/* $NetBSD: vfs_vnode.c,v 1.60 2016/12/01 14:49:03 hannken Exp $ */ /*- * Copyright (c) 1997-2011 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94 */ /* * The vnode cache subsystem. * * Life-cycle * * Normally, there are two points where new vnodes are created: * VOP_CREATE(9) and VOP_LOOKUP(9). The life-cycle of a vnode * starts in one of the following ways: * * - Allocation, via vcache_get(9) or vcache_new(9). * - Reclamation of inactive vnode, via vget(9). * * Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9) * was another, traditional way. Currently, only the draining thread * recycles the vnodes. This behaviour might be revisited. * * The life-cycle ends when the last reference is dropped, usually * in VOP_REMOVE(9). In such case, VOP_INACTIVE(9) is called to inform * the file system that vnode is inactive. Via this call, file system * indicates whether vnode can be recycled (usually, it checks its own * references, e.g. count of links, whether the file was removed). * * Depending on indication, vnode can be put into a free list (cache), * or cleaned via vcache_reclaim, which calls VOP_RECLAIM(9) to * disassociate underlying file system from the vnode, and finally * destroyed. * * Vnode state * * Vnode is always in one of six states: * - MARKER This is a marker vnode to help list traversal. It * will never change its state. * - LOADING Vnode is associating underlying file system and not * yet ready to use. * - ACTIVE Vnode has associated underlying file system and is * ready to use. * - BLOCKED Vnode is active but cannot get new references. * - RECLAIMING Vnode is disassociating from the underlying file * system. * - RECLAIMED Vnode has disassociated from underlying file system * and is dead. * * Valid state changes are: * LOADING -> ACTIVE * Vnode has been initialised in vcache_get() or * vcache_new() and is ready to use. * ACTIVE -> RECLAIMING * Vnode starts disassociation from underlying file * system in vcache_reclaim(). * RECLAIMING -> RECLAIMED * Vnode finished disassociation from underlying file * system in vcache_reclaim(). * ACTIVE -> BLOCKED * Either vcache_rekey*() is changing the vnode key or * vrelel() is about to call VOP_INACTIVE(). * BLOCKED -> ACTIVE * The block condition is over. * LOADING -> RECLAIMED * Either vcache_get() or vcache_new() failed to * associate the underlying file system or vcache_rekey*() * drops a vnode used as placeholder. * * Of these states LOADING, BLOCKED and RECLAIMING are intermediate * and it is possible to wait for state change. * * State is protected with v_interlock with one exception: * to change from LOADING both v_interlock and vcache.lock must be held * so it is possible to check "state == LOADING" without holding * v_interlock. See vcache_get() for details. * * Reference counting * * Vnode is considered active, if reference count (vnode_t::v_usecount) * is non-zero. It is maintained using: vref(9) and vrele(9), as well * as vput(9), routines. Common points holding references are e.g. * file openings, current working directory, mount points, etc. * * Note on v_usecount and its locking * * At nearly all points it is known that v_usecount could be zero, * the vnode_t::v_interlock will be held. To change v_usecount away * from zero, the interlock must be held. To change from a non-zero * value to zero, again the interlock must be held. * * Changing the usecount from a non-zero value to a non-zero value can * safely be done using atomic operations, without the interlock held. * */ #include __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.60 2016/12/01 14:49:03 hannken Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Flags to vrelel. */ #define VRELEL_ASYNC_RELE 0x0001 /* Always defer to vrele thread. */ u_int numvnodes __cacheline_aligned; /* * There are two free lists: one is for vnodes which have no buffer/page * references and one for those which do (i.e. v_holdcnt is non-zero). * Vnode recycling mechanism first attempts to look into the former list. */ static kmutex_t vnode_free_list_lock __cacheline_aligned; static vnodelst_t vnode_free_list __cacheline_aligned; static vnodelst_t vnode_hold_list __cacheline_aligned; static kcondvar_t vdrain_cv __cacheline_aligned; static vnodelst_t vrele_list __cacheline_aligned; static kmutex_t vrele_lock __cacheline_aligned; static kcondvar_t vrele_cv __cacheline_aligned; static lwp_t * vrele_lwp __cacheline_aligned; static int vrele_pending __cacheline_aligned; static int vrele_gen __cacheline_aligned; SLIST_HEAD(hashhead, vnode_impl); static struct { kmutex_t lock; kcondvar_t cv; u_long hashmask; struct hashhead *hashtab; pool_cache_t