size; { /* Not implemented. */ return ENXIO; }