/* $NetBSD: cs89x0.c,v 1.23 2008/04/08 12:07:25 cegger Exp $ */ /* * Copyright (c) 2004 Christopher Gilbert * All rights reserved. * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright 1997 * Digital Equipment Corporation. All rights reserved. * * This software is furnished under license and may be used and * copied only in accordance with the following terms and conditions. * Subject to these conditions, you may download, copy, install, * use, modify and distribute this software in source and/or binary * form. No title or ownership is transferred hereby. * * 1) Any source code used, modified or distributed must reproduce * and retain this copyright notice and list of conditions as * they appear in the source file. * * 2) No right is granted to use any trade name, trademark, or logo of * Digital Equipment Corporation. Neither the "Digital Equipment * Corporation" name nor any trademark or logo of Digital Equipment * Corporation may be used to endorse or promote products derived * from this software without the prior written permission of * Digital Equipment Corporation. * * 3) This software is provided "AS-IS" and any express or implied * warranties, including but not limited to, any implied warranties * of merchantability, fitness for a particular purpose, or * non-infringement are disclaimed. In no event shall DIGITAL be * liable for any damages whatsoever, and in particular, DIGITAL * shall not be liable for special, indirect, consequential, or * incidental damages or damages for lost profits, loss of * revenue or loss of use, whether such damages arise in contract, * negligence, tort, under statute, in equity, at law or otherwise, * even if advised of the possibility of such damage. */ /* **++ ** FACILITY ** ** Device Driver for the Crystal CS8900 ISA Ethernet Controller. ** ** ABSTRACT ** ** This module provides standard ethernet access for INET protocols ** only. ** ** AUTHORS ** ** Peter Dettori SEA - Software Engineering. ** ** CREATION DATE: ** ** 13-Feb-1997. ** ** MODIFICATION HISTORY (Digital): ** ** Revision 1.27 1998/01/20 17:59:40 cgd ** update for moved headers ** ** Revision 1.26 1998/01/12 19:29:36 cgd ** use arm32/isa versions of isadma code. ** ** Revision 1.25 1997/12/12 01:35:27 cgd ** convert to use new arp code (from Brini) ** ** Revision 1.24 1997/12/10 22:31:56 cgd ** trim some fat (get rid of ability to explicitly supply enet addr, since ** it was never used and added a bunch of code which really doesn't belong in ** an enet driver), and clean up slightly. ** ** Revision 1.23 1997/10/06 16:42:12 cgd ** copyright notices ** ** Revision 1.22 1997/06/20 19:38:01 chaiken ** fixes some smartcard problems ** ** Revision 1.21 1997/06/10 02:56:20 grohn ** Added call to ledNetActive ** ** Revision 1.20 1997/06/05 00:47:06 dettori ** Changed cs_process_rx_dma to reset and re-initialise the ** ethernet chip when DMA gets out of sync, or mbufs ** can't be allocated. ** ** Revision 1.19 1997/06/03 03:09:58 dettori ** Turn off sc_txbusy flag when a transmit underrun ** occurs. ** ** Revision 1.18 1997/06/02 00:04:35 dettori ** redefined the transmit table to get around the nfs_timer bug while we are ** looking into it further. ** ** Also changed interrupts from EDGE to LEVEL. ** ** Revision 1.17 1997/05/27 23:31:01 dettori ** Pulled out changes to DMAMODE defines. ** ** Revision 1.16 1997/05/23 04:25:16 cgd ** reformat log so it fits in 80cols ** ** Revision 1.15 1997/05/23 04:22:18 cgd ** remove the existing copyright notice (which Peter Dettori indicated ** was incorrect, copied from an existing NetBSD file only so that the ** file would have a copyright notice on it, and which he'd intended to ** replace). Replace it with a Digital copyright notice, cloned from ** ess.c. It's not really correct either (it indicates that the source ** is Digital confidential!), but is better than nothing and more ** correct than what was there before. ** ** Revision 1.14 1997/05/23 04:12:50 cgd ** use an adaptive transmit start algorithm: start by telling the chip ** to start transmitting after 381 bytes have been fed to it. if that ** gets transmit underruns, ramp down to 1021 bytes then "whole ** packet." If successful at a given level for a while, try the next ** more agressive level. This code doesn't ever try to start ** transmitting after 5 bytes have been sent to the NIC, because ** that underruns rather regularly. The back-off and ramp-up mechanism ** could probably be tuned a little bit, but this works well enough to ** support > 1MB/s transmit rates on a clear ethernet (which is about ** 20-25% better than the driver had previously been getting). ** ** Revision 1.13 1997/05/22 21:06:54 cgd ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly ** casting from u_int8_t * to u_int16_t * without worrying about alignment ** issues. This would cause bogus data to be spit out for mbufs with ** misaligned data. For instance, it caused the following bits to appear ** on the wire: ** ... etBND 1S2C .SHA(K) R ... ** 11112222333344445555 ** which should have appeared as: ** ... NetBSD 1.2C (SHARK) ... ** 11112222333344445555 ** Note the apparent 'rotate' of the bytes in the word, which was due to ** incorrect unaligned accesses. This data corruption was the cause of ** incoming telnet/rlogin hangs. ** ** Revision 1.12 1997/05/22 01:55:32 cgd ** reformat log so it fits in 80cols ** ** Revision 1.11 1997/05/22 01:50:27 cgd ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case, ** so packets aimed at other hosts don't get sent to ether_input(). ** * Add a static const char *rcsid initialized with an RCS Id tag, so that ** you can easily tell (`strings`) what version of the driver is in your ** kernel binary. ** * get rid of ether_cmp(). It was inconsistently used, not necessarily ** safe, and not really a performance win anyway. (It was only used when ** setting up the multicast logical address filter, which is an ** infrequent event. It could have been used in the IFF_PROMISCUOUS ** address check above, but the benefit of it vs. memcmp would be ** inconsequential, there.) Use memcmp() instead. ** * restructure csStartOuput to avoid the following bugs in the case where ** txWait was being set: ** * it would accidentally drop the outgoing packet if told to wait ** but the outgoing packet queue was empty. ** * it would bpf_mtap() the outgoing packet multiple times (once for ** each time it was told to wait), and would also recalculate ** the length of the outgoing packet each time it was told to ** wait. ** While there, rename txWait to txLoop, since with the new structure of ** the code, the latter name makes more sense. ** ** Revision 1.10 1997/05/19 02:03:20 cgd ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip() ** is the only caller of cs_set_ladr_filt(), and always calls it, so this ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave ** as before. ** ** Revision 1.9 1997/05/19 01:45:37 cgd ** create a new function, cs_ether_input(), which does received-packet ** BPF and ether_input processing. This code used to be in three places, ** and centralizing it will make adding IFF_PROMISC support much easier. ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to ** do copies with bus_space_write_region_2(). It's more correct, and ** potentially more efficient. That function needs to be gutted (to ** deal properly with alignment issues, which it currently does wrong), ** however, and the change doesn't gain much, so there's no point in ** enabling it now. ** ** Revision 1.8 1997/05/19 01:17:10 cgd ** fix a comment re: the setting of the TxConfig register. Clean up ** interface counter maintenance (make it use standard idiom). ** **-- */ #include __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.23 2008/04/08 12:07:25 cegger Exp $"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include "rnd.h" #if NRND > 0 #include #endif #include #include #include #ifdef INET #include #include #endif #include "bpfilter.h" #if NBPFILTER > 0 #include #include #endif #include #include #include #include #include #ifdef SHARK #include #endif /* * MACRO DEFINITIONS */ #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */ /* * FUNCTION PROTOTYPES */ void cs_get_default_media(struct cs_softc *); int cs_get_params(struct cs_softc *); int cs_get_enaddr(struct cs_softc *); int cs_reset_chip(struct cs_softc *); void cs_reset(void *); int cs_ioctl(struct ifnet *, u_long, void *); void cs_initChip(struct cs_softc *); void cs_buffer_event(struct cs_softc *, u_int16_t); void cs_transmit_event(struct cs_softc *, u_int16_t); void cs_receive_event(struct cs_softc *, u_int16_t); void cs_process_receive(struct cs_softc *); void cs_process_rx_early(struct cs_softc *); void cs_start_output(struct ifnet *); void cs_copy_tx_frame(struct cs_softc *, struct mbuf *); void cs_set_ladr_filt(struct cs_softc *, struct ethercom *); u_int16_t cs_hash_index(char *); void cs_counter_event(struct cs_softc *, u_int16_t); int cs_mediachange(struct ifnet *); void cs_mediastatus(struct ifnet *, struct ifmediareq *); static int cs_enable(struct cs_softc *); static void cs_disable(struct cs_softc *); static void cs_stop(struct ifnet *, int); static void cs_power(int, void *); static int cs_scan_eeprom(struct cs_softc *); static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *); /* * GLOBAL DECLARATIONS */ /* * Xmit-early table. * * To get better performance, we tell the chip to start packet * transmission before the whole packet is copied to the chip. * However, this can fail under load. When it fails, we back off * to a safer setting for a little while. * * txcmd is the value of txcmd used to indicate when to start transmission. * better is the next 'better' state in the table. * better_count is the number of output packets before transition to the * better state. * worse is the next 'worse' state in the table. * * Transition to the next worse state happens automatically when a * transmittion underrun occurs. */ struct cs_xmit_early { u_int16_t txcmd; int better; int better_count; int worse; } cs_xmit_early_table[3] = { { TX_CMD_START_381, 0, INT_MAX, 1, }, { TX_CMD_START_1021, 0, 50000, 2, }, { TX_CMD_START_ALL, 1, 5000, 2, }, }; int cs_default_media[] = { IFM_ETHER|IFM_10_2, IFM_ETHER|IFM_10_5, IFM_ETHER|IFM_10_T, IFM_ETHER|IFM_10_T|IFM_FDX, }; int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]); int cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media, int nmedia, int defmedia) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; const char *chipname, *medname; u_int16_t reg; int i; /* Start out in IO mode */ sc->sc_memorymode = FALSE; /* make sure we're right */ for (i = 0; i < 10000; i++) { reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM); if (reg == EISA_NUM_CRYSTAL) { break; } } if (i == 10000) { aprint_error_dev(&sc->sc_dev, "wrong id(0x%x)\n", reg); return 1; /* XXX should panic? */ } reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID); sc->sc_prodid = reg & PROD_ID_MASK; sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8; switch (sc->sc_prodid) { case PROD_ID_CS8900: chipname = "CS8900"; break; case PROD_ID_CS8920: chipname = "CS8920"; break; case PROD_ID_CS8920M: chipname = "CS8920M"; break; default: panic("cs_attach: impossible"); } /* * the first thing to do is check that the mbuf cluster size is * greater than the MTU for an ethernet frame. The code depends on * this and to port this to a OS where this was not the case would * not be straightforward. * * we need 1 byte spare because our * packet read loop can overrun. * and we may need pad bytes to align ip header. */ if (MCLBYTES < ETHER_MAX_LEN + 1 + ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) { printf("%s: MCLBYTES too small for Ethernet frame\n", device_xname(&sc->sc_dev)); return 1; } /* Start out not transmitting */ sc->sc_txbusy = FALSE; /* Set up early transmit threshhold */ sc->sc_xe_ent = 0; sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count; /* Initialize ifnet structure. */ strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ); ifp->if_softc = sc; ifp->if_start = cs_start_output; ifp->if_init = cs_init; ifp->if_ioctl = cs_ioctl; ifp->if_stop = cs_stop; ifp->if_watchdog = NULL; /* no watchdog at this stage */ ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_BROADCAST | IFF_MULTICAST; IFQ_SET_READY(&ifp->if_snd); /* Initialize ifmedia structures. */ ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus); if (media != NULL) { for (i = 0; i < nmedia; i++) ifmedia_add(&sc->sc_media, media[i], 0, NULL); ifmedia_set(&sc->sc_media, defmedia); } else { for (i = 0; i < cs_default_nmedia; i++) ifmedia_add(&sc->sc_media, cs_default_media[i], 0, NULL); cs_get_default_media(sc); } if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) { if (cs_scan_eeprom(sc) == CS_ERROR) { /* failed to scan the eeprom, pretend there isn't an eeprom */ aprint_error_dev(&sc->sc_dev, "unable to scan EEPROM\n"); sc->sc_cfgflags |= CFGFLG_NOT_EEPROM; } } if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) { /* Get parameters from the EEPROM */ if (cs_get_params(sc) == CS_ERROR) { aprint_error_dev(&sc->sc_dev, "unable to get settings from EEPROM\n"); return 1; } } if (enaddr != NULL) memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr)); else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) { /* Get and store the Ethernet address */ if (cs_get_enaddr(sc) == CS_ERROR) { aprint_error_dev(&sc->sc_dev, "unable to read Ethernet address\n"); return 1; } } else { #if 1 int j; uint v; for (j = 0; j < 6; j += 2) { v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j); sc->sc_enaddr[j + 0] = v; sc->sc_enaddr[j + 1] = v >> 8; } #else printf("%s: no Ethernet address!