pool; } vcache __cacheline_aligned; static int cleanvnode(void); static vnode_impl_t *vcache_alloc(void); static void vcache_free(vnode_impl_t *); static void vcache_init(void); static void vcache_reinit(void); static void vcache_reclaim(vnode_t *); static void vrelel(vnode_t *, int); static void vdrain_thread(void *); static void vrele_thread(void *); static void vnpanic(vnode_t *, const char *, ...) __printflike(2, 3); /* Routines having to do with the management of the vnode table. */ extern struct mount *dead_rootmount; extern int (**dead_vnodeop_p)(void *); extern struct vfsops dead_vfsops; /* Vnode state operations and diagnostics. */ #if defined(DIAGNOSTIC) #define VSTATE_GET(vp) \ vstate_assert_get((vp), __func__, __LINE__) #define VSTATE_CHANGE(vp, from, to) \ vstate_assert_change((vp), (from), (to), __func__, __LINE__) #define VSTATE_WAIT_STABLE(vp) \ vstate_assert_wait_stable((vp), __func__, __LINE__) #define VSTATE_ASSERT(vp, state) \ vstate_assert((vp), (state), __func__, __LINE__) static void vstate_assert(vnode_t *vp, enum vnode_state state, const char *func, int line) { vnode_impl_t *node = VNODE_TO_VIMPL(vp); KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line); if (__predict_true(node->vi_state == state)) return; vnpanic(vp, "state is %s, expected %s at %s:%d", vstate_name(node->vi_state), vstate_name(state), func, line); } static enum vnode_state vstate_assert_get(vnode_t *vp, const char *func, int line) { vnode_impl_t *node = VNODE_TO_VIMPL(vp); KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line); if (node->vi_state == VS_MARKER) vnpanic(vp, "state is %s at %s:%d", vstate_name(node->vi_state), func, line); return node->vi_state; } static void vstate_assert_wait_stable(vnode_t *vp, const char *func, int line) { vnode_impl_t *node = VNODE_TO_VIMPL(vp); KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line); if (node->vi_state == VS_MARKER) vnpanic(vp, "state is %s at %s:%d", vstate_name(node->vi_state), func, line); while (node->vi_state != VS_ACTIVE && node->vi_state != VS_RECLAIMED) cv_wait(&vp->v_cv, vp->v_interlock); if (node->vi_state == VS_MARKER) vnpanic(vp, "state is %s at %s:%d", vstate_name(node->vi_state), func, line); } static void vstate_assert_change(vnode_t *vp, enum vnode_state from, enum vnode_state to, const char *func, int line) { vnode_impl_t *node = VNODE_TO_VIMPL(vp); KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line); if (from == VS_LOADING) KASSERTMSG(mutex_owned(&vcache.lock), "at %s:%d", func, line); if (from == VS_MARKER) vnpanic(vp, "from is %s at %s:%d", vstate_name(from), func, line); if (to == VS_MARKER) vnpanic(vp, "to is %s at %s:%d", vstate_name(to), func, line); if (node->vi_state != from) vnpanic(vp, "from is %s, expected %s at %s:%d\n", vstate_name(node->vi_state), vstate_name(from), func, line); node->vi_state = to; if (from == VS_LOADING) cv_broadcast(&vcache.cv); if (to == VS_ACTIVE || to == VS_RECLAIMED) cv_broadcast(&vp->v_cv); } #else /* defined(DIAGNOSTIC) */ #define VSTATE_GET(vp) \ (VNODE_TO_VIMPL((vp))->vi_state) #define VSTATE_CHANGE(vp, from, to) \ vstate_change((vp), (from), (to)) #define VSTATE_WAIT_STABLE(vp) \ vstate_wait_stable((vp)) #define VSTATE_ASSERT(vp, state) static void vstate_wait_stable(vnode_t *vp) { vnode_impl_t *node = VNODE_TO_VIMPL(vp); while (node->vi_state != VS_ACTIVE && node->vi_state != VS_RECLAIMED) cv_wait(&vp->v_cv, vp->v_interlock); } static void vstate_change(vnode_t *vp, enum vnode_state from, enum vnode_state to) { vnode_impl_t *node = VNODE_TO_VIMPL(vp); node->vi_state = to; if (from == VS_LOADING) cv_broadcast(&vcache.cv); if (to == VS_ACTIVE || to == VS_RECLAIMED) cv_broadcast(&vp->v_cv); } #endif /* defined(DIAGNOSTIC) */ void vfs_vnode_sysinit(void) { int error __diagused; dead_rootmount = vfs_mountalloc(&dead_vfsops, NULL); KASSERT(dead_rootmount != NULL); dead_rootmount->mnt_iflag = IMNT_MPSAFE; mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE); TAILQ_INIT(&vnode_free_list); TAILQ_INIT(&vnode_hold_list); TAILQ_INIT(&vrele_list); vcache_init(); mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&vdrain_cv, "vdrain"); cv_init(&vrele_cv, "vrele"); error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread, NULL, NULL, "vdrain"); KASSERTMSG((error == 0), "kthread_create(vdrain) failed: %d", error); error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread, NULL, &vrele_lwp, "vrele"); KASSERTMSG((error == 0), "kthread_create(vrele) failed: %d", error); } /* * Allocate a new marker vnode. */ vnode_t * vnalloc_marker(struct mount *mp) { vnode_impl_t *node; vnode_t *vp; node = pool_cache_get(vcache.pool, PR_WAITOK); memset(node, 0, sizeof(*node)); vp = VIMPL_TO_VNODE(node); uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0); vp->v_mount = mp; vp->v_type = VBAD; node->vi_state = VS_MARKER; return vp; } /* * Free a marker vnode. */ void vnfree_marker(vnode_t *vp) { vnode_impl_t *node; node = VNODE_TO_VIMPL(vp); KASSERT(node->vi_state == VS_MARKER); uvm_obj_destroy(&vp->v_uobj, true); pool_cache_put(vcache.pool, node); } /* * Test a vnode for being a marker vnode. */ bool vnis_marker(vnode_t *vp) { return (VNODE_TO_VIMPL(vp)->vi_state == VS_MARKER); } /* * cleanvnode: grab a vnode from freelist, clean and free it. * * => Releases vnode_free_list_lock. */ static int cleanvnode(void) { vnode_t *vp; vnodelst_t *listhd; struct mount *mp; KASSERT(mutex_owned(&vnode_free_list_lock)); listhd = &vnode_free_list; try_nextlist: TAILQ_FOREACH(vp, listhd, v_freelist) { /* * It's safe to test v_usecount and v_iflag * without holding the interlock here, since * these vnodes should never appear on the * lists. */ KASSERT(vp->v_usecount == 0); KASSERT(vp->v_freelisthd == listhd); if (!mutex_tryenter(vp->v_interlock)) continue; mp = vp->v_mount; if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) { mutex_exit(vp->v_interlock); continue; } break; } if (vp == NULL) { if (listhd == &vnode_free_list) { listhd = &vnode_hold_list; goto try_nextlist; } mutex_exit(&vnode_free_list_lock); return EBUSY; } mutex_exit(&vnode_free_list_lock); if (vget(vp, 0, true /* wait */) == 0) { if (!vrecycle(vp)) vrele(vp); } fstrans_done(mp); return 0; } /* * Helper thread to keep the number of vnodes below desiredvnodes. */ static void vdrain_thread(void *cookie) { int error; mutex_enter(&vnode_free_list_lock); for (;;) { cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz); while (numvnodes > desiredvnodes) { error = cleanvnode(); if (error) kpause("vndsbusy", false, hz, NULL); mutex_enter(&vnode_free_list_lock); if (error) break; } } } /* * Remove a vnode from its freelist. */ void vremfree(vnode_t *vp) { KASSERT(mutex_owned(vp->v_interlock)); KASSERT(vp->v_usecount == 0); /* * Note that the reference count must not change until * the vnode is removed. */ mutex_enter(&vnode_free_list_lock); if (vp->v_holdcnt > 0) { KASSERT(vp->v_freelisthd == &vnode_hold_list); } else { KASSERT(vp->v_freelisthd == &vnode_free_list); } TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist); vp->v_freelisthd = NULL; mutex_exit(&vnode_free_list_lock); } /* * vget: get a particular vnode from the free list, increment its reference * count and return it. * * => Must be called with v_interlock held. * * If state is VS_RECLAIMING, the vnode may be eliminated in vcache_reclaim(). * In that case, we cannot grab the vnode, so the process is awakened when * the transition is completed, and an error returned to indicate that the * vnode is no longer usable. * * If state is VS_LOADING or VS_BLOCKED, wait until the vnode enters a * stable state (VS_ACTIVE or VS_RECLAIMED). */ int vget(vnode_t *vp, int flags, bool waitok) { KASSERT(mutex_owned(vp->v_interlock)); KASSERT((flags & ~LK_NOWAIT) == 0); KASSERT(waitok == ((flags & LK_NOWAIT) == 0)); /* * Before adding a reference, we must remove the vnode * from its freelist. */ if (vp->v_usecount == 0) { vremfree(vp); vp->v_usecount = 1; } else { atomic_inc_uint(&vp->v_usecount); } /* * If the vnode is in the process of changing state we wait * for the change to complete and take care not to return * a clean vnode. */ if (! ISSET(flags, LK_NOWAIT)) VSTATE_WAIT_STABLE(vp); if (VSTATE_GET(vp) == VS_RECLAIMED) { vrelel(vp, 0); return ENOENT; } else if (VSTATE_GET(vp) != VS_ACTIVE) { KASSERT(ISSET(flags, LK_NOWAIT)); vrelel(vp, 0); return EBUSY; } /* * Ok, we got it in good shape. */ VSTATE_ASSERT(vp, VS_ACTIVE); mutex_exit(vp->v_interlock); return 0; } /* * vput: unlock and release the reference. */ void vput(vnode_t *vp) { VOP_UNLOCK(vp); vrele(vp); } /* * Try to drop reference on a vnode. Abort if we are releasing the * last reference. Note: this _must_ succeed if not the last reference. */ static inline bool vtryrele(vnode_t *vp) { u_int use, next; for (use = vp->v_usecount;; use = next) { if (use == 1) { return false; } KASSERT(use > 1); next = atomic_cas_uint(&vp->v_usecount, use, use - 1); if (__predict_true(next == use)) { return true; } } } /* * Vnode release. If reference count drops to zero, call inactive * routine and either return to freelist or free to the pool. */ static void vrelel(vnode_t *vp, int flags) { bool recycle, defer; int error; KASSERT(mutex_owned(vp->v_interlock)); KASSERT(vp->v_freelisthd == NULL); if (__predict_false(vp->v_op == dead_vnodeop_p && VSTATE_GET(vp) != VS_RECLAIMED)) { vnpanic(vp, "dead but not clean"); } /* * If not the last reference, just drop the reference count * and unlock. */ if (vtryrele(vp)) { mutex_exit(vp->v_interlock); return; } if (vp->v_usecount <= 0 || vp->v_writecount != 0) { vnpanic(vp, "%s: bad ref count", __func__); } #ifdef DIAGNOSTIC if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) { vprint("vrelel: missing VOP_CLOSE()", vp); } #endif /* * If not clean, deactivate the vnode, but preserve * our reference across the call to VOP_INACTIVE(). */ if (VSTATE_GET(vp) != VS_RECLAIMED) { recycle = false; /* * XXX This ugly block can be largely eliminated if * locking is pushed down into the file systems. * * Defer vnode release to vrele_thread if caller * requests it explicitly or is the pagedaemon. */ if ((curlwp == uvm.pagedaemon_lwp) || (flags & VRELEL_ASYNC_RELE) != 0) { defer = true; } else if (curlwp == vrele_lwp) { /* * We have to try harder. */ mutex_exit(vp->v_interlock); error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); KASSERTMSG((error == 0), "vn_lock failed: %d", error); mutex_enter(vp->v_interlock); defer = false; } else { /* If we can't acquire the lock, then defer. */ mutex_exit(vp->v_interlock); error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT); defer = (error != 0); mutex_enter(vp->v_interlock); } KASSERT(mutex_owned(vp->v_interlock)); KASSERT(! (curlwp == vrele_lwp && defer)); if (defer) { /* * Defer reclaim to the kthread; it's not safe to * clean it here. We donate it our last reference. */ mutex_enter(&vrele_lock); TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist); if (++vrele_pending > (desiredvnodes >> 8)) cv_signal(&vrele_cv); mutex_exit(&vrele_lock); mutex_exit(vp->v_interlock); return; } /* * If the node got another reference while we * released the interlock, don't try to inactivate it yet. */ if (__predict_false(vtryrele(vp))) { VOP_UNLOCK(vp); mutex_exit(vp->v_interlock); return; } VSTATE_CHANGE(vp, VS_ACTIVE, VS_BLOCKED); mutex_exit(vp->v_interlock); /* * The vnode must not gain another reference while being * deactivated. If VOP_INACTIVE() indicates that * the described file has been deleted, then recycle * the vnode. * * Note that VOP_INACTIVE() will drop the vnode lock. */ VOP_INACTIVE(vp, &recycle); if (recycle) { /* vcache_reclaim() below will drop the lock. */ if (vn_lock(vp, LK_EXCLUSIVE) != 0) recycle = false; } mutex_enter(vp->v_interlock); VSTATE_CHANGE(vp, VS_BLOCKED, VS_ACTIVE); if (!recycle) { if (vtryrele(vp)) { mutex_exit(vp->v_interlock); return; } } /* Take care of space accounting. */ if (vp->v_iflag & VI_EXECMAP) { atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages); atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages); } vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP); vp->v_vflag &= ~VV_MAPPED; /* * Recycle the vnode if the file is now unused (unlinked), * otherwise just free it. */ if (recycle) { VSTATE_ASSERT(vp, VS_ACTIVE); vcache_reclaim(vp); } KASSERT(vp->v_usecount > 0); } if (atomic_dec_uint_nv(&vp->v_usecount) != 0) { /* Gained another reference while being reclaimed. */ mutex_exit(vp->v_interlock); return; } if (VSTATE_GET(vp) == VS_RECLAIMED) { /* * It's clean so destroy it. It isn't referenced * anywhere since it has been reclaimed. */ KASSERT(vp->v_holdcnt == 0); KASSERT(vp->v_writecount == 0); mutex_exit(vp->v_interlock); vfs_insmntque(vp, NULL); if (vp->v_type == VBLK || vp->v_type == VCHR) { spec_node_destroy(vp); } vcache_free(VNODE_TO_VIMPL(vp)); } else { /* * Otherwise, put it back onto the freelist. It * can't be destroyed while still associated with * a file system. */ mutex_enter(&vnode_free_list_lock); if (vp->v_holdcnt > 0) { vp->v_freelisthd = &vnode_hold_list; } else { vp->v_freelisthd = &vnode_free_list; } TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist); mutex_exit(&vnode_free_list_lock); mutex_exit(vp->v_interlock); } } void vrele(vnode_t *vp) { if (vtryrele(vp)) { return; } mutex_enter(vp->v_interlock); vrelel(vp, 0); } /* * Asynchronous vnode release, vnode is released in different context. */ void vrele_async(vnode_t *vp) { if (vtryrele(vp)) { return; } mutex_enter(vp->v_interlock); vrelel(vp, VRELEL_ASYNC_RELE); } static void vrele_thread(void *cookie) { vnodelst_t skip_list; vnode_t *vp; struct mount *mp; TAILQ_INIT(&skip_list); mutex_enter(&vrele_lock); for (;;) { while (TAILQ_EMPTY(&vrele_list)) { vrele_gen++; cv_broadcast(&vrele_cv); cv_timedwait(&vrele_cv, &vrele_lock, hz); TAILQ_CONCAT(&vrele_list, &skip_list, v_freelist); } vp = TAILQ_FIRST(&vrele_list); mp = vp->v_mount; TAILQ_REMOVE(&vrele_list, vp, v_freelist); if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0) { TAILQ_INSERT_TAIL(&skip_list, vp, v_freelist); continue; } vrele_pending--; mutex_exit(&vrele_lock); /* * If not the last reference, then ignore the vnode * and look for more work. */ mutex_enter(vp->v_interlock); vrelel(vp, 0); fstrans_done(mp); mutex_enter(&vrele_lock); } } void vrele_flush(void) { int gen; mutex_enter(&vrele_lock); gen = vrele_gen; while (vrele_pending && gen == vrele_gen) { cv_broadcast(&vrele_cv); cv_wait(&vrele_cv, &vrele_lock); } mutex_exit(&vrele_lock); } /* * Vnode reference, where a reference is already held by some other * object (for example, a file structure). */ void vref(vnode_t *vp) { KASSERT(vp->v_usecount != 0); atomic_inc_uint(&vp->v_usecount); } /* * Page or buffer structure gets a reference. * Called with v_interlock held. */ void vholdl(vnode_t *vp) { KASSERT(mutex_owned(vp->v_interlock)); if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) { mutex_enter(&vnode_free_list_lock); KASSERT(vp->v_freelisthd == &vnode_free_list); TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist); vp->v_freelisthd = &vnode_hold_list; TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist); mutex_exit(&vnode_free_list_lock); } } /* * Page or buffer structure frees a reference. * Called with v_interlock held. */ void holdrelel(vnode_t *vp) { KASSERT(mutex_owned(vp->v_interlock)); if (vp->v_holdcnt <= 0) { vnpanic(vp, "%s: holdcnt vp %p", __func__, vp); } vp->v_holdcnt--; if (vp->v_holdcnt == 0 && vp->v_usecount == 0) { mutex_enter(&vnode_free_list_lock); KASSERT(vp->v_freelisthd == &vnode_hold_list); TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist); vp->v_freelisthd = &vnode_free_list; TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist); mutex_exit(&vnode_free_list_lock); } } /* * Recycle an unused vnode if caller holds the last reference. */ bool vrecycle(vnode_t *vp) { int error __diagused; mutex_enter(vp->v_interlock); /* Make sure we hold the last reference. */ VSTATE_WAIT_STABLE(vp); if (vp->v_usecount != 1) { mutex_exit(vp->v_interlock); return false; } /* If the vnode is already clean we're done. */ if (VSTATE_GET(vp) != VS_ACTIVE) { VSTATE_ASSERT(vp, VS_RECLAIMED); vrelel(vp, 0); return true; } /* Prevent further references until the vnode is locked. */ VSTATE_CHANGE(vp, VS_ACTIVE, VS_BLOCKED); mutex_exit(vp->v_interlock); error = vn_lock(vp, LK_EXCLUSIVE); KASSERT(error == 0); mutex_enter(vp->v_interlock); VSTATE_CHANGE(vp, VS_BLOCKED, VS_ACTIVE); vcache_reclaim(vp); vrelel(vp, 0); return true; } /* * Eliminate all activity associated with the requested vnode * and with all vnodes aliased to the requested vnode. */ void vrevoke(vnode_t *vp) { vnode_t *vq; enum vtype type; dev_t dev; KASSERT(vp->v_usecount > 0); mutex_enter(vp->v_interlock); VSTATE_WAIT_STABLE(vp); if (VSTATE_GET(vp) == VS_RECLAIMED) { mutex_exit(vp->v_interlock); return; } else if (vp->v_type != VBLK && vp->v_type != VCHR) { atomic_inc_uint(&vp->v_usecount); mutex_exit(vp->v_interlock); vgone(vp); return; } else { dev = vp->v_rdev; type = vp->v_type; mutex_exit(vp->v_interlock); } while (spec_node_lookup_by_dev(type, dev, &vq) == 0) { vgone(vq); } } /* * Eliminate all activity associated with a vnode in preparation for * reuse. Drops a reference from the vnode. */ void vgone(vnode_t *vp) { if (vn_lock(vp, LK_EXCLUSIVE) != 0) { VSTATE_ASSERT(vp, VS_RECLAIMED); vrele(vp); } mutex_enter(vp->v_interlock); vcache_reclaim(vp); vrelel(vp, 0); } static inline uint32_t vcache_hash(const struct vcache_key *key) { uint32_t hash = HASH32_BUF_INIT; hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash); hash = hash32_buf(key->vk_key, key->vk_key_len, hash); return hash; } static void vcache_init(void) { vcache.pool = pool_cache_init(sizeof(vnode_impl_t), 0, 0, 0, "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL); KASSERT(vcache.pool != NULL); mutex_init(&vcache.lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&vcache.cv, "vcache"); vcache.hashtab = hashinit(desiredvnodes, HASH_SLIST, true, &vcache.hashmask); } static void vcache_reinit(void) { int i; uint32_t hash; u_long oldmask, newmask; struct hashhead *oldtab, *newtab; vnode_impl_t *node; newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask); mutex_enter(&vcache.lock); oldtab = vcache.hashtab; oldmask = vcache.hashmask; vcache.hashtab = newtab; vcache.hashmask = newmask; for (i = 0; i <= oldmask; i++) { while ((node = SLIST_FIRST(&oldtab[i])) != NULL) { SLIST_REMOVE(&oldtab[i], node, vnode_impl, vi_hash); hash = vcache_hash(&node->vi_key); SLIST_INSERT_HEAD(&newtab[hash & vcache.hashmask], node, vi_hash); } } mutex_exit(&vcache.lock); hashdone(oldtab, HASH_SLIST, oldmask); } static inline vnode_impl_t * vcache_hash_lookup(const struct vcache_key *key, uint32_t hash) { struct hashhead *hashp; vnode_impl_t *node; KASSERT(mutex_owned(&vcache.lock)); hashp = &vcache.hashtab[hash & vcache.hashmask]; SLIST_FOREACH(node, hashp, vi_hash) { if (key->vk_mount != node->vi_key.vk_mount) continue; if (key->vk_key_len != node->vi_key.vk_key_len) continue; if (memcmp(key->vk_key, node->vi_key.vk_key, key->vk_key_len)) continue; return node; } return NULL; } /* * Allocate a new, uninitialized vcache node. */ static vnode_impl_t * vcache_alloc(void) { vnode_impl_t *node; vnode_t *vp; node = pool_cache_get(vcache.pool, PR_WAITOK); memset(node, 0, sizeof(*node)); /* SLIST_INIT(&node->vi_hash); */ vp = VIMPL_TO_VNODE(node); uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0); cv_init(&vp->v_cv, "vnode"); /* LIST_INIT(&vp->v_nclist); */ /* LIST_INIT(&vp->v_dnclist); */ mutex_enter(&vnode_free_list_lock); numvnodes++; if (numvnodes > desiredvnodes + desiredvnodes / 10) cv_signal(&vdrain_cv); mutex_exit(&vnode_free_list_lock); rw_init(&vp->v_lock); vp->v_usecount = 1; vp->v_type = VNON; vp->v_size = vp->v_writesize = VSIZENOTSET; node->vi_state = VS_LOADING; return node; } /* * Free an unused, unreferenced vcache node. */ static void vcache_free(vnode_impl_t *node) { vnode_t *vp; vp = VIMPL_TO_VNODE(node); KASSERT(vp->v_usecount == 0); rw_destroy(&vp->v_lock); mutex_enter(&vnode_free_list_lock); numvnodes--; mutex_exit(&vnode_free_list_lock); uvm_obj_destroy(&vp->v_uobj, true); cv_destroy(&vp->v_cv); pool_cache_put(vcache.pool, node); } /* * Get a vnode / fs node pair by key and return it referenced through vpp. */ int vcache_get(struct mount *mp, const void *key, size_t key_len, struct vnode **vpp) { int error; uint32_t hash; const void *new_key; struct vnode *vp; struct vcache_key vcache_key; vnode_impl_t *node, *new_node; new_key = NULL; *vpp = NULL; vcache_key.vk_mount = mp; vcache_key.vk_key = key; vcache_key.vk_key_len = key_len; hash = vcache_hash(&vcache_key); again: mutex_enter(&vcache.lock); node = vcache_hash_lookup(&vcache_key, hash); /* If found, take a reference or retry. */ if (__predict_true(node != NULL)) { /* * If the vnode is loading we cannot take the v_interlock * here as it might change during load (see uvm_obj_setlock()). * As changing state from VS_LOADING requires both vcache.lock * and v_interlock it is safe to test with vcache.lock held. * * Wait for vnodes changing state from VS_LOADING and retry. */ if (__predict_false(node->vi_state == VS_LOADING)) { cv_wait(&vcache.cv, &vcache.lock); mutex_exit(&vcache.lock); goto again; } vp = VIMPL_TO_VNODE(node); mutex_enter(vp->v_interlock); mutex_exit(&vcache.lock); error = vget(vp, 0, true /* wait */); if (error == ENOENT) goto again; if (error == 0) *vpp = vp; KASSERT((error != 0) == (*vpp == NULL)); return error; } mutex_exit(&vcache.lock); /* Allocate and initialize a new vcache / vnode pair. */ error = vfs_busy(mp, NULL); if (error) return error; new_node = vcache_alloc(); new_node->vi_key = vcache_key; vp = VIMPL_TO_VNODE(new_node); mutex_enter(&vcache.lock); node = vcache_hash_lookup(&vcache_key, hash); if (node == NULL) { SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask], new_node, vi_hash); node = new_node; } /* If another thread beat us inserting this node, retry. */ if (node != new_node) { mutex_enter(vp->v_interlock); VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED); mutex_exit(&vcache.lock); vrelel(vp, 0); vfs_unbusy(mp, false, NULL); goto again; } mutex_exit(&vcache.lock); /* Load the fs node. Exclusive as new_node is VS_LOADING. */ error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key); if (error) { mutex_enter(&vcache.lock); SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask], new_node, vnode_impl, vi_hash); mutex_enter(vp->v_interlock); VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED); mutex_exit(&vcache.lock); vrelel(vp, 0); vfs_unbusy(mp, false, NULL); KASSERT(*vpp == NULL); return error; } KASSERT(new_key != NULL); KASSERT(memcmp(key, new_key, key_len) == 0); KASSERT(vp->v_op != NULL); vfs_insmntque(vp, mp); if ((mp->mnt_iflag & IMNT_MPSAFE) != 0) vp->v_vflag |= VV_MPSAFE; vfs_unbusy(mp, true, NULL); /* Finished loading, finalize node. */ mutex_enter(&vcache.lock); new_node->vi_key.vk_key = new_key; mutex_enter(vp->v_interlock); VSTATE_CHANGE(vp, VS_LOADING, VS_ACTIVE); mutex_exit(vp->v_interlock); mutex_exit(&vcache.lock); *vpp = vp; return 0; } /* * Create a new vnode / fs node pair and return it referenced