/* mpfr_subnormalize -- Subnormalize a floating point number emulating sub-normal numbers. Copyright 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpfr-impl.h" /* For MPFR_RNDN, we can have a problem of double rounding. In such a case, this table helps to conclude what to do (y positive): Rounding Bit | Sticky Bit | inexact | Action | new inexact 0 | ? | ? | Trunc | sticky 1 | 0 | 1 | Trunc | 1 | 0 | 0 | Trunc if even | 1 | 0 | -1 | AddOneUlp | 1 | 1 | ? | AddOneUlp | For other rounding mode, there isn't such a problem. Just round it again and merge the ternary values. Set the inexact flag if the returned ternary value is non-zero. Set the underflow flag if a second rounding occurred (whether this rounding is exact or not). See http://websympa.loria.fr/wwsympa/arc/mpfr/2009-06/msg00000.html http://websympa.loria.fr/wwsympa/arc/mpfr/2009-06/msg00008.html http://websympa.loria.fr/wwsympa/arc/mpfr/2009-06/msg00010.html */ int mpfr_subnormalize (mpfr_ptr y, int old_inexact, mpfr_rnd_t rnd) { int sign; /* The subnormal exponent range is [ emin, emin + MPFR_PREC(y) - 2 ] */ if (MPFR_LIKELY (MPFR_IS_SINGULAR (y) || (MPFR_GET_EXP (y) >= __gmpfr_emin + (mpfr_exp_t) MPFR_PREC (y) - 1))) MPFR_RET (old_inexact); mpfr_set_underflow (); sign = MPFR_SIGN (y); /* We have to emulate one bit rounding if EXP(y) = emin */ if (MPFR_GET_EXP (y) == __gmpfr_emin) { /* If this is a power of 2, we don't need rounding. It handles cases when rouding away and y=0.1*2^emin */ if (mpfr_powerof2_raw (y)) MPFR_RET (old_inexact); /* We keep the same sign for y. Assuming Y is the real value and y the approximation and since y is not a power of 2: 0.5*2^emin < Y < 1*2^emin We also know the direction of the error thanks to ternary value. */ if (rnd == MPFR_RNDN) { mp_limb_t *mant, rb ,sb; mp_size_t s; /* We need the rounding bit and the sticky bit. Read them and use the previous table to conclude. */ s = MPFR_LIMB_SIZE (y) - 1; mant = MPFR_MANT (y) + s; rb = *mant & (MPFR_LIMB_HIGHBIT >> 1); if (rb == 0) goto set_min; sb = *mant & ((MPFR_LIMB_HIGHBIT >> 1) - 1); while (sb == 0 && s-- != 0) sb = *--mant; if (sb != 0) goto set_min_p1; /* Rounding bit is 1 and sticky bit is 0. We need to examine old inexact flag to conclude. */ if ((old_inexact > 0 && sign > 0) || (old_inexact < 0 && sign < 0)) goto set_min; /* If inexact != 0, return 0.1*2^(emin+1). Otherwise, rounding bit = 1, sticky bit = 0 and inexact = 0 So we have 0.1100000000000000000000000*2^emin exactly. We return 0.1*2^(emin+1) according to the even-rounding rule on subnormals. */ goto set_min_p1; } else if (MPFR_IS_LIKE_RNDZ (rnd, MPFR_IS_NEG (y))) { set_min: mpfr_setmin (y, __gmpfr_emin); MPFR_RET (-sign); } else { set_min_p1: /* Note: mpfr_setmin will abort if __gmpfr_emax == __gmpfr_emin. */ mpfr_setmin (y, __gmpfr_emin + 1); MPFR_RET (sign); } } else /* Hard case: It is more or less the same problem than mpfr_cache */ { mpfr_t dest; mpfr_prec_t q; int inexact, inex2; MPFR_ASSERTD (MPFR_GET_EXP (y) > __gmpfr_emin); /* Compute the intermediary precision */ q = (mpfr_uexp_t) MPFR_GET_EXP (y) - __gmpfr_emin + 1; MPFR_ASSERTD (q >= MPFR_PREC_MIN && q < MPFR_PREC (y)); /* TODO: perform the rounding in place. */ mpfr_init2 (dest, q); /* Round y in dest */ MPFR_SET_EXP (dest, MPFR_GET_EXP (y)); MPFR_SET_SIGN (dest, sign); MPFR_RNDRAW_EVEN (inexact, dest, MPFR_MANT (y), MPFR_PREC (y), rnd, sign, MPFR_SET_EXP (dest, MPFR_GET_EXP (dest) + 1)); if (MPFR_LIKELY (old_inexact != 0)) { if (MPFR_UNLIKELY (rnd == MPFR_RNDN && (inexact == MPFR_EVEN_INEX || inexact == -MPFR_EVEN_INEX))) { /* if both roundings are in the same direction, we have to go back in the other direction */ if (SAME_SIGN (inexact, old_inexact)) { if (SAME_SIGN (inexact, MPFR_INT_SIGN (y))) mpfr_nexttozero (dest); else mpfr_nexttoinf (dest); inexact = -inexact; } } else if (MPFR_UNLIKELY (inexact == 0)) inexact = old_inexact; } inex2 = mpfr_set (y, dest, rnd); MPFR_ASSERTN (inex2 == 0); MPFR_ASSERTN (MPFR_IS_PURE_FP (y)); mpfr_clear (dest); MPFR_RET (inexact); } }