\n", device_xname(&sc->sc_dev)); return 1; #endif } switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) { case IFM_10_2: medname = "BNC"; break; case IFM_10_5: medname = "AUI"; break; case IFM_10_T: if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX) medname = "UTP "; else medname = "UTP"; break; default: panic("cs_attach: impossible"); } printf("%s: %s rev. %c, address %s, media %s\n", device_xname(&sc->sc_dev), chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr), medname); if (sc->sc_dma_attach) (*sc->sc_dma_attach)(sc); sc->sc_sh = shutdownhook_establish(cs_reset, sc); if (sc->sc_sh == NULL) { aprint_error_dev(&sc->sc_dev, "unable to establish shutdownhook\n"); cs_detach(sc); return 1; } /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp, sc->sc_enaddr); #if NRND > 0 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev), RND_TYPE_NET, 0); #endif sc->sc_cfgflags |= CFGFLG_ATTACHED; /* Reset the chip */ if (cs_reset_chip(sc) == CS_ERROR) { aprint_error_dev(&sc->sc_dev, "reset failed\n"); cs_detach(sc); return 1; } sc->sc_powerhook = powerhook_establish(device_xname(&sc->sc_dev), cs_power, sc); if (sc->sc_powerhook == 0) aprint_error_dev(&sc->sc_dev, "warning: powerhook_establish failed\n"); return 0; } int cs_detach(struct cs_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; if (sc->sc_powerhook) { powerhook_disestablish(sc->sc_powerhook); sc->sc_powerhook = 0; } if (sc->sc_cfgflags & CFGFLG_ATTACHED) { #if NRND > 0 rnd_detach_source(&sc->rnd_source); #endif ether_ifdetach(ifp); if_detach(ifp); sc->sc_cfgflags &= ~CFGFLG_ATTACHED; } if (sc->sc_sh != NULL) shutdownhook_disestablish(sc->sc_sh); #if 0 /* * XXX not necessary */ if (sc->sc_cfgflags & CFGFLG_DMA_MODE) { isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize); isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize); isa_dmamap_destroy(sc->sc_ic, sc->sc_drq); sc->sc_cfgflags &= ~CFGFLG_DMA_MODE; } #endif return 0; } void cs_get_default_media(struct cs_softc *sc) { u_int16_t adp_cfg, xmit_ctl; if (cs_verify_eeprom(sc) == CS_ERROR) { aprint_error_dev(&sc->sc_dev, "cs_get_default_media: EEPROM missing or bad\n"); goto fakeit; } if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) { aprint_error_dev(&sc->sc_dev, "unable to read adapter config from EEPROM\n"); goto fakeit; } if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) { aprint_error_dev(&sc->sc_dev, "unable to read transmit control from EEPROM\n"); goto fakeit; } switch (adp_cfg & ADPTR_CFG_MEDIA) { case ADPTR_CFG_AUI: ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5); break; case ADPTR_CFG_10BASE2: ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2); break; case ADPTR_CFG_10BASET: default: if (xmit_ctl & XMIT_CTL_FDX) ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX); else ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T); break; } return; fakeit: aprint_error_dev(&sc->sc_dev, "WARNING: default media setting may be inaccurate\n"); /* XXX Arbitrary... */ ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T); } /* * cs_scan_eeprom * * Attempt to take a complete copy of the eeprom into main memory. * this will allow faster parsing of the eeprom data. * * Only tested against a 8920M's eeprom, but the data sheet for the * 8920A indicates that is uses the same layout. */ int cs_scan_eeprom(struct cs_softc *sc) { u_int16_t result; int i; int eeprom_size; u_int8_t checksum = 0; if (cs_verify_eeprom(sc) == CS_ERROR) { aprint_error_dev(&sc->sc_dev, "cs_scan_params: EEPROM missing or bad\n"); return (CS_ERROR); } /* * read the 0th word from the eeprom, it will tell us the length * and if the eeprom is valid */ cs_read_eeprom(sc, 0, &result); /* check the eeprom signature */ if ((result & 0xE000) != 0xA000) { /* empty eeprom */ return (CS_ERROR); } /* * take the eeprom size (note the read value doesn't include the header * word) */ eeprom_size = (result & 0xff) + 2; sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK); if (sc->eeprom_data == NULL) { /* no memory, treat this as if there's no eeprom */ return (CS_ERROR); } sc->eeprom_size = eeprom_size; /* read the eeprom into the buffer, also calculate the checksum */ for (i = 0; i < (eeprom_size >> 1); i++) { cs_read_eeprom(sc, i, &(sc->eeprom_data[i])); checksum += (sc->eeprom_data[i] & 0xff00) >> 8; checksum += (sc->eeprom_data[i] & 0x00ff); } /* * validate checksum calculation, the sum of all the bytes should be 0, * as the high byte of the last word is the 2's complement of the * sum to that point. */ if (checksum != 0) { aprint_error_dev(&sc->sc_dev, "eeprom checksum failure\n"); return (CS_ERROR); } return (CS_OK); } static int cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue) { int x, maxword; /* Check that we have eeprom data */ if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2)) return (CS_ERROR); /* * We only want to read the data words, the last word contains the * checksum */ maxword = (sc->eeprom_size - 2) >> 1; /* start 1 word in, as the first word is the length and signature */ x = 1; while ( x < (maxword)) { u_int16_t header; int group_size; int offset; int offset_max; /* read in the group header word */ header = sc->eeprom_data[x]; x++; /* skip group header */ /* * size of group in words is in the top 4 bits, note that it * is one less than the number of words */ group_size = header & 0xF000; /* * CS8900 Data sheet says this should be 0x01ff, * but my cs8920 eeprom has higher offsets, * perhaps the 8920 allows higher offsets, otherwise * it's writing to places that it shouldn't */ /* work out the offsets this group covers */ offset = header & 0x0FFF; offset_max = offset + (group_size << 1); /* check if the pkgpg we're after is in this group */ if ((offset <= pktpg) && (pktpg <= offset_max)) { /* the pkgpg value we want is in here */ int eeprom_location; eeprom_location = ((pktpg - offset) >> 1) ; *pValue = sc->eeprom_data[x + eeprom_location]; return (CS_OK); } else { /* skip this group (+ 1 for first entry) */ x += group_size + 1; } } /* * if we've fallen out here then we don't have a value in the EEPROM * for this pktpg so return an error */ return (CS_ERROR); } int cs_get_params(struct cs_softc *sc) { u_int16_t isaConfig; u_int16_t adapterConfig; if (cs_verify_eeprom(sc) == CS_ERROR) { aprint_error_dev(&sc->sc_dev, "cs_get_params: EEPROM missing or bad\n"); return (CS_ERROR); } if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) { /* Get ISA configuration from the EEPROM */ if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig) == CS_ERROR) { /* eeprom doesn't have this value, use data sheet default */ isaConfig = 0x0017; } /* Get adapter configuration from the EEPROM */ if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig) == CS_ERROR) { /* eeprom doesn't have this value, use data sheet default */ adapterConfig = 0x0015; } /* Copy the USE_SA flag */ if (isaConfig & BUS_CTL_USE_SA) sc->sc_cfgflags |= CFGFLG_USE_SA; /* Copy the IO Channel Ready flag */ if (isaConfig & BUS_CTL_IOCHRDY) sc->sc_cfgflags |= CFGFLG_IOCHRDY; /* Copy the DC/DC Polarity flag */ if (adapterConfig & SELF_CTL_HCB1) sc->sc_cfgflags |= CFGFLG_DCDC_POL; } else { /* Get ISA configuration from the EEPROM */ if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR) goto eeprom_bad; /* Get adapter configuration from the EEPROM */ if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR) goto eeprom_bad; /* Copy the USE_SA flag */ if (isaConfig & ISA_CFG_USE_SA) sc->sc_cfgflags |= CFGFLG_USE_SA; /* Copy the IO Channel Ready flag */ if (isaConfig & ISA_CFG_IOCHRDY) sc->sc_cfgflags |= CFGFLG_IOCHRDY; /* Copy the DC/DC Polarity flag */ if (adapterConfig & ADPTR_CFG_DCDC_POL) sc->sc_cfgflags |= CFGFLG_DCDC_POL; } return (CS_OK); eeprom_bad: aprint_error_dev(&sc->sc_dev, "cs_get_params: unable to read from EEPROM\n"); return (CS_ERROR); } int cs_get_enaddr(struct cs_softc *sc) { u_int16_t *myea; if (cs_verify_eeprom(sc) == CS_ERROR) { aprint_error_dev(&sc->sc_dev, "cs_get_enaddr: EEPROM missing or bad\n"); return (CS_ERROR); } myea = (u_int16_t *)sc->sc_enaddr; /* Get Ethernet address from the EEPROM */ /* XXX this will likely lose on a big-endian machine. -- cgd */ if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) { if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0]) == CS_ERROR) goto eeprom_bad; if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1]) == CS_ERROR) goto eeprom_bad; if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2]) == CS_ERROR) goto eeprom_bad; } else { if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR) goto eeprom_bad; if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR) goto eeprom_bad; if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR) goto eeprom_bad; } return (CS_OK); eeprom_bad: aprint_error_dev(&sc->sc_dev, "cs_get_enaddr: unable to read from EEPROM\n"); return (CS_ERROR); } int cs_reset_chip(struct cs_softc *sc) { int intState; int x; /* Disable interrupts at the CPU so reset command is atomic */ intState = splnet(); /* * We are now resetting the chip * * A spurious interrupt is generated by the chip when it is reset. This * variable informs the interrupt handler to ignore this interrupt. */ sc->sc_resetting = TRUE; /* Issue a reset command to the chip */ CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET); /* Re-enable interrupts at the CPU */ splx(intState); /* The chip is always in IO mode after a reset */ sc->sc_memorymode = FALSE; /* If transmission was in progress, it is not now */ sc->sc_txbusy = FALSE; /* * there was a delay(125); here, but it seems uneccesary 125 usec is * 1/8000 of a second, not 1/8 of a second. the data sheet advises * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below * should be sufficient. */ /* Transition SBHE to switch chip from 8-bit to 16-bit */ IO_READ_1(sc, PORT_PKTPG_PTR + 0); IO_READ_1(sc, PORT_PKTPG_PTR + 1); IO_READ_1(sc, PORT_PKTPG_PTR + 0); IO_READ_1(sc, PORT_PKTPG_PTR + 1); /* Wait until the EEPROM is not busy */ for (x = 0; x < MAXLOOP; x++) { if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY)) break; } if (x == MAXLOOP) return CS_ERROR; /* Wait until initialization is done */ for (x = 0; x < MAXLOOP; x++) { if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE) break; } if (x == MAXLOOP) return CS_ERROR; /* Reset is no longer in progress */ sc->sc_resetting = FALSE; return CS_OK; } int cs_verify_eeprom(struct cs_softc *sc) { u_int16_t self_status; /* Verify that the EEPROM is present and OK */ self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST); if (((self_status & SELF_ST_EEP_PRES) && (self_status & SELF_ST_EEP_OK)) == 0) return (CS_ERROR); return (CS_OK); } int cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue) { int x; /* Ensure that the EEPROM is not busy */ for (x = 0; x < MAXLOOP; x++) { if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY)) break; } if (x == MAXLOOP) return (CS_ERROR); /* Issue the command to read the offset within the EEPROM */ CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD, offset | EEPROM_CMD_READ); /* Wait until the command is completed */ for (x = 0; x < MAXLOOP; x++) { if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY)) break; } if (x == MAXLOOP) return (CS_ERROR); /* Get the EEPROM data from the EEPROM Data register */ *pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA); return (CS_OK); } void cs_initChip(struct cs_softc *sc) { u_int16_t busCtl; u_int16_t selfCtl; u_int16_t v; u_int16_t isaId; int i; int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media); /* Disable reception and transmission of frames */ CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) & ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON); /* Disable interrupt at the chip */ CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL); /* If IOCHRDY is enabled then clear the bit in the busCtl register */ busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL); if (sc->sc_cfgflags & CFGFLG_IOCHRDY) { CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, busCtl & ~BUS_CTL_IOCHRDY); } else { CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, busCtl | BUS_CTL_IOCHRDY); } /* Set the Line Control register to match the media type */ if (media == IFM_10_T) CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET); else CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY); /* * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to * enable the DC/DC converter */ selfCtl = SELF_CTL_HC1E; /* If the media type is 10Base2 */ if (media == IFM_10_2) { /* * Enable the DC/DC converter if it has a low enable. */ if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0) /* * Set the HCB1 bit, which causes the HC1 pin to go * low. */ selfCtl |= SELF_CTL_HCB1; } else { /* Media type is 10BaseT or AUI */ /* * Disable the DC/DC converter if it has a high enable. */ if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) { /* * Set the HCB1 bit, which causes the HC1 pin to go * low. */ selfCtl |= SELF_CTL_HCB1; } } CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl); /* enable normal link pulse */ if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M) CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE); /* Enable full-duplex, if appropriate */ if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX) CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX); /* RX_CTL set in cs_set_ladr_filt(), below */ /* enable all transmission interrupts */ CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE); /* Accept all receive interrupts */ CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE); /* * Configure Operational Modes * * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is * a better way to do it because the card has a counter which can be * read to update the RX_MISS counter. This saves many interrupts. * * I have turned on the tx and rx overflow interrupts to counter using * the receive miss interrupt. This is a better estimate of errors * and requires lower system overhead. */ CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE | BUF_CFG_RX_DMA_IE); if (sc->sc_dma_chipinit) (*sc->sc_dma_chipinit)(sc); /* If memory mode is enabled */ if (sc->sc_cfgflags & CFGFLG_MEM_MODE) { /* If external logic is present for address decoding */ if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) { /* * Program the external logic to decode address bits * SA20-SA23 */ CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD, ((sc->sc_pktpgaddr & 0xffffff) >> 20) | EEPROM_CMD_ELSEL); } /* * Write the packet page base physical address to the memory * base register. */ CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0, sc->sc_pktpgaddr & 0xFFFF); CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2, sc->sc_pktpgaddr >> 16); busCtl = BUS_CTL_MEM_MODE; /* tell the chip to read the addresses off the SA pins */ if (sc->sc_cfgflags & CFGFLG_USE_SA) { busCtl |= BUS_CTL_USE_SA; } CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl); /* We are in memory mode now! */ sc->sc_memorymode = TRUE; /* * wait here (10ms) for the chip to swap over. this is the * maximum time that this could take. */ delay(10000); /* Verify that we can read from the chip */ isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM); /* * As a last minute sanity check before actually using mapped * memory we verify that we can read the isa number from the * chip in memory mode. */ if (isaId != EISA_NUM_CRYSTAL) { aprint_error_dev(&sc->sc_dev, "failed to enable memory mode\n"); sc->sc_memorymode = FALSE; } else { /* * we are in memory mode so if we aren't using DMA, * then program the chip to interrupt early. */ if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) { CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_RX_DEST_IE | BUF_CFG_RX_MISS_OVER_IE | BUF_CFG_TX_COL_OVER_IE); } } } /* Put Ethernet address into the Individual Address register */ for (i = 0; i < 6; i += 2) { v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8; CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v); } if (sc->sc_irq != -1) { /* Set the interrupt level in the chip */ if (sc->sc_prodid == PROD_ID_CS8900) { if (sc->sc_irq == 5) { CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3); } else { CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10); } } else { /* CS8920 */ CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq); } } /* write the multicast mask to the address filter register */ cs_set_ladr_filt(sc, &sc->sc_ethercom); /* Enable reception and transmission of frames */ CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) | LINE_CTL_RX_ON | LINE_CTL_TX_ON); /* Enable interrupt at the chip */ CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL); } int cs_init(struct ifnet *ifp) { int intState; int error = CS_OK; struct cs_softc *sc = ifp->if_softc; if (cs_enable(sc)) goto out; cs_stop(ifp, 0); intState = splnet(); #if 0 /* Mark the interface as down */ sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING); #endif #ifdef CS_DEBUG /* Enable debugging */ sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG; #endif /* Reset the chip */ if ((error = cs_reset_chip(sc)) == CS_OK) { /* Initialize the chip */ cs_initChip(sc); /* Mark the interface as running */ sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING; sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE; sc->sc_ethercom.ec_if.if_timer = 0; /* Assume we have carrier until we are told otherwise. */ sc->sc_carrier = 1; } else { aprint_error_dev(&sc->sc_dev, "unable to reset chip\n"); } splx(intState); out: if (error == CS_OK) return 0; return EIO; } void cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec) { struct ifnet *ifp = &ec->ec_if; struct ether_multi *enm; struct ether_multistep step; u_int16_t af[4]; u_int16_t port, mask, index; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ if (ifp->if_flags & IFF_PROMISC) { /* accept all valid frames. */ CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL, RX_CTL_PROMISC_A | RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A); ifp->if_flags |= IFF_ALLMULTI; return; } /* * accept frames if a. crc valid, b. individual address match c. * broadcast address,and d. multicast addresses matched in the hash * filter */ CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL, RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A); /* * start off with all multicast flag clear, set it if we need to * later, otherwise we will leave it. */ ifp->if_flags &= ~IFF_ALLMULTI; af[0] = af[1] = af[2] = af[3] = 0x0000; /* * Loop through all the multicast addresses unless we get a range of * addresses, in which case we will just accept all packets. * Justification for this is given in the next comment. */ ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, sizeof enm->enm_addrlo)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ifp->if_flags |= IFF_ALLMULTI; af[0] = af[1] = af[2] = af[3] = 0xffff; break; } else { /* * we have got an individual address so just set that * bit. */ index = cs_hash_index(enm->enm_addrlo); /* Set the bit the Logical address filter. */ port = (u_int16_t) (index >> 4); mask = (u_int16_t) (1 << (index & 0xf)); af[port] |= mask; ETHER_NEXT_MULTI(step, enm); } } /* now program the chip with the addresses */ CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]); CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]); CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]); CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]); return; } u_int16_t cs_hash_index(char *addr) { uint32_t crc; uint16_t hash_code; crc = ether_crc32_le(addr, ETHER_ADDR_LEN); hash_code = crc >> 26; return (hash_code); } void cs_reset(void *arg) { struct cs_softc *sc = arg; /* Mark the interface as down */ sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING; /* Reset the chip */ cs_reset_chip(sc); } int cs_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct cs_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int state; int result; state = splnet(); result = 0; /* only set if something goes wrong */ switch (cmd) { case SIOCGIFMEDIA: case SIOCSIFMEDIA: result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); break; default: result = ether_ioctl(ifp, cmd, data); if (result == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) { /* * Multicast list has changed. Set the * hardware filter accordingly. */ cs_set_ladr_filt(sc, &sc->sc_ethercom); } result = 0; } break; } splx(state); return result; } int cs_mediachange(struct ifnet *ifp) { /* * Current media is already set up. Just reset the interface * to let the new value take hold. */ cs_init(ifp); return (0); } void cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct cs_softc *sc = ifp->if_softc; /* * The currently selected media is always the active media. */ ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media; if (ifp->if_flags & IFF_UP) { /* Interface up, status is valid. */ ifmr->ifm_status = IFM_AVALID | (sc->sc_carrier ? IFM_ACTIVE : 0); } else ifmr->ifm_status = 0; } int cs_intr(void *arg) { struct cs_softc *sc = arg; u_int16_t Event; #if NRND > 0 u_int16_t rndEvent; #endif /*printf("cs_intr %p\n", sc);*/ /* Ignore any interrupts that happen while the chip is being reset */ if (sc->sc_resetting) { printf("%s: cs_intr: reset in progress\n", device_xname(&sc->sc_dev)); return 1; } /* Read an event from the Interrupt Status Queue */ if (sc->sc_memorymode) Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ); else Event = CS_READ_PORT(sc, PORT_ISQ); if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff) return 0; /* not ours */ #if NRND > 0 rndEvent = Event; #endif /* Process all the events in the Interrupt Status Queue */ while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) { /* Dispatch to an event handler based on the register number */ switch (Event & REG_NUM_MASK) { case REG_NUM_RX_EVENT: cs_receive_event(sc, Event); break; case REG_NUM_TX_EVENT: cs_transmit_event(sc, Event); break; case REG_NUM_BUF_EVENT: cs_buffer_event(sc, Event); break; case REG_NUM_TX_COL: case REG_NUM_RX_MISS: cs_counter_event(sc, Event); break; default: printf("%s: unknown interrupt event 0x%x\n", device_xname(&sc->sc_dev), Event); break; } /* Read another event from the Interrupt Status Queue */ if (sc->sc_memorymode) Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ); else Event = CS_READ_PORT(sc, PORT_ISQ); } /* have handled the interrupt */ #if NRND > 0 rnd_add_uint32(&sc->rnd_source, rndEvent); #endif return 1; } void cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent) { struct ifnet *ifp; u_int16_t errorCount; ifp = &sc->sc_ethercom.ec_if; switch (cntEvent & REG_NUM_MASK) { case REG_NUM_TX_COL: /* * the count should be read before an overflow occurs. */ errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL); /* * the tramsit event routine always checks the number of * collisions for any packet so we don't increment any * counters here, as they should already have been * considered. */ break; case REG_NUM_RX_MISS: /* * the count should be read before an overflow occurs. */ errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS); /* * Increment the input error count, the first 6bits are the * register id. */ ifp->if_ierrors += ((errorCount & 0xffC0) >> 6); break; default: /* do nothing */ break; } } void cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent) { /* * multiple events can be in the buffer event register at one time so * a standard switch statement will not suffice, here every event * must be checked. */ /* * if 128 bits have been rxed by the time we get here, the dest event * will be cleared and 128 event will be set. */ if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) { cs_process_rx_early(sc); } if (bufEvent & BUF_EVENT_RX_DMA) { /* process the receive data */ if (sc->sc_dma_process_rx) (*sc->sc_dma_process_rx)(sc); else /* should panic? */ aprint_error_dev(&sc->sc_dev, "unexpected DMA event\n"); } if (bufEvent & BUF_EVENT_TX_UNDR) { #if 0 /* * This can happen occasionally, and it's not worth worrying * about. */ printf("%s: transmit underrun (%d -> %d)\n", device_xname(&sc->sc_dev), sc->sc_xe_ent, cs_xmit_early_table[sc->sc_xe_ent].worse); #endif sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse; sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count; /* had an underrun, transmit is finished */ sc->sc_txbusy = FALSE; } if (bufEvent & BUF_EVENT_SW_INT) { printf("%s: software initiated interrupt\n", device_xname(&sc->sc_dev)); } } void cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; /* If there were any errors transmitting this frame */ if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN | TX_EVENT_JABBER | TX_EVENT_16_COLL)) { /* Increment the output error count */ ifp->if_oerrors++; /* Note carrier loss. */ if (txEvent & TX_EVENT_LOSS_CRS) sc->sc_carrier = 0; /* If debugging is enabled then log error messages */ if (ifp->if_flags & IFF_DEBUG) { if (txEvent & TX_EVENT_LOSS_CRS) { aprint_error_dev(&sc->sc_dev, "lost carrier\n"); } if (txEvent & TX_EVENT_SQE_ERR) { aprint_error_dev(&sc->sc_dev, "SQE error\n"); } if (txEvent & TX_EVENT_OUT_WIN) { aprint_error_dev(&sc->sc_dev, "out-of-window collision\n"); } if (txEvent & TX_EVENT_JABBER) { aprint_error_dev(&sc->sc_dev, "jabber\n"); } if (txEvent & TX_EVENT_16_COLL) { aprint_error_dev(&sc->sc_dev, "16 collisions\n"); } } } else { /* Transmission