through vpp. */ int vcache_new(struct mount *mp, struct vnode *dvp, struct vattr *vap, kauth_cred_t cred, struct vnode **vpp) { int error; uint32_t hash; struct vnode *ovp, *vp; vnode_impl_t *new_node; vnode_impl_t *old_node __diagused; *vpp = NULL; /* Allocate and initialize a new vcache / vnode pair. */ error = vfs_busy(mp, NULL); if (error) return error; new_node = vcache_alloc(); new_node->vi_key.vk_mount = mp; vp = VIMPL_TO_VNODE(new_node); /* Create and load the fs node. */ error = VFS_NEWVNODE(mp, dvp, vp, vap, cred, &new_node->vi_key.vk_key_len, &new_node->vi_key.vk_key); if (error) { mutex_enter(&vcache.lock); mutex_enter(vp->v_interlock); VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED); mutex_exit(&vcache.lock); vrelel(vp, 0); vfs_unbusy(mp, false, NULL); KASSERT(*vpp == NULL); return error; } KASSERT(new_node->vi_key.vk_key != NULL); KASSERT(vp->v_op != NULL); hash = vcache_hash(&new_node->vi_key); /* Wait for previous instance to be reclaimed, then insert new node. */ mutex_enter(&vcache.lock); while ((old_node = vcache_hash_lookup(&new_node->vi_key, hash))) { ovp = VIMPL_TO_VNODE(old_node); mutex_enter(ovp->v_interlock); mutex_exit(&vcache.lock); error = vget(ovp, 0, true /* wait */); KASSERT(error == ENOENT); mutex_enter(&vcache.lock); } SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask], new_node, vi_hash); mutex_exit(&vcache.lock); vfs_insmntque(vp, mp); if ((mp->mnt_iflag & IMNT_MPSAFE) != 0) vp->v_vflag |= VV_MPSAFE; vfs_unbusy(mp, true, NULL); /* Finished loading, finalize node. */ mutex_enter(&vcache.lock); mutex_enter(vp->v_interlock); VSTATE_CHANGE(vp, VS_LOADING, VS_ACTIVE); mutex_exit(&vcache.lock); mutex_exit(vp->v_interlock); *vpp = vp; return 0; } /* * Prepare key change: lock old and new cache node. * Return an error if the new node already exists. */ int vcache_rekey_enter(struct mount *mp, struct vnode *vp, const void *old_key, size_t old_key_len, const void *new_key, size_t new_key_len) { uint32_t old_hash, new_hash; struct vcache_key old_vcache_key, new_vcache_key; vnode_impl_t *node, *new_node; struct vnode *tvp; old_vcache_key.vk_mount = mp; old_vcache_key.vk_key = old_key; old_vcache_key.vk_key_len = old_key_len; old_hash = vcache_hash(&old_vcache_key); new_vcache_key.vk_mount = mp; new_vcache_key.vk_key = new_key; new_vcache_key.vk_key_len = new_key_len; new_hash = vcache_hash(&new_vcache_key); new_node = vcache_alloc(); new_node->vi_key = new_vcache_key; tvp = VIMPL_TO_VNODE(new_node); /* Insert locked new node used as placeholder. */ mutex_enter(&vcache.lock); node = vcache_hash_lookup(&new_vcache_key, new_hash); if (node != NULL) { mutex_enter(tvp->v_interlock); VSTATE_CHANGE(tvp, VS_LOADING, VS_RECLAIMED); mutex_exit(&vcache.lock); vrelel(tvp, 0); return EEXIST; } SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask], new_node, vi_hash); /* Lock old node. */ node = vcache_hash_lookup(&old_vcache_key, old_hash); KASSERT(node != NULL); KASSERT(VIMPL_TO_VNODE(node) == vp); mutex_enter(vp->v_interlock); VSTATE_CHANGE(vp, VS_ACTIVE, VS_BLOCKED); node->vi_key = old_vcache_key; mutex_exit(vp->v_interlock); mutex_exit(&vcache.lock); return 0; } /* * Key change complete: remove old node and unlock new node. */ void vcache_rekey_exit(struct mount *mp, struct vnode *vp, const void *old_key, size_t old_key_len, const void *new_key, size_t new_key_len) { uint32_t old_hash, new_hash; struct vcache_key old_vcache_key, new_vcache_key; vnode_impl_t *old_node, *new_node; struct vnode *tvp; old_vcache_key.vk_mount = mp; old_vcache_key.vk_key = old_key; old_vcache_key.vk_key_len = old_key_len; old_hash = vcache_hash(&old_vcache_key); new_vcache_key.vk_mount = mp; new_vcache_key.vk_key = new_key; new_vcache_key.vk_key_len = new_key_len; new_hash = vcache_hash(&new_vcache_key); mutex_enter(&vcache.lock); /* Lookup old and new node. */ old_node = vcache_hash_lookup(&old_vcache_key, old_hash); KASSERT(old_node != NULL); KASSERT(VIMPL_TO_VNODE(old_node) == vp); mutex_enter(vp->v_interlock); VSTATE_ASSERT(vp, VS_BLOCKED); new_node = vcache_hash_lookup(&new_vcache_key, new_hash); KASSERT(new_node != NULL); KASSERT(new_node->vi_key.vk_key_len == new_key_len); tvp = VIMPL_TO_VNODE(new_node); mutex_enter(tvp->v_interlock); VSTATE_ASSERT(VIMPL_TO_VNODE(new_node), VS_LOADING); /* Rekey old node and put it onto its new hashlist. */ old_node->vi_key = new_vcache_key; if (old_hash != new_hash) { SLIST_REMOVE(&vcache.hashtab[old_hash & vcache.hashmask], old_node, vnode_impl, vi_hash); SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask], old_node, vi_hash); } VSTATE_CHANGE(vp, VS_BLOCKED, VS_ACTIVE); mutex_exit(vp->v_interlock); /* Remove new node used as placeholder. */ SLIST_REMOVE(&vcache.hashtab[new_hash & vcache.hashmask], new_node, vnode_impl, vi_hash); VSTATE_CHANGE(tvp, VS_LOADING, VS_RECLAIMED); mutex_exit(&vcache.lock); vrelel(tvp, 0); } /* * Disassociate the underlying file system from a vnode. * * Must be called with vnode locked and will return unlocked. * Must be called with the interlock held, and will return with it held. */ static void vcache_reclaim(vnode_t *vp) { lwp_t *l = curlwp; vnode_impl_t *node = VNODE_TO_VIMPL(vp); uint32_t hash; uint8_t temp_buf[64], *temp_key; size_t temp_key_len; bool recycle, active; int error; KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 || VOP_ISLOCKED(vp) == LK_EXCLUSIVE); KASSERT(mutex_owned(vp->v_interlock)); KASSERT(vp->v_usecount != 0); active = (vp->v_usecount > 1); temp_key_len = node->vi_key.vk_key_len; /* * Prevent the vnode from being recycled or brought into use * while we clean it out. */ VSTATE_CHANGE(vp, VS_ACTIVE, VS_RECLAIMING); if (vp->v_iflag & VI_EXECMAP) { atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages); atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages); } vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP); mutex_exit(vp->v_interlock); /* Replace the vnode key with a temporary copy. */ if (node->vi_key.vk_key_len > sizeof(temp_buf)) { temp_key = kmem_alloc(temp_key_len, KM_SLEEP); } else { temp_key = temp_buf; } mutex_enter(&vcache.lock); memcpy(temp_key, node->vi_key.vk_key, temp_key_len); node->vi_key.vk_key = temp_key; mutex_exit(&vcache.lock); /* * Clean out any cached data associated with the vnode. * If purging an active vnode, it must be closed and * deactivated before being reclaimed. */ error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0); if (error != 0) { if (wapbl_vphaswapbl(vp)) WAPBL_DISCARD(wapbl_vptomp(vp)); error = vinvalbuf(vp, 0, NOCRED, l, 0, 0); } KASSERTMSG((error == 0), "vinvalbuf failed: %d", error); KASSERT((vp->v_iflag & VI_ONWORKLST) == 0); if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) { spec_node_revoke(vp); } /* * Disassociate the underlying file system from the vnode. * Note that the VOP_INACTIVE will unlock the vnode. */ VOP_INACTIVE(vp, &recycle); if (VOP_RECLAIM(vp)) { vnpanic(vp, "%s: cannot reclaim", __func__); } KASSERT(vp->v_data == NULL); KASSERT(vp->v_uobj.uo_npages == 0); if (vp->v_type == VREG && vp->v_ractx != NULL) { uvm_ra_freectx(vp->v_ractx); vp->v_ractx = NULL; } /* Purge name cache. */ cache_purge(vp); /* Move to dead mount. */ vp->v_vflag &= ~VV_ROOT; atomic_inc_uint(&dead_rootmount->mnt_refcnt); vfs_insmntque(vp, dead_rootmount); /* Remove from vnode cache. */ hash = vcache_hash(&node->vi_key); mutex_enter(&vcache.lock); KASSERT(node == vcache_hash_lookup(&node->vi_key, hash)); SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask], node, vnode_impl, vi_hash); mutex_exit(&vcache.lock); if (temp_key != temp_buf) kmem_free(temp_key, temp_key_len); /* Done with purge, notify sleepers of the grim news. */ mutex_enter(vp->v_interlock); vp->v_op = dead_vnodeop_p; vp->v_vflag |= VV_LOCKSWORK; VSTATE_CHANGE(vp, VS_RECLAIMING, VS_RECLAIMED); vp->v_tag = VT_NON; KNOTE(&vp->v_klist, NOTE_REVOKE); KASSERT((vp->v_iflag & VI_ONWORKLST) == 0); } /* * Update outstanding I/O count and do wakeup if requested. */ void vwakeup(struct buf *bp) { vnode_t *vp; if ((vp = bp->b_vp) == NULL) return; KASSERT(bp->b_objlock == vp->v_interlock); KASSERT(mutex_owned(bp->b_objlock)); if (--vp->v_numoutput < 0) vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp); if (vp->v_numoutput == 0) cv_broadcast(&vp->v_cv); } /* * Test a vnode for being or becoming dead. Returns one of: * EBUSY: vnode is becoming dead, with "flags == VDEAD_NOWAIT" only. * ENOENT: vnode is dead. * 0: otherwise. * * Whenever this function returns a non-zero value all future * calls will also return a non-zero value. */ int vdead_check(struct vnode *vp, int flags) { KASSERT(mutex_owned(vp->v_interlock)); if (! ISSET(flags, VDEAD_NOWAIT)) VSTATE_WAIT_STABLE(vp); if (VSTATE_GET(vp) == VS_RECLAIMING) { KASSERT(ISSET(flags, VDEAD_NOWAIT)); return EBUSY; } else if (VSTATE_GET(vp) == VS_RECLAIMED) { return ENOENT; } return 0; } int vfs_drainvnodes(long target) { int error; mutex_enter(&vnode_free_list_lock); while (numvnodes > target) { error = cleanvnode(); if (error != 0) return error; mutex_enter(&vnode_free_list_lock); } mutex_exit(&vnode_free_list_lock); vcache_reinit(); return 0; } void vnpanic(vnode_t *vp, const char *fmt, ...) { va_list ap; #ifdef DIAGNOSTIC vprint(NULL, vp); #endif va_start(ap, fmt); vpanic(fmt, ap); va_end(ap); }