successful, carrier is up. */ sc->sc_carrier = 1; #ifdef SHARK ledNetActive(); #endif } /* Add the number of collisions for this frame */ if (txEvent & TX_EVENT_16_COLL) { ifp->if_collisions += 16; } else { ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11); } ifp->if_opackets++; /* Transmission is no longer in progress */ sc->sc_txbusy = FALSE; /* If there is more to transmit */ if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) { /* Start the next transmission */ cs_start_output(ifp); } } void cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent) { if (rxEvent & RX_EVENT_RUNT) aprint_error_dev(&sc->sc_dev, "runt\n"); if (rxEvent & RX_EVENT_X_DATA) aprint_error_dev(&sc->sc_dev, "extra data\n"); if (rxEvent & RX_EVENT_CRC_ERR) { if (rxEvent & RX_EVENT_DRIBBLE) aprint_error_dev(&sc->sc_dev, "alignment error\n"); else aprint_error_dev(&sc->sc_dev, "CRC error\n"); } else { if (rxEvent & RX_EVENT_DRIBBLE) aprint_error_dev(&sc->sc_dev, "dribble bits\n"); } } void cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; /* If the frame was not received OK */ if (!(rxEvent & RX_EVENT_RX_OK)) { /* Increment the input error count */ ifp->if_ierrors++; /* * If debugging is enabled then log error messages. */ if (ifp->if_flags & IFF_DEBUG) { if (rxEvent != REG_NUM_RX_EVENT) { cs_print_rx_errors(sc, rxEvent); /* * Must read the length of all received * frames */ CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH); /* Skip the received frame */ CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP); } else { aprint_error_dev(&sc->sc_dev, "implied skip\n"); } } } else { /* * process the received frame and pass it up to the upper * layers. */ cs_process_receive(sc); } } void cs_ether_input(struct cs_softc *sc, struct mbuf *m) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; ifp->if_ipackets++; #if NBPFILTER > 0 /* * Check if there's a BPF listener on this interface. * If so, hand off the raw packet to BPF. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* Pass the packet up. */ (*ifp->if_input)(ifp, m); } void cs_process_receive(struct cs_softc *sc) { struct ifnet *ifp; struct mbuf *m; int totlen; u_int16_t *pBuff, *pBuffLimit; int pad; unsigned int frameOffset = 0; /* XXX: gcc */ #ifdef SHARK ledNetActive(); #endif ifp = &sc->sc_ethercom.ec_if; /* Received a packet; carrier is up. */ sc->sc_carrier = 1; if (sc->sc_memorymode) { /* Initialize the frame offset */ frameOffset = PKTPG_RX_LENGTH; /* Get the length of the received frame */ totlen = CS_READ_PACKET_PAGE(sc, frameOffset); frameOffset += 2; } else { /* drop status */ CS_READ_PORT(sc, PORT_RXTX_DATA); /* Get the length of the received frame */ totlen = CS_READ_PORT(sc, PORT_RXTX_DATA); } if (totlen > ETHER_MAX_LEN) { aprint_error_dev(&sc->sc_dev, "invalid packet length %d\n", totlen); /* skip the received frame */ CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP); return; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) { aprint_error_dev(&sc->sc_dev, "cs_process_receive: unable to allocate mbuf\n"); ifp->if_ierrors++; /* * couldn't allocate an mbuf so things are not good, may as * well drop the packet I think. * * have already read the length so we should be right to skip * the packet. */ CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP); return; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = totlen; /* number of bytes to align ip header on word boundary for ipintr */ pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header); /* * alloc mbuf cluster if we need. * we need 1 byte spare because following * packet read loop can overrun. */ if (totlen + pad + 1 > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { /* couldn't allocate an mbuf cluster */ aprint_error_dev(&sc->sc_dev, "cs_process_receive: unable to allocate a cluster\n"); m_freem(m); /* skip the received frame */ CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP); return; } } /* align ip header on word boundary for ipintr */ m->m_data += pad; m->m_len = totlen; pBuff = mtod(m, u_int16_t *); /* now read the data from the chip */ if (sc->sc_memorymode) { pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */ while (pBuff < pBuffLimit) { *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset); frameOffset += 2; } } else { IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1); } cs_ether_input(sc, m); } void cs_process_rx_early(struct cs_softc *sc) { struct ifnet *ifp; struct mbuf *m; u_int16_t frameCount, oldFrameCount; u_int16_t rxEvent; u_int16_t *pBuff; int pad; unsigned int frameOffset; ifp = &sc->sc_ethercom.ec_if; /* Initialize the frame offset */ frameOffset = PKTPG_RX_FRAME; frameCount = 0; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) { aprint_error_dev(&sc->sc_dev, "cs_process_rx_early: unable to allocate mbuf\n"); ifp->if_ierrors++; /* * couldn't allocate an mbuf so things are not good, may as * well drop the packet I think. * * have already read the length so we should be right to skip * the packet. */ CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP); return; } m->m_pkthdr.rcvif = ifp; /* * save processing by always using a mbuf cluster, guaranteed to fit * packet */ MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { /* couldn't allocate an mbuf cluster */ aprint_error_dev(&sc->sc_dev, "cs_process_rx_early: unable to allocate a cluster\n"); m_freem(m); /* skip the frame */ CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP); return; } /* align ip header on word boundary for ipintr */ pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header); m->m_data += pad; /* set up the buffer pointer to point to the data area */ pBuff = mtod(m, u_int16_t *); /* * now read the frame byte counter until we have finished reading the * frame */ oldFrameCount = 0; frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT); while ((frameCount != 0) && (frameCount < MCLBYTES)) { for (; oldFrameCount < frameCount; oldFrameCount += 2) { *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset); frameOffset += 2; } /* read the new count from the chip */ frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT); } /* update the mbuf counts */ m->m_len = oldFrameCount; m->m_pkthdr.len = oldFrameCount; /* now check the Rx Event register */ rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT); if ((rxEvent & RX_EVENT_RX_OK) != 0) { /* * do an implied skip, it seems to be more reliable than a * forced skip. */ rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS); rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH); /* * now read the RX_EVENT register to perform an implied skip. */ rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT); cs_ether_input(sc, m); } else { m_freem(m); ifp->if_ierrors++; } } void cs_start_output(struct ifnet *ifp) { struct cs_softc *sc; struct mbuf *pMbuf; struct mbuf *pMbufChain; u_int16_t BusStatus; u_int16_t Length; int txLoop = 0; int dropout = 0; sc = ifp->if_softc; /* check that the interface is up and running */ if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) { return; } /* Don't interrupt a transmission in progress */ if (sc->sc_txbusy) { return; } /* this loop will only run through once if transmission is successful */ /* * While there are packets to transmit and a transmit is not in * progress */ while (sc->sc_txbusy == 0 && dropout == 0) { IFQ_DEQUEUE(&ifp->if_snd, pMbufChain); if (pMbufChain == NULL) break; #if NBPFILTER > 0 /* * If BPF is listening on this interface, let it see the packet * before we commit it to the wire. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, pMbufChain); #endif /* Find the total length of the data to transmit */ Length = 0; for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next) Length += pMbuf->m_len; do { /* * Request that the transmit be started after all * data has been copied * * In IO mode must write to the IO port not the packet * page address * * If this is changed to start transmission after a * small amount of data has been copied you tend to * get packet missed errors i think because the ISA * bus is too slow. Or possibly the copy routine is * not streamlined enough. */ if (sc->sc_memorymode) { CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD, cs_xmit_early_table[sc->sc_xe_ent].txcmd); CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length); } else { CS_WRITE_PORT(sc, PORT_TX_CMD, cs_xmit_early_table[sc->sc_xe_ent].txcmd); CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length); } /* * Adjust early-transmit machinery. */ if (--sc->sc_xe_togo == 0) { sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].better; sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count; } /* * Read the BusStatus register which indicates * success of the request */ BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST); /* * If there was an error in the transmit bid free the * mbuf and go on. This is presuming that mbuf is * corrupt. */ if (BusStatus & BUS_ST_TX_BID_ERR) { aprint_error_dev(&sc->sc_dev, "transmit bid error (too big)"); /* Discard the bad mbuf chain */ m_freem(pMbufChain); sc->sc_ethercom.ec_if.if_oerrors++; /* Loop up to transmit the next chain */ txLoop = 0; } else { if (BusStatus & BUS_ST_RDY4TXNOW) { /* * The chip is ready for transmission * now */ /* * Copy the frame to the chip to * start transmission */ cs_copy_tx_frame(sc, pMbufChain); /* Free the mbuf chain */ m_freem(pMbufChain); /* Transmission is now in progress */ sc->sc_txbusy = TRUE; txLoop = 0; } else { /* * if we get here we want to try * again with the same mbuf, until * the chip lets us transmit. */ txLoop++; if (txLoop > CS_OUTPUT_LOOP_MAX) { /* Free the mbuf chain */ m_freem(pMbufChain); /* * Transmission is not in * progress */ sc->sc_txbusy = FALSE; /* * Increment the output error * count */ ifp->if_oerrors++; /* * exit the routine and drop * the packet. */ txLoop = 0; dropout = 1; } } } } while (txLoop); } } void cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0) { struct mbuf *m; int len, leftover, frameoff; u_int16_t dbuf; u_int8_t *p; #ifdef DIAGNOSTIC u_int8_t *lim; #endif /* Initialize frame pointer and data port address */ frameoff = PKTPG_TX_FRAME; /* start out with no leftover data */ leftover = 0; dbuf = 0; /* Process the chain of mbufs */ for (m = m0; m != NULL; m = m->m_next) { /* * Process all of the data in a single mbuf. */ p = mtod(m, u_int8_t *); len = m->m_len; #ifdef DIAGNOSTIC lim = p + len; #endif while (len > 0) { if (leftover) { /* * Data left over (from mbuf or realignment). * Buffer the next byte, and write it and * the leftover data out. */ dbuf |= *p++ << 8; len--; if (sc->sc_memorymode) { CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf); frameoff += 2; } else { CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf); } leftover = 0; } else if ((long) p & 1) { /* * Misaligned data. Buffer the next byte. */ dbuf = *p++; len--; leftover = 1; } else { /* * Aligned data. This is the case we like. * * Write-region out as much as we can, then * buffer the remaining byte (if any). */ leftover = len & 1; len &= ~1; if (sc->sc_memorymode) { MEM_WRITE_REGION_2(sc, frameoff, (u_int16_t *) p, len >> 1); frameoff += len; } else { IO_WRITE_MULTI_2(sc, PORT_RXTX_DATA, (u_int16_t *)p, len >> 1); } p += len; if (leftover) dbuf = *p++; len = 0; } } if (len < 0) panic("cs_copy_tx_frame: negative len"); #ifdef DIAGNOSTIC if (p != lim) panic("cs_copy_tx_frame: p != lim"); #endif } if (leftover) { if (sc->sc_memorymode) { CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf); } else { CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf); } } } static int cs_enable(struct cs_softc *sc) { if (CS_IS_ENABLED(sc) == 0) { if (sc->sc_enable != NULL) { int error; error = (*sc->sc_enable)(sc); if (error) return (error); } sc->sc_cfgflags |= CFGFLG_ENABLED; } return (0); } static void cs_disable(struct cs_softc *sc) { if (CS_IS_ENABLED(sc)) { if (sc->sc_disable != NULL) (*sc->sc_disable)(sc); sc->sc_cfgflags &= ~CFGFLG_ENABLED; } } static void cs_stop(struct ifnet *ifp, int disable) { struct cs_softc *sc = ifp->if_softc; CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0); CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0); CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0); CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0); if (disable) { cs_disable(sc); } ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); } int cs_activate(struct device *self, enum devact act) { struct cs_softc *sc = (void *)self; int s, error = 0; s = splnet(); switch (act) { case DVACT_ACTIVATE: error = EOPNOTSUPP; break; case DVACT_DEACTIVATE: if_deactivate(&sc->sc_ethercom.ec_if); break; } splx(s); return error; } static void cs_power(int why, void *arg) { struct cs_softc *sc = arg; struct ifnet *ifp = &sc->sc_ethercom.ec_if; int s; s = splnet(); switch (why) { case PWR_STANDBY: case PWR_SUSPEND: cs_stop(ifp, 0); break; case PWR_RESUME: if (ifp->if_flags & IFF_UP) { cs_init(ifp); } break; case PWR_SOFTSUSPEND: case PWR_SOFTSTANDBY: case PWR_SOFTRESUME: break; } splx(s); }